
Modeling Terrain Geometry
CPS344 Spring 2015

March 3, 5

A quick note

• Many of the links are straight from the class page for this lecture

• Looks like Professor Duvall is still deciding what to do with the due
date, so ¯_(ツ)_/¯

• Stop me with questions

What is it?

Dictionary.com:

ter·rain
/təˈrān/

noun

1. a stretch of land, especially with regard to its physical features.

2. …

Motivation

• “critical scene component”
• But we need the model first!

• Modeling existing terrain (e.g. GIS)

• Generating terrain algorithmically

Height map

• 2D array (image) whose values are heights

• A very typical model,
has some limitations (e.g. can’t do tunnels)

• Pinscreen is a good analogue

• Easy to turn this into a mesh

"Pin art, Flickr" by Eduardo Habkost (ehabkost) - Eduardo Habkost's flickr account. Licensed under CC BY-SA 2.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Pin_art,_Flickr.jpg#mediaviewer/File:Pin_art,_Flickr.jpg

Flight simulator overview

• Starting skeleton is the surface modeling demo Professor Duvall
showed last time

• Diamond-square algorithm (subdivisions)

• Perlin noise for offsets

• Normals for new faces and vertices

• Skybox (with collision detection)

• Level of detail

• Of course, some camera controls

Diamond-square algorithm

• Produces a fractal terrain

• General idea: [recursively] take a quad, move its midpoint up/down a little bit
• The “diamond” step lets us hit every grid point

• Notice: every quad we subdivide has had its corner heights computed

• The amount you move it by is scaled by the side length, so the initial amounts matter more

• Recurse on the four resulting quads

• http://en.wikipedia.org/wiki/Diamond-square_algorithm

• http://www.playfuljs.com/realistic-terrain-in-130-lines/

• https://code.google.com/p/fractalterraingeneration/wiki/Diamond_Square

http://en.wikipedia.org/wiki/Diamond-square_algorithm
http://www.playfuljs.com/realistic-terrain-in-130-lines/
https://code.google.com/p/fractalterraingeneration/wiki/Diamond_Square

Perlin noise

• A function from points to reals (in our use case, heights)

• http://gamedev.stackexchange.com/questions/68168/perlin-noise-
help

Perlin noise White noise

http://gamedev.stackexchange.com/questions/68168/perlin-noise-help

Perlin noise

• Algorithm:
• fix a grid

• assign a (pseudo) random gradient vector for each grid point (2D direction)

• On a query for point p:
• Locate the grid cell containing p

• Take the dot product between the distance vector between p and each cell corner

• Return an interpolated value between the dot products

• For your project, these are the offsets you’re choosing in the
diamond-square algorithm

• Implemented for you: jogl_jars/src/framework/ImprovedNoise.java

https://github.com/duke-compsci344-spring2015/jogl_jars/blob/master/src/framework/ImprovedNoise.java

Perlin noise

• Why go through all this trouble?
• Smooth noise (the function is continuous, i.e. the noise is coherent)
• With a fixed pseudorandom seed (choice of gradients), the output is reproducible

• Additionally:
• “Details” in the noise are of a controlled frequency (by grid size)
• Summing Perlin noise of different frequencies gives noise with a controlled frequency

range
• Functions of Perlin noise (e.g. 1/|noise|) can be used to simulate other random

patterns, like wood grains, marble, fire, clouds

• http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-
noise-math-faq.html

• http://stackoverflow.com/questions/18511932/questions-regarding-perlin-
noise-how-it-works

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://stackoverflow.com/questions/18511932/questions-regarding-perlin-noise-how-it-works

Aside: a few other terrain algorithms

• Fault algorithm
• Iteratively bisect the entire surface, move one side up and one side down

• http://www.lighthouse3d.com/opengl/terrain/index.php3?fault

http://www.lighthouse3d.com/opengl/terrain/index.php3?fault

Aside: a few other terrain algorithms

• Genetic algorithms for terrain generation
• A designer (algorithm or person) selects the best to “reproduce”

