
Level of Detail: 
A Brief Overview
David Luebke
University of Virginia

Introduction

●  Level of detail (LOD) is an important tool
for maintaining interactivity
–  Focuses on the fidelity / performance tradeoff
–  Not the only tool! Complementary with:

■  Parallel rendering
■  Occlusion culling
■  Image-based rendering [etc]

●  I’ll talk at a high level about LOD today
–  Introduce main concepts
–  Place today’s papers into context
–  Give some opinions

Level of Detail:  
The Basic Idea

●  The problem:
–  Geometric datasets can be too complex to

render at interactive rates
●  One solution:

–  Simplify the polygonal geometry of small or
distant objects

–  Known as Level of Detail or LOD
■  A.k.a. polygonal simplification, geometric

simplification, mesh reduction, decimation,
multiresolution modeling, …

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail: 
Traditional LOD In A Nutshell

●  Create levels of detail (LODs) of objects:

●  Distant objects use coarser LODs:

Level of Detail: 
Traditional LOD In A Nutshell

Level of Detail: 
The Big Questions

●  How to represent and generate simpler
versions of a complex model?

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail: 
The Big Questions

●  How to evaluate the fidelity of the
simplified models?

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail: 
The Big Questions

●  When to use which LOD of an object?

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Some Background

●  History of LOD techniques
–  Early history: Clark (1976), flight simulators
–  Handmade LODs à automatic LODs
–  LOD run-time management:  

reactive à predictive (Funkhouser)
●  LOD frameworks

–  Discrete (1976)
–  Continuous (1996)
–  View-dependent (1997)

Traditional Approach:  
Discrete Level of Detail

●  Traditional LOD in a nutshell:
–  Create LODs for each object separately  

in a preprocess
–  At run-time, pick each object’s LOD

according to the object’s distance (or  
similar criterion)

●  Since LODs are created offline at fixed
resolutions, we call this discrete LOD

Discrete LOD:  
Advantages

●  Simplest programming model; decouples
simplification and rendering
–  LOD creation need not address real-time

rendering constraints
–  Run-time rendering need only pick LODs

Discrete LOD:  
Advantages

●  Fits modern graphics hardware well
–  Easy to compile each LOD into triangle strips,

display lists, vertex arrays, …
–  These render much faster than unorganized

triangles on today’s hardware (3-5 x)

●  So why use anything but discrete LOD?
●  Answer: sometimes discrete LOD not

suited for drastic simplification
●  Some problem cases:

–  Terrain flyovers
–  Volumetric isosurfaces
–  Super-detailed range scans
–  Massive CAD models

Discrete LOD: 
Disadvantages

Drastic Simplification:  
The Problem With Large Objects

Courtesy IBM and ACOG

Drastic Simplification:  
The Problem With Small Objects

Courtesy Electric Boat

Drastic Simplification

●  For drastic simplification:
–  Large objects must be subdivided
–  Small objects must be combined

●  Difficult or impossible with  
discrete LOD

●  So what can we do?

Continuous Level of Detail

●  A departure from the traditional discrete
approach:
–  Discrete LOD: create individual levels of detail

in a preprocess
–  Continuous LOD: create data structure from

which a desired level of detail can be
extracted at run time.

Continuous LOD: 
Advantages

●  Better granularity à better fidelity
–  LOD is specified exactly, not chosen from a

few pre-created options
–  Thus objects use no more polygons than

necessary, which frees up polygons for other
objects

–  Net result: better resource utilization, leading
to better overall fidelity/polygon

Continuous LOD: 
Advantages

●  Better granularity à smoother transitions
–  Switching between traditional LODs can

introduce visual “popping” effect
–  Continuous LOD can adjust detail gradually

and incrementally, reducing visual pops
■  Can even geomorph the fine-grained simplification

operations over several frames to eliminate pops
[Hoppe 96, 98]

