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The invention of the calculus of quaternions is a step towards the 

knowledge of quantities related to space which can only be 

compared for its importance with the invention of triple 

coordinates by Descartes.  The ideas of this calculus, as 

distinguished from its operations and symbols, are fitted to be of 

the greatest use in all parts of science.  -- Clerk Maxwell, 1869.



Quaternions came from Hamilton after his really good 

work had been done; and, though beautifully ingenious, 

have been an unmixed evil to those who have touched them 

in any way, including Clerk Maxwell. — Lord Kelvin, 1892



Motivation



Classical Applications of Quaternions in Computer Graphics

Provide Compact Representations for Rotations and Reflections of Vectors 

in 3-Dimensions

Avoid Distortions due to Floating Point Computations during Rotations

Enable Key Frame Animation by Spherical Linear Interpolation



Compact Representation for Rotations of Vectors in 3-Dimensions

•

� 

3× 3 Matrices -- 9 Entries

• Unit Quaternions -- 4 Coefficients



Avoids Distortions due to Floating Point Computations

Problem

• After several matrix multiplications, rotation matrices may no longer be 

orthogonal due to floating point inaccuracies.

• Non-Orthogonal matrices are difficult to renormalize.

-- Leads to distortions in lengths and angles during rotation.

Solution

• Quaternions are easily renormalized.

-- q →
q
q

   avoids distortions during rotation.



Key Frame Animation

• Linear Interpolation between two rotation matrices 

� 

R1 and 

� 

R2 (key frames)

fails to generate another rotation matrix.

--

� 

Lerp(R1,R2 ,t) = (1− t )R1 + tR2 -- not necessarily orthogonal matrices.

• Spherical Linear Interpolation between two unit quaternions always generates 

a unit quaternion.

--

� 

Slerp(q1,q2,t) =
sin (1− t )φ( )

sin(φ)
q1 +

sin tφ( )
sin(φ)

q2 -- always a unit quaternion.

� 

q1

� 

q2

� 

Slerp(q1,q2,t )

φ (1− t)φ

tφ



Additional Applications of Quaternions in Geometric Modeling

Practical methods for tubing and texturing smooth curves and surfaces using 

optimal orthonormal frames [Hanson, 2006]. 

Better ways to visualize streamlines [Hanson, 2006]. 

Effective techniques for generating and analyzing 3–dimensional Pythagorean 

hodograph curves [Farouki, 2008].

Novel constructions of curves and surface patches on spheres [Krasauskas, 2011].

Efficient conformal transformations on triangular meshes [Schroder et al, 2011].



Goals and Motivation

• To provide a geometric interpretation for quaternions, appropriate for 

contemporary Computer Graphics.

• To present better ways to visualize quaternions, and the effect of quaternion 

multiplication on points and vectors in 3-dimensions.

• To develop simple, intuitive proofs of the sandwiching formulas for rotation 

and reflection.

• To show how to apply sandwiching to compute perspective projections (NEW).



Prerequisites

Complex Numbers

• e iθ = cos(θ) + isin(θ)

•  z  e iθ z   rotates z by the angle θ  in the complex plane

Vector Geometry

• u ⋅v = 0 ⇔ u ⊥ v

• u × v ⊥ u,v



Models for Visualizing 4–Dimensions



Mathematical Models for 4-Dimensions

• Mass-Points

• Vectors in 4-Dimensions

• Pairs of Mutually Orthogonal Planes



Mass Points and Archimedes’ Law of the Lever

• •
Δ•

m1 m2
m1 + m2

P1 P2

� 

(m1P1,m1) + (m2P2,m2 ) = (m1P1 + m2P2 ,m1 + m2 ) 

