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Understanding Quaternions



Goals
● Explain quaternions
● Not so much why they’re useful
● But how they work



Goals
● Quaternions, briefly
●Used to rotate vectors
●Four values: w + xi +yj + zk
●Build via half angle 
●Rotate via 
●Compact, normalize well
●Excellent for interpolation

qpq−1
θ/2



Goals
● Answer a few questions:
● Why four values?
● What are i, j and k?
● Why      ? 
● Why          ?
● How can I think in 4D?
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“The w stands for wizardry (or witchcraft).”

I probably won’t meet these goals. Quaternions are pretty tough, and 
rotations show up in a lot of unexpected places. Best I can do in an 
hour is present a modicum of information and hope that some of it 
sticks. 



Outline
● Background
● Complex Numbers
● Quaternions



Background
● Definition of Rotation
● Rotation Matrices
● Euler’s Rotation Theorem
● Rodrigues Formula

Part of this is somewhat historical -- though a bit out of order



Defining Rotation
● Reference frame



Defining Rotation
● Orientation relative 
to reference frame



Defining Rotation
● Rotation transforms 
from one orientation 
to another



Rotation Angle (2D)

θ

θ

Say we want to rotate (in 2D) by an angle theta. The basis vectors will 
change like this.



Rotation Angle (2D)
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We can represent these new basis vectors as distances along the old 
basis vectors.



Rotation Angle (2D)
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And from there get the new basis vectors



Rotation Angle (2D)
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(just to make it clearer, let’s drop the cruft and just show the vectors)



(x, y)→ (x cos θ − y sin θ, x sin θ + y cos θ)

Rotation Angle (2D)
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Knowing this we can create a 2D rotation transformation as follows:



Rotation Matrix
● Idea: Bake new basis in matrix
● Multiply by vector to rotate
● Matrix represents transformation

Squirrel (probably) already covered this, but just to review



2D Matrix
● Change in basis

● Rotation matrix (column vectors)

€ 

(1,0)⇒ (cosθ,sinθ)

€ 

(0,1)⇒ (−sinθ,cosθ )

�
cos θ − sin θ
sin θ cos θ

�

Our x axis basis gets transformed to cos theta, sin theta -- so that’s 
the first column in our matrix.



2D Matrix
● Change in frame

● Rotation matrix (column vectors)

€ 

(1,0)⇒ (cosθ,sinθ)

€ 

(0,1)⇒ (−sinθ,cosθ )

�
cos θ − sin θ
sin θ cos θ

�

And similarly for the transformed y axis.



3D Matrix
● Much the same as 2D
●Map transformed axes, store as columns (or 
rows) of matrix
●Rotate via vector multiplication



Rotation Matrix
● Orthogonal
● Basis vectors unit length
● Dot products of basis vectors zero
● 
● 

● Determinant is 1 (reflection has 
determinant -1)

M−1 = MT

MTM = I

Orthogonal, by definition, means that it has orthonormal basis 
vectors. As a result, its transpose is its inverse. Reflections are also 
orthogonal. Determinant being 1 means that after transformation, 
size and shape doesn’t change (circles remain circles of the same 
radius). Knowing how to recognize a rotation matrix is a useful thing 
that we’ll make use of later.



Leonhard Euler
● Master of rotation
● Gave us Euler 
angles
● (we forgive him 
anyway)



Euler’s Rotation Theorem
● Axis and angle 
represents any 3D 
rotation

This (in a historically backwards way) leads us to Euler’s rotation theorem. 3D 
rotation can be represented by a line of points that don’t change (axis), and 
amount of rotation (angle).



Euler’s Rotation Theorem
● Alternatively, vector 
along axis plus angle 

r̂

−r̂

θ

−θ

In our modern notation we can represent this as a vector and an angle. For each 
rotation there are two possibilities, i.e. two antiparallel axes and angles (one axis and 
angle is negation of the other). For those who care, for a 3D rotation matrix, the 
eigenvector corresponding to the eigenvalue 1 is the axis of rotation. For those who 
don’t, don’t worry about it, we won’t mention it again.



Rodrigues Rotation Theorem
● Follows from Euler’s theorem
● Given axis  , angle  , and point p, rotation isr̂ θ

R(r̂, θ,p) = p cos θ + (r̂× p) sin θ + r̂(r̂ • p)(1− cos θ)

Benjamin Olinde Rodrigues (1795–1851), more commonly known as Olinde Rodrigues, 
was a French mathematician who is best known for his formula for Legendre polynomials. He 
is second best known (and best known in the graphics community) for this formula.



Rodrigues Formula
● Idea:

So suppose we have some vector in space we want to rotate.



