Modeling Terrain Geometry

CPS344 Spring 2015
March 3, 5

A quick note

* Many of the links are straight from the class page for this lecture

* Looks like Professor Duvall is still deciding what to do with the due

date, so "\ (V) /°

e Stop me with questions

What is it?
Dictionary.com:

ter-rain
Jta'ran/
noun

1. astretch of land, especially with regard to its physical features.
2.

Motivation

 “critical scene component”
* But we need the model first!

* Modeling existing terrain (e.g. GIS)
* Generating terrain algorithmically

Height map

e 2D array (image) whose values are heights

* A very typical model,
has some limitations (e.g. can’t do tunnels)

* Pinscreen is a good analogue
* Easy to turn this into a mesh

"Pin art, Flickr" by Eduardo Habkost (ehabkost) - Eduardo Habkost's flickr account. Licensed under CC BY-SA 2.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Pin_art, Flickr.jpg#mediaviewer/File:Pin_art, Flickr.jpg

Flight simulator overview

e Starting skeleton is the surface modeling demo Professor Duvall
showed last time

* Diamond-square algorithm (subdivisions)
* Perlin noise for offsets

 Normals for new faces and vertices

» Skybox (with collision detection)

* Level of detail

* Of course, some camera controls

Diamond-square algorithm

Produces a fractal terrain

General idea: [recursively] take a quad, move its midpoint up/down a little bit

* The “diamond” step lets us hit every grid point

* Notice: every quad we subdivide has had its corner heights computed

* The amount you move it by is scaled by the side length, so the initial amounts matter more
* Recurse on the four resulting quads

divide (2\,

http://en.wikipedia.org/wiki/Diamond-square algorithm

http://www.playfuljs.com/realistic-terrain-in-130-lines/

https://code.google.com/p/fractalterraingeneration/wiki/Diamond Square

http://en.wikipedia.org/wiki/Diamond-square_algorithm
http://www.playfuljs.com/realistic-terrain-in-130-lines/
https://code.google.com/p/fractalterraingeneration/wiki/Diamond_Square

Perlin noise

* A function from points to reals (in our use case, heights)

* http://gamedev.stackexchange.com/questions/68168/perlin-noise-
el

Perlin noise White noise

http://gamedev.stackexchange.com/questions/68168/perlin-noise-help

Perlin noise

* Algorithm:
* fix a grid
* assign a (pseudo) random gradient vector for each grid point (2D direction)
* On a query for point p:
* Locate the grid cell containing p

* Take the dot product between the distance vector between p and each cell corner
e Return an interpolated value between the dot products

* For your project, these are the offsets you’re choosing in the
diamond-square algorithm

* Implemented for you: jogl jars/src/framework/ImprovedNoise.java

https://github.com/duke-compsci344-spring2015/jogl_jars/blob/master/src/framework/ImprovedNoise.java

Perlin noise

* Why go through all this trouble?
 Smooth noise (the function is continuous, i.e. the noise is coherent)
* With a fixed pseudorandom seed (choice of gradients), the output is reproducible

e Additionally:
* “Details” in the noise are of a controlled frequency (by grid size)

 Summing Perlin noise of different frequencies gives noise with a controlled frequency
range

* Functions of Perlin noise (e.g. 1/| noise|) can be used to simulate other random
patterns, like wood grains, marble, fire, clouds

e http://webstaff.itn.liu.se/~stegu/TNMO022-2005/perlinnoiselinks/perlin-
noise-math-faq.html

* http://stackoverflow.com/questions/18511932/questions-regarding-perlin-
noise-how-it-works

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://stackoverflow.com/questions/18511932/questions-regarding-perlin-noise-how-it-works

Aside: a few other terrain algorithms

* Fault algorithm
* |teratively bisect the entire surface, move one side up and one side down

e http://www.lighthouse3d.com/opengl/terrain/index.php3?fault

1 iteration 2 iterations 3 iterations 4 iterations

VAT

8 iterations 16 iterations 100 iterations 400 iterations

Wid

http://www.lighthouse3d.com/opengl/terrain/index.php3?fault

Aside: a few other terrain algorithms

* Genetic algorithms for terrain generation

» A designer (algorithm or person) selects the best to “reproduce”
* Mutation, natural selection — models an evolutionary process