• Mutation, natural selection – models an evolutionary process

• http://www.hindawi.com/journals/ijcgt/2009/125714/

• Example of a genetic algorithm:
http://rednuht.org/genetic_cars_2/

http://www.hindawi.com/journals/ijcgt/2009/125714/
http://rednuht.org/genetic_cars_2/

Review: meshes (and mesh data structures)

• Vertices, edges, faces, and so on

• http://www.cs.duke.edu/courses/compsci344/spring15/classwork/10
_terrain/mesh.pdf

• http://www.flipcode.com/archives/The_Half-
Edge_Data_Structure.shtml

• For your project: simple polygons (quads), 3D surface mesh

• Your data structure only needs to support:
• Finding adjacent faces (for vertex normals)
• Adding new faces (i.e. for the refinement)

http://www.cs.duke.edu/courses/compsci344/spring15/classwork/10_terrain/mesh.pdf
http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml

Review: approximating normals

• The faces coming out of your subdivision scheme might not be planar

“Sliver Tetrahedra.” From the Los Alamos Grid Toolbox documentation. https://lagrit.lanl.gov/docs/QUALITY_sliver_cap_needle_wedge.html

• Note: if you triangulate, of course they’re planar!
• Planes are uniquely defined by three points (i.e. a triangle)
• When faces are planar, we can just use cross products between the edges

Review: approximating normals

• Newell’s method – approximating normal for polygons
• Where the polygons need not be planar

• https://courses.cit.cornell.edu/cs417-land/SECTIONS/normals.html

• This is what we ask that you use for the project

https://courses.cit.cornell.edu/cs417-land/SECTIONS/normals.html

Review: approximating normals

• To approximate vertex normals,
most schemes involve “averaging”
normals of the adjoining faces
• Sum over them and

normalize the result

• OpenGL needs vertex normals
to do smooth shading

• http://www.lighthouse3d.com/opengl/terrain/index.php3?normals

http://www.lighthouse3d.com/opengl/terrain/index.php3?normals

Before we start

• Project deadline is indeed extended:
• Due Sunday, March 22 (one week after end of spring break)

• There’s some sort of progress check tomorrow on Friday
• “significant update... one basic feature”

• Also...

• Questions? Comments?

Plan

• Today we’ll try to cover:
• Skyboxes

• Collisions (axis-aligned bounding boxes)

• Level of Detail

• Other resources

Skyboxes

• Idea: wrap the scene in backdrops (a texture) of the sky/whatever to create the
impression of distant surroundings
• Simulates parallax

• Boxes (cubes) have very easy texture mappings, so often used rather than spheres/domes

From: http://away3d.com/tutorials/Using_A_SkyboxFrom: The Truman Show (1998)

http://away3d.com/tutorials/Using_A_Skybox

Skyboxes

• OpenGL actually provides very nice facilities for you to do this!

• Cubemaps are a type of texture
• https://www.opengl.org/wiki/Cubemap_Texture
• You’ll have to do the typical work of loading/binding the texture(s)
• Of course, make an enclosing cube (geometry) to texture
• Make sure you bind to GL_TEXTURE_CUBE_MAP rather than GL_TEXTURE_2D
• There are also special GL variables targeting the 6 specific cube faces, look for these

in the references
• There are more details for making it better (seamless edges, depth testing, etc.) but

the basic skybox should be pretty straightforward

• http://antongerdelan.net/opengl/cubemaps.html

• http://www.learnopengl.com/#!Advanced-OpenGL/Cubemaps

https://www.opengl.org/wiki/Cubemap_Texture
http://antongerdelan.net/opengl/cubemaps.html
http://www.learnopengl.com/#!Advanced-OpenGL/Cubemaps

Aside: environment maps

• Used to simulate (fake) reflection and refraction

• Instead of bouncing a ray everywhere, just get color from the right place in the
cubemap
• Like a 1-step version of ray tracing reflection/refraction which only hits the background

• Still have to do a calculation to find the reflected/refracted ray

Both from the learnopengl.com tutorial on the previous slide

Collisions

• Rather than doing a (difficult) intersection test between every piece
of moving geometry, check intersections of simple shapes which
surround them

• Intuition: if two objects intersect, their containers have to intersect
first!