Rodrigues Formula
● Idea:
● Decompose vector
● Part on rotation 
axis doesn’t change
● Remainder is 
simple 2D rotation

r̂

θ

We begin by breaking it into two pieces. One is parallel to the rotation 
axis, the remainder is orthogonal to it. Then we can rotate the 
remainder in the plane orthogonal to the axis, using a 2D rotation.



Rodrigues Formula
● Idea:
● Recompose to get 
final rotation

r̂

θ

R(r̂, θ,p) = p cos θ + (r̂× p) sin θ + r̂(r̂ • p)(1− cos θ)

Finally we add the rotated remainder to the parallel part to get the 
final result. One thing to note about this, is that for both 2D and 3D 
rotation, we rotate through only one plane -- anything on that plane 
stays on that plane. And that plane is always orthogonal to the 
rotation axis. So rather than talking about an axis of rotation, we can 
talk about a plane of rotation.



Euler-Rodrigues Parameters
● Given                            can build rotation
● Can set

● Then rotate using

R(a, r,p) = 2a(r× p) + 2(r× (r× p)) + p

a2 + b2 + c2 + d2 = 1

a = cos(θ/2)
r = (b, c, d) = sin(θ/2)r̂

As a follow-on to this, Rodrigues derived this set of four parameters that can be used 
to create a 3D rotation. A, b, c, and d again boil down to an axis and angle format. 
But this does give us an alternative way of writing the Rodrigues formula. Why Euler-
Rodrigues? Well, these terms were actually discovered by Euler in 1771, and again by 
Rodrigues in 1840. Of course, they didn’t have vector notation, but it boils down to 
the same thing. And for those of you who know something of quaternions, this may 
seem somewhat familiar...



Complex Numbers
● Originally come from solving quadratic 
equations
● E.g. 
● Solution:

● Give it a special name:€ 

x 2 +1 = 0

x = i

x =
√
−1

So that’s it for background regarding rotations. Let’s move on to 
complex numbers.



Complex Numbers
● End up with a class of new numbers:

● where, again

● But ignore that “imaginary” crap

a+ bi

i =
√
−1

I got hung up on the name imaginary for a long time. It’s far better to 
think of them as a new class of numbers, with slightly different rules.



Complex Numbers
● First important bit

1

i 

b

a

(a, b)

Can represent complex number as a point/vector on a 2D plane. 
Think of the real and imaginary axes as being the 1 and the i axes.



Complex Numbers
● First important bit

1

i 

b

a

(a, b) = a + bi

So this point/vector represents a complex number.



● Second important bit

● Another way to think of it

Complex Numbers

(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i

(a, b)(c, d) = (ac− bd, bc+ ad)

So a complex number is just a 2D vector with a special multiplication 
operation.



Complex Numbers
● Now suppose: restrict to unit length

1

i

€ 

cosθ€ 

sinθ
θ

cos θ + i sin θ



Complex Numbers
● Multiply general complex number by unit 
one

● Look familiar?
● Gives us 2D rotation!

(x+ yi)(cos θ + i sin θ) =

(x cos θ − y sin θ) + i(x sin θ + y cos θ)



Complex Numbers
● Good for rotation! Who knew!
● (He did)



Quaternions
● Hamilton wanted to multiply 3D vectors 
(could already add & subtract vectors)
● Couldn’t make it work, i.e.

? ?

(a0 + b0i+ c0j)(a1 + b1i+ c1j) = (a0a1 − b0b1 − c0c1)
+ (a0b1 + b0a1)i
+ (a0c1 + c0a1)j
+ b0c1ij + c0b1ji

There’s a story that Hamilton wrote in his memoirs, about him coming down to 
breakfast and his son asking him, “Papa, can you multiply triplets?” and he would 
sadly respond, “No, I can only add and subtract them.” The problem is those ij and ji 
terms (and as it turns out, the order matters). Also want multiplication that avoids 
zero divisors, i.e. we don’t want non-zero numbers that multiply together to produce 
zero (every non-zero number needs an inverse -- this is known as a division algebra). 
Nothing he came up with three terms would work. (Cross product doesn’t work -- 
cross product of parallel vectors is zero.)



Quaternions
● Insight: multiplication possible with 3 
imaginary values

i2 = j2 = k2 = ijk = −1

ij = k jk = i ki = j
ji = −k kj = −i ik = −j

In 1843, as Hamilton was walking along the Royal Canal under the Brougham Bridge 
in Dublin, he had his insight -- with 3 imaginary values he could get a complete 
system of numbers where multiplication provided proper inverses. He was so excited 
he carved the first set of equations onto the bridge. Notice that now multiplication is 
no longer commutative -- the imaginary values are anticommutative. If you’re familiar 
with cross products this may seem very familiar -- in fact the cross product comes 
from quaternion math.



