
Jim Van Verth
Software Engineer, Google
jim@essentialmath.com
G+: vintagejim
Twitter: cthulhim

Understanding Quaternions

Goals
● Explain quaternions
● Not so much why they’re useful
● But how they work

Goals
● Quaternions, briefly
●Used to rotate vectors
●Four values: w + xi +yj + zk
●Build via half angle
●Rotate via
●Compact, normalize well
●Excellent for interpolation

qpq−1
θ/2

Goals
● Answer a few questions:
● Why four values?
● What are i, j and k?
● Why ?
● Why ?
● How can I think in 4D?

qpq−1
θ/2

“The w stands for wizardry (or witchcraft).”

I probably won’t meet these goals. Quaternions are pretty tough, and
rotations show up in a lot of unexpected places. Best I can do in an
hour is present a modicum of information and hope that some of it
sticks.

Outline
● Background
● Complex Numbers
● Quaternions

Background
● Definition of Rotation
● Rotation Matrices
● Euler’s Rotation Theorem
● Rodrigues Formula

Part of this is somewhat historical -- though a bit out of order

Defining Rotation
● Reference frame

Defining Rotation
● Orientation relative
to reference frame

Defining Rotation
● Rotation transforms
from one orientation
to another

Rotation Angle (2D)

θ

θ

Say we want to rotate (in 2D) by an angle theta. The basis vectors will
change like this.

Rotation Angle (2D)

θ

€

cosθ

€

sinθ

€

cosθ

€

sinθ

θ

We can represent these new basis vectors as distances along the old
basis vectors.

Rotation Angle (2D)

θ

€

cosθ

€

sinθ

€

cosθ

€

sinθ

θ

€

(1,0)€

(0,1)

€

(−sinθ,cosθ)

€

(cosθ,sinθ)

And from there get the new basis vectors

Rotation Angle (2D)

θ

θ

€

(1,0)€

(0,1)

€

(−sinθ,cosθ)

€

(cosθ,sinθ)

(just to make it clearer, let’s drop the cruft and just show the vectors)

(x, y)→ (x cos θ − y sin θ, x sin θ + y cos θ)

Rotation Angle (2D)

θ

θ

€

(1,0)€

(0,1)

€

(−sinθ,cosθ)

€

(cosθ,sinθ)

Knowing this we can create a 2D rotation transformation as follows:

Rotation Matrix
● Idea: Bake new basis in matrix
● Multiply by vector to rotate
● Matrix represents transformation

Squirrel (probably) already covered this, but just to review

2D Matrix
● Change in basis

● Rotation matrix (column vectors)

€

(1,0)⇒ (cosθ,sinθ)

€

(0,1)⇒ (−sinθ,cosθ)

�
cos θ − sin θ
sin θ cos θ

�

Our x axis basis gets transformed to cos theta, sin theta -- so that’s
the first column in our matrix.

2D Matrix
● Change in frame

● Rotation matrix (column vectors)

€

(1,0)⇒ (cosθ,sinθ)

€

(0,1)⇒ (−sinθ,cosθ)

�
cos θ − sin θ
sin θ cos θ

�

And similarly for the transformed y axis.

3D Matrix
● Much the same as 2D
●Map transformed axes, store as columns (or
rows) of matrix
●Rotate via vector multiplication

Rotation Matrix
● Orthogonal
● Basis vectors unit length
● Dot products of basis vectors zero
●
●

● Determinant is 1 (reflection has
determinant -1)

M−1 = MT

MTM = I

Orthogonal, by definition, means that it has orthonormal basis
vectors. As a result, its transpose is its inverse. Reflections are also
orthogonal. Determinant being 1 means that after transformation,
size and shape doesn’t change (circles remain circles of the same
radius). Knowing how to recognize a rotation matrix is a useful thing
that we’ll make use of later.

Leonhard Euler
● Master of rotation
● Gave us Euler
angles
● (we forgive him
anyway)

Euler’s Rotation Theorem
● Axis and angle
represents any 3D
rotation

This (in a historically backwards way) leads us to Euler’s rotation theorem. 3D
rotation can be represented by a line of points that don’t change (axis), and
amount of rotation (angle).

Euler’s Rotation Theorem
● Alternatively, vector
along axis plus angle

r̂

−r̂

θ

−θ

In our modern notation we can represent this as a vector and an angle. For each
rotation there are two possibilities, i.e. two antiparallel axes and angles (one axis and
angle is negation of the other). For those who care, for a 3D rotation matrix, the
eigenvector corresponding to the eigenvalue 1 is the axis of rotation. For those who
don’t, don’t worry about it, we won’t mention it again.