� 

d1  =  dist m1P1 + m2P2
m1 + m2

, P1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  =  m2 | P2 −P1 |

m1 + m2

d2  =  dist
m1P1 + m2P2

m1 + m2
, P2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  =  m1 | P1 −P2 |

m1 + m2

      ⇒     m1 d1 = m2 d2



Mass Points and Vectors

•
(mP, m) (mP, m) + (v,0) = (mP + v, m)

m(v, 0) m•
 



Addition and Subtraction for Vectors

� 

u
� 

v

� 

u + v

� 

u� 

v

� 

u − v

Addition Subtraction



Quaternions

Old Definition

•

� 

q = a + bi + c j + dk = a + v

• Sum of a scalar and a vector

New Definition

•

� 

q = aO + bi + c j + dk = aO + v

• Sum of a mass-point and a vector = a mass-point

• O = (0,0,0,1) = origin ↔  identity for quaternion multiplication



Quaternion Multiplication

Notation  (Mass-Points)

•

� 

q = aO + bi + c j + dk

• O = identity for multiplication

Multiplication  (Basis Vectors)

•

� 

i2 = j2 = k 2 = −O O2 = O

•

� 

ij = k          jk = i         ki = j

•

� 

ji = −k      kj = −i      ik = − j

Multiplication  (Arbitrary Quaternion)

•

� 

(aO + v)(αO + w) = (aα − v ⋅w)O + (α v + aw + v ×w)

•

� 

vw = −(v ⋅w)O + v ×w



Properties of Quaternion Multiplication

• Associative

• Not Commutative

• Distributes Through Addition

• Identity and Inverses



The 4–Dimensional Vector Space of Quaternions

� 

mass

� 

Points

� 

mass = 1

� 

•

� 

O = (0,0,0,1)

� 

Vectors

� 

mass = 0

� 

•  

� 

O = (0,0,0,0)

� 

•

� 

(mP,m)

� 

•

� 

(P,1)

(v, 0)



Pairs of Complementary Orthogonal Planes

i

O

k

j

Complex Plane Orthogonal Plane

i2 = −O ,  O2 = O j, k ⊥ O, i



Orthogonal Plane

i

O

k

j = ∗  j

Orthogonal Plane Complex Plane ∗  j
j, k ⊥ O, i



Pairs of Complementary Orthogonal Planes

j

O

i

k

Complex Plane Orthogonal Plane

j2 = −O ,  O2 = O k, i ⊥O, j



Orthogonal Plane

j

O

i

k = ∗ k

Orthogonal Plane Complex Plane ∗ k



Pairs of Complementary Orthogonal Planes

N

O

N × v⊥ = N v⊥

v⊥

Complex Plane Orthogonal Plane

N 2 = −O ,  O2 = O v⊥ , N × v⊥ ⊥ O, N



Orthogonal Plane

N

O

Nv⊥

v⊥
= ∗ v⊥

Orthogonal Plane Complex Plane ∗ v⊥



The Geometry of Quaternion Multiplication



Quaternion Multiplication and Isometries

Norm of Product

• || pq || = || p || || q ||



Quaternion Multiplication and Isometries

Norm of Product

• || pq || = || p || || q ||

Multiplication by Unit Quaternions

•  p  pq

• || q || =1⇒ multiplication by q (on left or right) is a linear isometry in R4



Quaternion Multiplication and Isometries

Norm of Product

• || pq || = || p || || q ||

Multiplication by Unit Quaternions

•  p  pq

• || q || =1⇒ multiplication by q (on left or right) is a linear isometry in R4

⇒  multiplication by q (on left or right) is rotation in R4



Properties of Vector Multiplication

Vector Multiplication

• v w = (−v ⋅w)O + v×w

Consequences

• N ⊥ v ⇒ Nv = N × v

• || N || = 1 ⇒ N 2 = −O

• O, N plane is isomorphic to the complex plane

-- N 2 = −O ,    O2 = O

-- NO = ON = N



Vector Multiplication Introduces Mass via Rotation

O

v ×w
v ×w

v2 = −O

v

w  

θ

v w = −cos(θ )O + sin(θ ) v× w
v×w

θ

−v ⋅w = − cos(θ)

sin(θ)

v∗

Plane of v,w Orthogonal Plane of v × w,O

Multiplication by v represents a rotation in 4-dimensions



Planes Isomorphic to the Complex Plane

N

N − axis   

O
O − axis    θ

q(N,θ ) = cos(θ )O +sin(θ ) N
i

y − axis   

1
x − axis    

eiθ = cos(θ ) + isin(θ)