Continuous LOD: 
Advantages

●  Supports progressive transmission
–  Progressive Meshes [Hoppe 97]
–  Progressive Forest Split Compression [Taubin 98]

●  Leads to view-dependent LOD
–  Use current view parameters to select best

representation for the current view
–  Single objects may thus span several levels of

detail

View-Dependent LOD:
Examples

●  Show nearby portions of object at higher
resolution than distant portions

View from eyepoint Birds-eye view

View-Dependent LOD:
Examples

●  Show silhouette regions of object at
higher resolution than interior regions

View-Dependent LOD: 
Examples

●  Show more detail where the user is
looking than in their peripheral vision:

34,321 triangles

View-Dependent LOD: 
Examples

●  Show more detail where the user is
looking than in their peripheral vision:

11,726 triangles

View-Dependent LOD: 
Advantages

●  Even better granularity
–  Allocates polygons where they are most

needed, within as well as among objects
–  Enables even better overall fidelity

●  Enables drastic simplification of  
very large objects
–  Example: stadium model
–  Example: terrain flyover

An Aside:  
Hierarchical LOD

●  View-dependent LOD solves the  
Problem With Large Objects

●  Hierarchical LOD can solve the  
Problem With Small Objects
–  Merge objects into assemblies
–  At sufficient distances, simplify assemblies,

not individual objects
–  How to represent this in a scene graph?

An Aside: 
Hierarchical LOD

●  Hierarchical LOD dovetails nicely with
view-dependent LOD
–  Treat the entire scene as a single object to be

simplified in view-dependent fashion

●  Hierarchical LOD can also sit atop
traditional discrete LOD schemes
–  Imposters [Maciel 95]
–  HLODs [Erikson 01]

Choosing LODs: 
LOD Run-Time Management

●  Fundamental LOD issue: where in the
scene to allocate detail?
–  For discrete LOD this equates to choosing

which LOD will represent each object
–  Run every frame on every object; keep it fast

Choosing LODs

●  Describe a simple method for the system
to choose LODs
–  Assign each LOD a range of distances
–  Calculate distance from viewer to object
–  Use corresponding LOD

●  How might we implement this in a scene-
graph based system?
–  Make a “switch” node that picks which of its

children to traverse based on LOD thresholds

Choosing LODs

●  What’s wrong with this simple approach?
–  Visual “pop” when switching LODs can be

disconcerting
–  Doesn’t maintain constant frame rate; lots of

objects still means slow frame times
–  Requires someone to assign switching

distances by hand
–  Correct switching distance may vary with field

of view, resolution, etc.
●  What can we do about each of these?

Choosing LODs 
Maintaining constant frame rate

●  One solution: scale LOD switching
distances by a “bias”
–  Implement a feedback mechanism:

■  If last frame took too long, decrease bias
■  If last frame took too little time, increase bias

–  Dangers:
■  Oscillation caused by overly aggressive feedback
■  Sudden change in rendering load can still cause

overly long frame times

Choosing LODs: 
Maintaining constant frame rate

●  A better (but harder) solution: predictive
LOD selection

●  For each LOD estimate:
–  Cost (rendering time)
–  Benefit (importance to the image)

Choosing LODs: 
Maintaining constant frame rate

●  A better (but harder) solution: predictive
LOD selection

●  For each LOD estimate:
–  Cost (rendering time)

■  # of polygons
■  How large on screen
■  Vertex processing load (e.g., lighting) OR
■  Fragment processing load (e.g., texturing)

–  Benefit (importance to the image)

Choosing LODs: 
Maintaining constant frame rate

●  A better (but harder) solution: predictive
LOD selection

●  For each LOD estimate:
–  Cost (rendering time)
–  Benefit (importance to the image)

■  Size: larger objects contribute more to image
■  Accuracy: no of verts/polys, shading model, etc.
■  Priority: account for inherent importance
■  Eccentricity: peripheral objects harder to see
■  Velocity: fast-moving objects harder to see
■  Hysteresis: avoid flicker; use previous frame state