Rodrigues Rotation Theorem
● Follows from Euler’s theorem
● Given axis , angle , and point p, rotation isr̂ θ

R(r̂, θ,p) = p cos θ + (r̂× p) sin θ + r̂(r̂ • p)(1− cos θ)

Benjamin Olinde Rodrigues (1795–1851), more commonly known as Olinde Rodrigues,
was a French mathematician who is best known for his formula for Legendre polynomials. He
is second best known (and best known in the graphics community) for this formula.

Rodrigues Formula
● Idea:

So suppose we have some vector in space we want to rotate.

Rodrigues Formula
● Idea:
● Decompose vector
● Part on rotation
axis doesn’t change
● Remainder is
simple 2D rotation

r̂

θ

We begin by breaking it into two pieces. One is parallel to the rotation
axis, the remainder is orthogonal to it. Then we can rotate the
remainder in the plane orthogonal to the axis, using a 2D rotation.

Rodrigues Formula
● Idea:
● Recompose to get
final rotation

r̂

θ

R(r̂, θ,p) = p cos θ + (r̂× p) sin θ + r̂(r̂ • p)(1− cos θ)

Finally we add the rotated remainder to the parallel part to get the
final result. One thing to note about this, is that for both 2D and 3D
rotation, we rotate through only one plane -- anything on that plane
stays on that plane. And that plane is always orthogonal to the
rotation axis. So rather than talking about an axis of rotation, we can
talk about a plane of rotation.

Euler-Rodrigues Parameters
● Given can build rotation
● Can set

● Then rotate using

R(a, r,p) = 2a(r× p) + 2(r× (r× p)) + p

a2 + b2 + c2 + d2 = 1

a = cos(θ/2)
r = (b, c, d) = sin(θ/2)r̂

As a follow-on to this, Rodrigues derived this set of four parameters that can be used
to create a 3D rotation. A, b, c, and d again boil down to an axis and angle format.
But this does give us an alternative way of writing the Rodrigues formula. Why Euler-
Rodrigues? Well, these terms were actually discovered by Euler in 1771, and again by
Rodrigues in 1840. Of course, they didn’t have vector notation, but it boils down to
the same thing. And for those of you who know something of quaternions, this may
seem somewhat familiar...

Complex Numbers
● Originally come from solving quadratic
equations
● E.g.
● Solution:

● Give it a special name:€

x 2 +1 = 0

x = i

x =
√
−1

So that’s it for background regarding rotations. Let’s move on to
complex numbers.

Complex Numbers
● End up with a class of new numbers:

● where, again

● But ignore that “imaginary” crap

a+ bi

i =
√
−1

I got hung up on the name imaginary for a long time. It’s far better to
think of them as a new class of numbers, with slightly different rules.

Complex Numbers
● First important bit

1

i

b

a

(a, b)

Can represent complex number as a point/vector on a 2D plane.
Think of the real and imaginary axes as being the 1 and the i axes.

Complex Numbers
● First important bit

1

i

b

a

(a, b) = a + bi

So this point/vector represents a complex number.

● Second important bit

● Another way to think of it

Complex Numbers

(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i

(a, b)(c, d) = (ac− bd, bc+ ad)

So a complex number is just a 2D vector with a special multiplication
operation.

Complex Numbers
● Now suppose: restrict to unit length

1

i

€

cosθ€

sinθ
θ

cos θ + i sin θ

Complex Numbers
● Multiply general complex number by unit
one

● Look familiar?
● Gives us 2D rotation!

(x+ yi)(cos θ + i sin θ) =

(x cos θ − y sin θ) + i(x sin θ + y cos θ)

Complex Numbers
● Good for rotation! Who knew!
● (He did)

Quaternions
● Hamilton wanted to multiply 3D vectors
(could already add & subtract vectors)
● Couldn’t make it work, i.e.

? ?

(a0 + b0i+ c0j)(a1 + b1i+ c1j) = (a0a1 − b0b1 − c0c1)
+ (a0b1 + b0a1)i
+ (a0c1 + c0a1)j
+ b0c1ij + c0b1ji

There’s a story that Hamilton wrote in his memoirs, about him coming down to
breakfast and his son asking him, “Papa, can you multiply triplets?” and he would
sadly respond, “No, I can only add and subtract them.” The problem is those ij and ji
terms (and as it turns out, the order matters). Also want multiplication that avoids
zero divisors, i.e. we don’t want non-zero numbers that multiply together to produce
zero (every non-zero number needs an inverse -- this is known as a division algebra).
Nothing he came up with three terms would work. (Cross product doesn’t work --
cross product of parallel vectors is zero.)