θ

O, N Plane Complex Plane

N 2 = −O , O2 = O i2 = −1, 12 = 1

q(N,θ) = cos(θ )O + sin(θ)N  ↔   Rotation  ↔  eiθ = cos(θ) + i sin(θ)
{eNθ} by θ



Conjugation

Definition
• q = aO + bi + c j + dk

• q∗ = aO − bi − c j − dk

Properties

• (p q)∗ = q∗p∗

• q q∗ = || q ||2 O ⇒ pq = p q( )

Inverses and Inversion

• q−1 =
q∗

qq∗
=

q∗

q 2 (inverses)

• v−1 = −
v

  v 2 (inversion)



Inversion in the Sphere

Definition

• q =  center of unit sphere

• invq (p) =  point along line from q to p at distance d = 1/ p − q  from q

Formula

• invq (p) = q +
p − q

  p − q 2 = q − ( p − q)−1

• invq( p) − q =
p − q

  p − q 2 =
1

p − q

Properties

• invq  turns unit sphere centered at q inside out

•
 
invq  invq = identity

• invq  maps spheres and planes to spheres and planes



Conjugates of Complex Numbers

Complex Number

• q(N,θ) = cos(θ )O +sin(θ)N

Complex Conjugate

• q∗(N ,θ) = cos(θ)O −sin(θ)N

• q∗(N ,θ) = q(N, −θ) = q(N,θ)−1



Rotation in Complementary Planes -- Double Isoclinic Rotations

N

O

N × v

v

q(N,θ) p

p q(N ,θ ) p q∗(N ,θ)
q(N ,θ) v

v q(N ,θ )v q∗(N,θ )

q∗(N,θ) p q∗(N,θ ) v

Plane of O, N Plane Perpendicular to O, N

Rotation by the Angle θ Rotation by the Angle θ

q(N,θ), q∗(N,θ)   Cancel q(N,θ), q∗(N,θ)   Reinforce



Rotation in Plane Perpendicular to O, N

i. q(N, θ)v = cos(θ)O+sin(θ )N( ) v = cos(θ)v +sin(θ)N × v

ii. v q(N, θ) = v cos(θ)O+sin(θ)N( ) = cos(θ)v +sin(θ)v × N = cos(θ)v − sin(θ)N × v

� 

N × v  

� 

v

� 

(cosθ )v  

� 

(sinθ ) N × v  

� 

θ� 

q(N, θ )v

� 

−θ

� 

−(sinθ ) N × v  

� 

vq(N, θ)

Plane ⊥  O, N



Sandwiching with Conjugates in Complementary Planes -- Simple Rotations

N

O

N × v

v

q(N ,θ) p pq∗(N ,θ)
q(N ,θ) v v q∗(N ,θ )

Plane of O, N Plane Perpendicular to O, N

Sandwiching  q(N,θ) p q∗(N,θ) Sandwiching  q(N,θ) v q∗(N,θ)

q(N,θ), q∗(N,θ)   Cancel q(N,θ), q∗(N,θ)   Reinforce



Sandwiching in Complementary Planes -- Simple Rotations

N

O

N × v

v

q(N ,θ) p pq(N ,θ)
q(N ,θ) v v q(N ,θ)

Plane of O, N Plane Perpendicular to O, N

Sandwiching  q(N,θ) p q(N,θ ) Sandwiching  q(N,θ) v q(N,θ )

q(N,θ)  on Left and Right Reinforce q(N,θ)  on Left and Right Cancel



Rotation, Reflection

and 

Perspective Projection



3–Dimensional and 4-Dimensional Interpretations of the Plane ⊥  to O, N

v

N × v
αv + βN × v

Plane of Vectors ⊥  O, N in 4-Dimensions = Plane of Vectors ⊥  N in 3-Dimensions



The 4–Dimensional Vector Space of Quaternions

� 

mass

� 

Points

� 

mass = 1

� 

•

� 

O = (0,0,0,1)

� 

Vectors

� 

mass = 0

� 

•  

� 

O = (0,0,0,0)

� 

•

� 

(mP,m)