Screencap from: http://decapre.com/watch?v=MW8WwWNO0nE
From: http://www.gameprogrammer.net/delphi3dArchive/collisiondetection.htm

http://decapre.com/watch?v=MW8WwWNO0nE
http://www.gameprogrammer.net/delphi3dArchive/collisiondetection.htm

Collisions with axis-aligned bounding boxes

• We’ll be using axis-aligned bounding boxes (AABB)

• Breaking that down:
• Bounding box: a box completely containing an object (often minimal)

• Axis-aligned: the edges of the box are parallel with the coordinate axes

• To check for collisions, we’ll check if these boxes intersect instead

• Given the eight corners of each (3D) box, what’s the intersection test?
• Hint: look at the projection on each axis. What does it look like when they intersect? When they don’t?

Collisions with axis-aligned bounding boxes

• Unanswered here:
• how do you find the smallest (most accurate) bounding box?

• What if the object is moving so fast it completely avoids the bounding box in one frame? (teleports to the other side)

• Even when the boxes intersect, it’s not necessary that the objects actually intersect – then either:
• We don’t care, that’s good enough.

• We then decide do the intersection test for the actual geometry.

• As the previous point hinted, we can organize AABB in a hierarchical fashion over an entire scene
to efficiently find the right objects to check for intersections (ray tracing gets a lot faster with this)

• http://en.wikipedia.org/wiki/Bounding_volume_hierarchy

From: http://slis.tsukuba.ac.jp/~fujisawa.makoto.fu/lecture/iml/text/3_collision.html

http://en.wikipedia.org/wiki/Bounding_volume_hierarchy
http://slis.tsukuba.ac.jp/~fujisawa.makoto.fu/lecture/iml/text/3_collision.html

Level of Detail

• If things are far away, the viewer can’t make out fine details
• Avoid rendering fine geometric details for distant objects

• Conversely, render more detail for closer objects

• “fidelity/performance tradeoff”

• Other versions exist (boundaries, focal point)

• http://www.cs.duke.edu/courses/compsci344/spring15/classwork/10_terrain/LOD.pdf

From: http://www.opensg.org/projects/opensg/wiki/Tutorial/OpenSG2/NodeCores

http://www.cs.duke.edu/courses/compsci344/spring15/classwork/10_terrain/LOD.pdf
http://www.opensg.org/projects/opensg/wiki/Tutorial/OpenSG2/NodeCores

Level of Detail

• For the project, definitely not as general
• Input is a regular grid, simply select how much to refine each input cell

• A simple form: only refine input quads that are within D units away
• Better: refinement (recursion) depth decreases linearly as we get farther away
• It’s fine if you decide this on a per-input cell basis, but feel free to try continuous

• What’s distance in our case?
• Since the grid is regular in x-y, just use the distance in the x-y plane

• We can still compute the complete refinement in the beginning, and only
pass to OpenGL the vertices corresponding to the right granularity
• The lower level of detail (i.e. less refined subgrid) is implicit in the completely refined

mesh! Just have to select the right vertices to submit to OpenGL.

Aside: some continuous LOD algorithms

• ROAM: http://www.cognigraph.com/ROAM_homepage/
• Queues monitoring triangles to split or merge

• SOAR: http://computation.llnl.gov/casc/SOAR/
• View frustum culling, and some other techniques shared with ROAM

• Both of these seem to be focused on using data representation
(layout in memory, indexing, etc.) in order to get their speed

http://www.cognigraph.com/ROAM_homepage/
http://computation.llnl.gov/casc/SOAR/

More resources

• Virtual Terrain Project: http://vterrain.org/
• On terrain generation algorithms: http://vterrain.org/Elevation/Artificial/

• On level of detail: http://vterrain.org/LOD/Papers/

• NeHe (many, many OpenGL tutorials): http://nehe.gamedev.net/

http://vterrain.org/
http://vterrain.org/Elevation/Artificial/
http://vterrain.org/LOD/Papers/
http://nehe.gamedev.net/