Quaternions
● Insight: multiplication possible with 3
imaginary values

i2 = j2 = k2 = ijk = −1

ij = k jk = i ki = j
ji = −k kj = −i ik = −j

In 1843, as Hamilton was walking along the Royal Canal under the Brougham Bridge
in Dublin, he had his insight -- with 3 imaginary values he could get a complete
system of numbers where multiplication provided proper inverses. He was so excited
he carved the first set of equations onto the bridge. Notice that now multiplication is
no longer commutative -- the imaginary values are anticommutative. If you’re familiar
with cross products this may seem very familiar -- in fact the cross product comes
from quaternion math.

Quaternions
● Answered question 1: Why 4 values?

● And question 2: what are i, j, k?

Three values doesn’t produce a division algebra.

Three imaginary axes instead of one.

Again, a division algebra means that all numbers other than zero have a multiplicative
inverse. Why is a division algebra important? Well, if we want to do rotations, we want
to be able to undo them, i.e. take inverses. So having an algebra that handles inverses
is necessary.

Quaternion
● Complex numbers extended

● Can represent as coordinates

● Or scalar/vector pair

a + bi w + xi + yj + zk

Quaternions
● Take q0 = (w0, v0) q1 = (w1, v1)

● Non-commutative:

q1q0 = (w1w0 − v1 • v0, w1v0 + w0v1 + v1 × v0)

q1q0 �= q0q1

Using our familiar vector operations we can multiply two quaternions
together as follows. Notice again, that due to the cross product, that
this is not commutative.

Quaternions
● Multiplicative identity is (1, 0, 0, 0)
● q-1 is inverse
● i.e. q.q-1 or q-1.q = (1, 0, 0, 0)

Quaternion Rotation
● Like complex numbers, unit quaternion
represents a rotation
● For 3D rotation:

w = cos(θ/2)

(x, y, z) = v = sin(θ/2)r̂

This may seem somewhat familar... in any case, now we’ll show how
to use this quaternion to rotate vectors.

Quaternion Rotation
● Can easily compute inverse for 3D rotation
●

● Only true if q is unit

(complex conjugate)

q = (w,v) = (cos(θ/2), sin(θ/2)r̂)

q−1 = (w,v)−1 = (cos(−θ/2), sin(−θ/2)r̂)
= (cos(θ/2),− sin(θ/2)r̂)
= (w,−v) = q�

Using this representation we can determine what the inverse would
be. We just negate the angle, move some signs around and we
discover that the conjugate is the same as inverse. But as it says, this
is only true for unit quaternions.

Quaternion Rotation
● Have vector p, unit quaternion q
● Treat p as quaternion p = (0, p)
● 3D rotation of p by q is

p� = qpq−1

Quaternion Rotation
● Have vector p, unit quaternion q
● Treat p as quaternion p = (0, p)
● 3D rotation of p by q is

● Boils down to

Hang on, this seems somewhat familiar...

p� = p + 2w(v× p) + 2(v× (v× p))

p� = qpq−1

p + 2w(v× p) + 2(v× (v× p))

Quaternion Rotation
Quaternion Euler-Rodrigues

w = cos(θ/2)

(x, y, z) = v = sin(θ/2)r̂

a = cos(θ/2)
(b, c, d) = r = sin(θ/2)r̂

p+ 2a(r× p) + 2(r× (r× p))

Quaternions rotate in 3D!

Quaternions
● Proved, but not appealing
● Still: why half-angles? What does qpq-1 do?

● Let’s try another perspective

Matrix Form
● Can decompose 2D rotation matrix

● Set

● Then

�
cos θ − sin θ
sin θ cos θ

�
= cos θ

�
1 0
0 1

�
+ sin θ

�
0 −1
1 0

�

J =

�
0 −1
1 0

�
I =

�
1 0
0 1

�

�
cos θ − sin θ
sin θ cos θ

�
= cos θI+ sin θJ

This discussion is from a section written by Ken Shoemake in David
Eberly’s book Game Physics. J in this case is a rotation
counterclockwise by 90 degrees. So we’ve replaced two scalars by two
matrices that do exactly the same thing.

Matrix Form
● I and J act just like 1 and i

● Complex numbers in another form!

J2 =

�
0 −1
1 0

� �
0 −1
1 0

�
=

�
−1 0
0 −1

�
= −I

(aI+ bJ)(cI+ dJ) = (ac− bd)I+ (bc+ ad)J

Matrix Form
● We can do the same for quaternions

I =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 X =





0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0





Y =





0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



 Z =





0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0





This is Shoemake’s notation, I have no idea if it’s standard.

Matrix Form
● So

● And

● Q behaves just like a quaternion

Q = wI+ xX+ yY+ zZ

X2 = Y2 = Z2 = XYZ = −I

Text

In fact, it is a quaternion, just in another form.

Matrix Form
● If

● So can use half angle and do

w2 + x2 + y2 + z2 = 1

Q behaves like rotation quaternion!