* http://www.hindawi.com/journals/ijcgt/2009/125714/

* Example of a genetic algorithm:
http://rednuht.org/genetic cars 2/

\)@;‘__’

http://www.hindawi.com/journals/ijcgt/2009/125714/
http://rednuht.org/genetic_cars_2/

Review: meshes (and mesh data structures)

* Vertices, edges, faces, and so on

e http://www.cs.duke.edu/courses/compsci344/springl5/classwork/10
terrain/mesh.pdf

e http://www.flipcode.com/archives/The Half-
Edge Data Structure.shtml

* For your project: simple polygons (quads), 3D surface mesh

* Your data structure only needs to support:
* Finding adjacent faces (for vertex normals)
* Adding new faces (i.e. for the refinement)

http://www.cs.duke.edu/courses/compsci344/spring15/classwork/10_terrain/mesh.pdf
http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml

Review: approximating normals

* The faces coming out of your subdivision scheme might not be planar

“Sliver Tetrahedra.” From the Los Alamos Grid Toolbox documentation. https://lagrit.lanl.gov/docs/QUALITY_sliver_cap_needle_wedge.html

* Note: if you triangulate, of course they’re planar!
* Planes are uniquely defined by three points (i.e. a triangle)
* When faces are planar, we can just use cross products between the edges

Review: approximating normals

* Newell’s method — approximating normal for polygons
 Where the polygons need not be planar

* https://courses.cit.cornell.edu/cs417-land/SECTIONS/normals.html

* This is what we ask that you use for the project

https://courses.cit.cornell.edu/cs417-land/SECTIONS/normals.html

Review: approximating normals

* To approximate vertex normals,
most schemes involve “averaging”
normals of the adjoining faces

e Sum over them and
normalize the result

* OpenGL needs vertex normals
to do smooth shading

e http://www.lighthouse3d.com/opengl/terrain/index.php3?normals

http://www.lighthouse3d.com/opengl/terrain/index.php3?normals

Before we start

* Project deadline is indeed extended:
e Due Sunday, March 22 (one week after end of spring break)

* There’s some sort of progress check tomorrow on Friday
* “significant update... one basic feature”

e Also...

e Questions? Comments?

Plan

e Today we’ll try to cover:
» Skyboxes
 Collisions (axis-aligned bounding boxes)
* Level of Detail
e Other resources

Skyboxes

* |dea: wrap the scene in backdrops (a texture) of the sky/whatever to create the
impression of distant surroundings
e Simulates parallax
* Boxes (cubes) have very easy texture mappings, so often used rather than spheres/domes

k.
b

From: The Truman Show (1998) From: http://away3d.com/tutorials/Using A Skybox

http://away3d.com/tutorials/Using_A_Skybox

Skyboxes

* OpenGL actually provides very nice facilities for you to do this!

* Cubemaps are a type of texture

https://www.opengl.org/wiki/Cubemap Texture

You'll have to do the typical work of loading/binding the texture(s)
Of course, make an enclosing cube (geometry) to texture
Make sure you bind to GL_TEXTURE_CUBE_MAP rather than GL_TEXTURE_2D

There are also special GL variables targeting the 6 specific cube faces, look for these
in the references

There are more details for making it better (seamless edges, depth testing, etc.) but
the basic skybox should be pretty straightforward

* http://antongerdelan.net/opengl/cubemaps.html

e http://www.learnopengl.com/#!Advanced-OpenGL/Cubemaps

https://www.opengl.org/wiki/Cubemap_Texture
http://antongerdelan.net/opengl/cubemaps.html
http://www.learnopengl.com/#!Advanced-OpenGL/Cubemaps

Aside: environment maps

* Used to simulate (fake) reflection and refraction

* Instead of bouncing a ray everywhere, just get color from the right place in the
cubemap
 Like a 1-step version of ray tracing reflection/refraction which only hits the background
* Still have to do a calculation to find the reflected/refracted ray

Both from the learnopengl.com tutorial on the previous slide

Collisions

e Rather than doing a (difficult) intersection test between every piece
of moving geometry, check intersections of simple shapes which
surround them

* Intuition: if two objects intersect, their containers have to intersect
first!

