
Polygon Lists &
3-D File Formats

Glenn G. Chappell
CHAPPELLG@member.ams.org
U. of Alaska Fairbanks

CS 481/681 Lecture Notes
Monday, February 18, 2002

18 Feb 2002 CS 481/681 2

Review:
Outlining Polygons
  Sometimes we wish to emphasize the angular,

gem-like character of surfaces.
  One way to do this is to outline each polygon.
  How is this done?

  In OpenGL, we can draw a surface twice, once with
polygons filled, and again with polygons outlined.

  Use glPolygonMode to set the polygon rasterization
mode.

  How can we avoid stitching errors?
  There is no perfect solution to this problem.
  Using a polygon offset generally produces good results.
  The relevant OpenGL command is glPolygonOffset.

18 Feb 2002 CS 481/681 3

Review:
Describing Objects [1/2]
  We usually describe 3-D objects by describing their

surfaces.
  Usually, but not always; true 3-D descriptions are known as

volume data.
  Object descriptions that are transmitted from one program

to another are usually in files.
  We want files to be compact, but also contain all necessary

information.
  We may want our file to be readable by commercial graphics

programs.
  Some file formats are much easier to handle than others.

  Some object description methods allow us to draw the
object in detail, as smooth as we like; others do not.

18 Feb 2002 CS 481/681 4

Review:
Describing Objects [2/2]
  Some general categories of ways to

describe surfaces:
  Via an explicit mathematical formula
  List of polygons
  Building out of basic shapes

•  Sphere, cylinders, cones, cubes, etc.
  Splines
  Isosurface (implicit description)
  Elevation data

• Used for terrain

18 Feb 2002 CS 481/681 5

Review:
Surface from a Formula
  Mathematical formulas describe surfaces implicitly or explicitly.

  An implicit description:

  An explicit description:

  Explicit descriptions have explicit formulae for x, y, and z.
  Explicit descriptions are also called parametrizations.

  Above, variables a and b are the parameters.
  Explicit descriptions are generally much easier to handle graphically

than implicit descriptions.
  To draw a parametrized surface, we need:

  Code to draw a square (0 to 1 in both coordinates) as a fine mesh of triangles.
  Code to compute the coordinates of points in the parametrized surface, as well

as the associated normal vectors.
  Then the points and normals in the square are replaced with those for the

surface.

() ().cos143sin7 xyzzyx =+

() .;sincos;3 2abzbaaybax =++=+=

18 Feb 2002 CS 481/681 6

Polygon Lists
  Regardless of how a surface is initially described, to draw it we

generally convert it to a list of polygons.
  Exception: Ray tracing.

  Thus, it is common for surfaces to be described as lists of
polygons.

  Pros:
  Easy to draw.
  Portable; lots of programs can handle lists of polygons.

  Cons:
  It is impossible to draw a surface in greater detail when you only

know the polygons.
  Files tend to be large.

  Surface descriptions are often placed in files. Next we discuss 3-
D file formats.

18 Feb 2002 CS 481/681 7

File Formats:
General Issues
  When designing any file format, the following

issues need to be dealt with.
  How will files of this type be identified?
  Will other people/programs be using this format?
  Might this format be extended in the future?

•  If so, will programs need to be able to read files that
contain features designed after the programs were
written?

  Should the format be readable/editable using a
standard text editor?

  Is file size going to be a major issue?
  Is there an already existing type that is good enough?

18 Feb 2002 CS 481/681 8

File Formats:
3-D Surface Issues [1/3]
  There are two basic ways to specify a list of polygons.

  The file can give a list of vertices; then polygons are specified
as having vertices from this list.

  The file can simply list the polygons, with the vertex
coordinates being listed with the polygons.

  An advantage of the former approach is that a program
can tell how the polygons in the surface fit together,
whether there are any holes in the surface, etc.
  We say the program can determine the topology of the

surface.
  Some surfaces are specified internally as lists of unrelated

polygons. In this case, using the former approach may be
inconvenient.

  A good solution is to allow both methods.

18 Feb 2002 CS 481/681 9

File Formats:
3-D Surface Issues [2/3]
  When specifying a surface, there is always the question of

how to deal with normal vectors. There are three
approaches:
  We can specify a surface without normals.
  We can specify a normal vector for each vertex (“vertex

normals”).
  We can specify a normal for each polygon (“facet normals”).

  Note: Facet normals are easy to compute from the list of
vertices of a polygon. Good vertex normals may be harder
to compute.

  A good solution is to allow (but not require) vertex
normals.

18 Feb 2002 CS 481/681 10

File Formats:
3-D Surface Issues [3/3]
  A third issue is what sort of polygons to allow:

  The format may allow general polygons, with any number of vertices.
  The format may allow only triangles.

  Allowing only triangles can make reading and processing a file
simpler.

  However, allowing more general polygons makes file generation
easier; further, it is not hard to split up a polygon into triangles,
especially if it is required than all polygons be convex.

  Allowing arbitrary (convex?) polygons is generally the best
solution, since:
  Many surfaces are naturally described using quadrilaterals or other

non-triangle polygons.
  Allowing general polygons simply means that a program may need to

partition polygons into triangles before processing them; this adds
little overhead.

18 Feb 2002 CS 481/681 11

A/W .obj Format:
Introduction
  As an example of a 3-D graphical format, we will discuss

the Alias/Wavefront .obj format.
  This format was developed by (you guessed it) Alias/

Wavefront for its Advanced Visualizer.
  The format can also be read and written by Alias/Wavefront’s

Maya, the primary software used in ART 472 (Visualization
and Animation), as well as many other professional 3-D
graphics packages.

  A/W .obj files are identified by their suffix, which is (again,
you guessed it) “.obj”.

  The files are human-readable text.
  As with many 3-D graphical formats, there is an associated

binary format, which we will not be discussing.

18 Feb 2002 CS 481/681 12

A/W .obj Format:
Basic Structure
  A/W .obj files are composed of lines of text.

  Blank lines are ignored.
  Other lines begin with a code telling what sort of data is

on that line.
  There are many codes; we will discuss the

following:
  # comment (line is skipped)
  v vertex coordinates
  vn vertex normal vector
  f face

  A few short sample files are on the next few
slides; more will be on the web page.

18 Feb 2002 CS 481/681 13

A/W .obj Format:
Example Files [1/3]
  Here is a complete A/W .obj file. Italic comments are not

part of the file.

This file contains a single square.
There are no normals.
Here are the vertices:
v 0 0 0 This is vertex number 1.
v 1 0 0
v 1 1 0
v 0 1 0
Here is the square itself:
f 1 2 3 4 These reference the “v” list, above.

18 Feb 2002 CS 481/681 14

A/W .obj Format:
Example Files [2/3]
  Here is another .obj file. This one contains normals.

  Before the two slashes is the vertex (“v”) number.
  After the two slashes is the normal (“vn”) number.

v 0 0 0
v 1 0 0
v 1 1 0
v 0 1 0
vn 0 0 1 This is normal vector number 1.
Two triangles
f 1//1 2//1 4//1 These reference vn 1, above.
f 2//1 3//1 4//1

18 Feb 2002 CS 481/681 15

A/W .obj Format:
Example Files [3/3]
  Yet another .obj file. This has separate vertex and normal

lists for each face.

v 0 0 0
v 1 0 0
v 0 1 0
vn 0 0 1
f -3//-1 -2//-1 -3//-1 -1 = most recent
v 1 0 0 -2 is the one before that, etc.
v 1 1 0
v 0 1 0
vn 0 0 1
f -3//-1 -2//-1 -3//-1