P� = QPQ−1

Note we need to use matrix form for P (can’t multiply a column vector
on the right)

Matrix Form
● Examine Q more closely:

● Unit basis vectors, dot products 0
● Determinant 1
● Rotation matrix!

Q =





w −z y x
z w −x y
−y x w z
−x −y −z w





Matrix Form
● So if
● And transform with half angle

w2 + x2 + y2 + z2 = 1

P� = QPQ−1

Rotate halfway Rotate halfway

So knowing this, we might naively break it down as: multiply on the
left to rotate halfway, then rotating on the right by the inverse rotates
the remainder. This is not entirely correct, as we’ll see, but it’s a
starting point.

Matrix Form
● Quaternions work the same way!

● Explains:
● Why half angle?
● Why this weird form?

p� = qpq−1
P� = QPQ−1

So we might conclude we have the entire picture.

Matrix Form
● Quaternions work the same way!

● Explains:
● Why half angle?
● Why this weird form?

● Well, not quite the whole story

p� = qpq−1
P� = QPQ−1

But we don’t. In truth this skips over a number of details -- there’s a
little more to it than that. (In particular, multiplying on the right by the
inverse of the matrix doesn’t rotate in the same way as multiplying on
the left by the matrix, whether it’s 3D or 4D)

4D Rotation
● Two types:
● Single rotation (one plane, like 2D/3D)
● Double rotation (two orthogonal planes!)

4D rotation is -- shall we say -- unusual. I used the term weird in an
article and one reviewer wrote, “To you!” In any case because we have
4 components to play with, there are two different classes of
rotations.

Quaternions do not perform general 4D rotation. However, any double
rotation can be decomposed into two isoclinic/quaternion rotations --
one on the left and one on the right.

4D Rotation
● Isoclinic rotation
●Special double rotation - both angles equal
●Two kinds
● Left: both rotate same direction
● Right: rotate in opposite directions

● Quaternions are isoclinic
●Multiply on left, rotate ccw in both planes
●Multiply on right, rotate ccw in one, cw in other

In isoclinic rotations we rotate by the same angle in both planes, but
not necessary in the same direction.

4D Rotation
● Matched pair of isoclinic rotations

P� = QPQ−1

Rotate by ccw
in 3D rotation plane
& ccw in orthogonal
plane

Rotate by ccw
in 3D rotation plane
& cw in orthogonal
plane

θ/2 θ/2

4D Rotation
● Matched pair of isoclinic rotations

P� = QPQ−1

Rotate by ccw
in 3D rotation plane
& ccw in orthogonal
plane

Rotate by ccw
in 3D rotation plane
& cw in orthogonal
plane

θ/2 θ/2

Quaternions rotate in 3D!

In the end, the rotations through the second plane cancel each other
out, and we end up with just a rotation along the 3D plane.

Visualization
● Final question:
●We are 3D creatures
●How can we visualize a 4D concept?

Visualization
● Project into 3D as follows:
● Break 4D hypersphere into three pieces
● 4D hemisphere projects to 3D sphere
● I.e. drop w and use its sign

Visualization (4D)
● After projection, two
solid spheres and a
hollow ball Text

w > 0

w < 0

w = 0

In the fourth dimension, the two solid spheres are connected together
via the hollow ball.

Visualization (4D)
● Quat becomes
vector in sphere
● Points along axis of
rotation
● Length

Text

w > 0

w < 0

w = 0

| sin(θ/2)|

So the longer the vector, the more rotation you get. If the vector’s
length is zero, then you have the identity quaternion. Quaternions in
the w>0 sphere represent rotations of -pi to pi. If w < 0, then the
rotations are still from -pi to pi, but the axis will be flipped. Anything
on the w=0 ball represents a rotation of 180 degrees.

Visualization (4D)
● Half angle means
double coverage
●Two quaternions for
every 3D rotation
● Problems for
interpolation

Text

w > 0

w < 0

w = 0

If we try to interpolate from a quaternion in the w < 0 sphere to the w
> 0 sphere, we end up taking the long way around. This why it’s
recommended when you’re interpolating to take the dot product of
the quaternions -- if the result is negative, negate one and then
interpolate.

Visualization
● Demo

This makes my head hurt, so maybe it’s better to see it in action.

Wrap Up
● Why four values? Want a division algebra.
● What are i, j and k? Imaginary axes
● Why ? Two step rotation.
● Why ? Can’t rotate directly w/quaternion.
● How can I think in 4D? Think axis scaled by sine
of half angle.

qpq−1
θ/2

References
● Andrew Hanson, Visualizing Quaternions
● Ron Goldman, Rethinking Quaternions
● David Eberly, Game Physics (especially
Shoemake section)
● Van Verth and Bishop, Essential
Mathematics for Games and Interactive
Applications

Questions?