fig. 1: AABB

From: http://www.gameprogrammer.net/delphi3dArchive/collisiondetection.htm

Screencap from: http://decapre.com/watch?v=MW8WwWNOOnE

http://decapre.com/watch?v=MW8WwWNO0nE
http://www.gameprogrammer.net/delphi3dArchive/collisiondetection.htm

Collisions with axis-aligned bounding boxes

We'll be using axis-aligned bounding boxes (AABB)

Breaking that down:
* Bounding box: a box completely containing an object (often minimal)
* Axis-aligned: the edges of the box are parallel with the coordinate axes

To check for collisions, we’ll check if these boxes intersect instead

Given the eight corners of each (3D) box, what’s the intersection test?
* Hint: look at the projection on each axis. What does it look like when they intersect? When they don’t?

A A

v

A
[
[

A
dl
|
[
¢
N
y
«—
[]
[
v
dl
|

Collisions with axis-aligned bounding boxes

* Unanswered here:
* how do you find the smallest (most accurate) bounding box?
* What if the object is moving so fast it completely avoids the bounding box in one frame? (teleports to the other side)

* Even when the boxes intersect, it’s not necessary that the objects actually intersect — then either:

 We don’t care, that’s good enough.
* We then decide do the intersection test for the actual geometry.

* As the previous point hinted, we can organize AABB in a hierarchical fashion over an entire scene
to efficiently find the right objects to check for intersections (ray tracing gets a lot faster with this)

e http://en.wikipedia.org/wiki/Bounding volume hierarchy

/\
'% :O : From: http://slis.tsukuba.ac.jp/~fujisawa.makoto.fu/lecture/iml/text/3 collision.html
/__ /\ -

http://en.wikipedia.org/wiki/Bounding_volume_hierarchy
http://slis.tsukuba.ac.jp/~fujisawa.makoto.fu/lecture/iml/text/3_collision.html

Level of Detail

* If things are far away, the viewer can’t make out fine details
* Avoid rendering fine geometric details for distant objects
* Conversely, render more detail for closer objects
» “fidelity/performance tradeoff”

* Other versions exist (boundaries, focal point)

http://www.cs.duke.edu/courses/compsci344/springl5/classwork/10 terrain/LOD.pdf

Polygons approx.
60.000 6.000 600 60

- DISTANCE TO CAMERA >
very close

very far away

From: http://www.opensg.org/projects/opensg/wiki/Tutorial/OpenSG2/NodeCores

http://www.cs.duke.edu/courses/compsci344/spring15/classwork/10_terrain/LOD.pdf
http://www.opensg.org/projects/opensg/wiki/Tutorial/OpenSG2/NodeCores

Level of Detalil

* For the project, definitely not as general

* Input is a regular grid, simply select how much to refine each input cell
* A simple form: only refine input quads that are within D units away
* Better: refinement (recursion) depth decreases linearly as we get farther away
 It's fine if you decide this on a per-input cell basis, but feel free to try continuous

* What'’s distance in our case?
 Since the grid is regular in x-y, just use the distance in the x-y plane

* We can still compute the complete refinement in the beginning, and only
pass to OpenGL the vertices corresponding to the right granularity

* The lower level of detail (i.e. less refined subgrid) is implicit in the completely refined
mesh! Just have to select the right vertices to submit to OpenGL.

Aside: some continuous LOD algorithms

 ROAM: http://www.cognigraph.com/ROAM homepage/
* Queues monitoring triangles to split or merge

* SOAR: http://computation.linl.eov/casc/SOAR/

* View frustum culling, and some other techniques shared with ROAM

* Both of these seem to be focused on using data representation
(layout in memory, indexing, etc.) in order to get their speed

http://www.cognigraph.com/ROAM_homepage/
http://computation.llnl.gov/casc/SOAR/

More resources

* Virtual Terrain Project: http://vterrain.org/
* On terrain generation algorithms: http://vterrain.org/Elevation/Artificial/
* On level of detail: http://vterrain.org/LOD/Papers/

* NeHe (many, many OpenGL tutorials): http://nehe.gamedev.net/

http://vterrain.org/
http://vterrain.org/Elevation/Artificial/
http://vterrain.org/LOD/Papers/
http://nehe.gamedev.net/