Quaternions
● Answered question 1: Why 4 values?

● And question 2: what are i, j, k?

Three values doesn’t produce a division algebra.

Three imaginary axes instead of one.

Again, a division algebra means that all numbers other than zero have a multiplicative 
inverse. Why is a division algebra important? Well, if we want to do rotations, we want 
to be able to undo them, i.e. take inverses. So having an algebra that handles inverses 
is necessary.



Quaternion
● Complex numbers extended

● Can represent as coordinates

● Or scalar/vector pair

a + bi w + xi + yj + zk



Quaternions
● Take q0 = (w0, v0)   q1 = (w1, v1)

●  Non-commutative:

q1q0 = (w1w0 − v1 • v0, w1v0 + w0v1 + v1 × v0)

q1q0 �= q0q1

Using our familiar vector operations we can multiply two quaternions 
together as follows. Notice again, that due to the cross product, that 
this is not commutative.



Quaternions
● Multiplicative identity is (1, 0, 0, 0)
● q-1 is inverse
● i.e. q.q-1 or q-1.q  = (1, 0, 0, 0)



Quaternion Rotation
● Like complex numbers, unit quaternion 
represents a rotation
● For 3D rotation:

w = cos(θ/2)

(x, y, z) = v = sin(θ/2)r̂

This may seem somewhat familar... in any case, now we’ll show how 
to use this quaternion to rotate vectors.



Quaternion Rotation
● Can easily compute inverse for 3D rotation
●  

● Only true if q is unit

(complex conjugate)

q = (w,v) = (cos(θ/2), sin(θ/2)r̂)

q−1 = (w,v)−1 = (cos(−θ/2), sin(−θ/2)r̂)
= (cos(θ/2),− sin(θ/2)r̂)
= (w,−v) = q�

Using this representation we can determine what the inverse would 
be. We just negate the angle, move some signs around and we 
discover that the conjugate is the same as inverse. But as it says, this 
is only true for unit quaternions.



Quaternion Rotation
● Have vector p, unit quaternion q
● Treat p as quaternion p = (0, p)
● 3D rotation of p by q is

p� = qpq−1



Quaternion Rotation
● Have vector p, unit quaternion q
● Treat p as quaternion p = (0, p)
● 3D rotation of p by q is

● Boils down to

Hang on, this seems somewhat familiar...

p� = p + 2w(v× p) + 2(v× (v× p))

p� = qpq−1



p + 2w(v× p) + 2(v× (v× p))

Quaternion Rotation
Quaternion Euler-Rodrigues

w = cos(θ/2)

(x, y, z) = v = sin(θ/2)r̂

a = cos(θ/2)
(b, c, d) = r = sin(θ/2)r̂

p+ 2a(r× p) + 2(r× (r× p))

Quaternions rotate in 3D!



Quaternions
● Proved, but not appealing
● Still: why half-angles? What does qpq-1 do?

● Let’s try another perspective



Matrix Form
● Can decompose 2D rotation matrix

● Set

● Then

�
cos θ − sin θ
sin θ cos θ

�
= cos θ

�
1 0
0 1

�
+ sin θ

�
0 −1
1 0

�

J =

�
0 −1
1 0

�
I =

�
1 0
0 1

�

�
cos θ − sin θ
sin θ cos θ

�
= cos θI+ sin θJ

This discussion is from a section written by Ken Shoemake in David 
Eberly’s book Game Physics. J in this case is a rotation 
counterclockwise by 90 degrees. So we’ve replaced two scalars by two 
matrices that do exactly the same thing.



Matrix Form
● I and J act just like 1 and i

● Complex numbers in another form!

J2 =

�
0 −1
1 0

� �
0 −1
1 0

�
=

�
−1 0
0 −1

�
= −I

(aI+ bJ)(cI+ dJ) = (ac− bd)I+ (bc+ ad)J



Matrix Form
● We can do the same for quaternions

I =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 X =





0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0





Y =





0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



 Z =





0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0





This is Shoemake’s notation, I have no idea if it’s standard.



Matrix Form
● So

● And

● Q behaves just like a quaternion

Q = wI+ xX+ yY+ zZ

X2 = Y2 = Z2 = XYZ = −I

Text

In fact, it is a quaternion, just in another form.



Matrix Form
● If

● So can use half angle and do

w2 + x2 + y2 + z2 = 1

Q behaves like rotation quaternion!

P� = QPQ−1

Note we need to use matrix form for P (can’t multiply a column vector 
on the right)



Matrix Form
● Examine Q more closely:

● Unit basis vectors, dot products 0
● Determinant 1
● Rotation matrix!

Q =





w −z y x
z w −x y
−y x w z
−x −y −z w







Matrix Form
● So if 
● And transform with half angle

w2 + x2 + y2 + z2 = 1

P� = QPQ−1

Rotate halfway Rotate halfway

So knowing this, we might naively break it down as: multiply on the 
left to rotate halfway, then rotating on the right by the inverse rotates 
the remainder. This is not entirely correct, as we’ll see, but it’s a 
starting point.



Matrix Form
● Quaternions work the same way!

● Explains:
● Why half angle?
● Why this weird form?

p� = qpq−1
P� = QPQ−1

So we might conclude we have the entire picture.



Matrix Form
● Quaternions work the same way!

● Explains:
● Why half angle?
● Why this weird form?

● Well, not quite the whole story

p� = qpq−1
P� = QPQ−1

But we don’t. In truth this skips over a number of details -- there’s a 
little more to it than that. (In particular, multiplying on the right by the 
inverse of the matrix doesn’t rotate in the same way as multiplying on 
the left by the matrix, whether it’s 3D or 4D)



4D Rotation
● Two types:
● Single rotation (one plane, like 2D/3D)
● Double rotation (two orthogonal planes!)

4D rotation is -- shall we say -- unusual. I used the term weird in an 
article and one reviewer wrote, “To you!” In any case because we have 
4 components to play with, there are two different classes of 
rotations. 

Quaternions do not perform general 4D rotation. However, any double 
rotation can be decomposed into two isoclinic/quaternion rotations -- 
one on the left and one on the right.



4D Rotation
● Isoclinic rotation
●Special double rotation - both angles equal
●Two kinds
● Left: both rotate same direction
● Right: rotate in opposite directions

● Quaternions are isoclinic
●Multiply on left, rotate ccw in both planes
●Multiply on right, rotate ccw in one, cw in other

In isoclinic rotations we rotate by the same angle in both planes, but 
not necessary in the same direction.



4D Rotation
● Matched pair of isoclinic rotations

P� = QPQ−1

Rotate by       ccw 
in 3D rotation plane 
& ccw in orthogonal 
plane

Rotate by       ccw 
in 3D rotation plane 
& cw in orthogonal 
plane

θ/2 θ/2



4D Rotation
● Matched pair of isoclinic rotations

P� = QPQ−1

Rotate by       ccw 
in 3D rotation plane 
& ccw in orthogonal 
plane

Rotate by       ccw 
in 3D rotation plane 
& cw in orthogonal 
plane

θ/2 θ/2

Quaternions rotate in 3D!

In the end, the rotations through the second plane cancel each other 
out, and we end up with just a rotation along the 3D plane.



Visualization
● Final question:
●We are 3D creatures
●How can we visualize a 4D concept?



Visualization
● Project into 3D as follows: 
● Break 4D hypersphere into three pieces
● 4D hemisphere projects to 3D sphere
● I.e. drop w and use its sign



Visualization (4D)
● After projection, two 
solid spheres and a 
hollow ball Text

w > 0

w < 0

w = 0

In the fourth dimension, the two solid spheres are connected together 
via the hollow ball.



Visualization (4D)
● Quat becomes 
vector in sphere
● Points along axis of 
rotation
● Length 

Text

w > 0

w < 0

w = 0

| sin(θ/2)|

So the longer the vector, the more rotation you get. If the vector’s 
length is zero, then you have the identity quaternion. Quaternions in 
the w>0 sphere represent rotations of -pi to pi. If w < 0, then the 
rotations are still from -pi to pi, but the axis will be flipped. Anything 
on the w=0 ball represents a rotation of 180 degrees.



Visualization (4D)
● Half angle means 
double coverage 
●Two quaternions for 
every 3D rotation
● Problems for 
interpolation

Text

w > 0

w < 0

w = 0

If we try to interpolate from a quaternion in the w < 0 sphere to the w 
> 0 sphere, we end up taking the long way around. This why it’s 
recommended when you’re interpolating to take the dot product of 
the quaternions -- if the result is negative, negate one and then 
interpolate.



Visualization
● Demo

This makes my head hurt, so maybe it’s better to see it in action.



Wrap Up
● Why four values? Want a division algebra.
● What are i, j and k? Imaginary axes
● Why      ? Two step rotation.
● Why          ? Can’t rotate directly w/quaternion.
● How can I think in 4D? Think axis scaled by sine 
of half angle.

qpq−1
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Questions?