� 

•

� 

(P,1)

(v, 0)



3–Dimensional and 4-Dimensional Interpretations of the Plane of O, N

O

N
αO + βN

O

N

αO + βN ≡ O +
β
α

N
•

•

Plane of O, N in 4-Dimensions Line Through O in Direction N in 3-Dimensions

Plane of Vectors in 4-Dimensions Line of Points in 3-Dimensions



Rotation and Reflection

 p  q(N, θ) p q∗(N, θ)

• Plane of O, N = Line through O parallel to N

-- Identity  →   FIXED AXIS LINE

• Plane ⊥  O, N = Plane ⊥  N

-- Rotation by Angle 2θ  -- ROTATION 

 p q(N, θ) p q(N, θ )

• Plane ⊥  O, N = Plane ⊥  N

-- Identity  →   FIXED PLANE

• Plane of O, N = Line through O parallel to N

--  N  −N   --  MIRROR IMAGE

-- N     Mass–Point  --  PERSPECTIVE PROJECTION



Rotation

• •
v vnew

•
θ

O

N

L

v⊥ v⊥
new

P Pnew
 
v



Sandwiching with Conjugates in Complementary Planes -- Simple Rotations

N

O

N × v

v

q(N ,θ) p pq∗(N ,θ)
q(N ,θ) v v q∗(N ,θ )

Plane of O, N Plane Perpendicular to O, N

Sandwiching  q(N,θ) p q∗(N,θ) Sandwiching  q(N,θ) v q∗(N,θ)

q(N,θ), q∗(N,θ)   Cancel q(N,θ), q∗(N,θ)   Reinforce



Rotation:  Sandwiching in Complementary Planes 

N

O

 
v

N × v⊥

v⊥
θ

v⊥
new

Plane of O, N Plane Perpendicular to O, N

 
q(N,θ / 2) v q∗(N ,θ / 2) = v q(N,θ / 2) v⊥

new q∗(N,θ / 2)

Identity Rotation by θ



Theorem 1:  Sandwiching Rotates Vectors in 3–Dimensions 

Let

• q(N,θ / 2) = cos(θ / 2)O +sin(θ / 2)N

• v = vector in R3

Then

• q(N, θ / 2) v q∗(N , θ / 2)   rotates v by the angle θ  around the axis N



Corollary: Composites of Rotations are Represented by Products of Quaternions

The composite of rotations represented by two quaternions q(N1,θ1 / 2), q(N2,θ2 / 2)  

is represented by the product quaternion q = q(N2,θ2 / 2) q(N1,θ1 / 2).

Proof:  q v q∗ = q(N2, θ2 / 2) q(N1,θ1 / 2)v q(N2, θ2 / 2)q(N1, θ1 / 2)( )∗

= q(N2, θ2 / 2)q(N1,θ1 / 2) v q∗(N1, θ1 / 2)q∗(N2,θ2 / 2)



Reflection

� 

S� 

O  � 

N
� 

•

� 

P

� 

•� 

v

� 

Pnew

� 

•
� 

vnew

� 

−N



Sandwiching in Complementary Planes -- Simple Rotations

N

O

N × v

v

q(N ,θ) p pq(N ,θ)
q(N ,θ) v v q(N ,θ)

Plane of O, N Plane Perpendicular to O, N

Sandwiching  q(N,θ) p q(N,θ ) Sandwiching  q(N,θ) v q(N,θ )

q(N,θ)  on Left and Right Reinforce q(N,θ)  on Left and Right Cancel



Reflection:  Sandwiching in Complementary Planes 

N

O

 
v

 
v

new

θ

N × v⊥

v⊥

Plane of O, N Plane Perpendicular to O, N

 
q(N,θ / 2) v q(N ,θ / 2) q(N,θ / 2) v⊥ q(N,θ / 2) = v⊥

Rotation by θ Identity



Theorem 2:  Sandwiching Reflects Vectors in 3–Dimensions 

Let v = vector in R3

Then N v N    is the mirror image of w in the plane ⊥  N

Proof:  Take θ = π .  Then sandwiching v with:

q(N,π / 2) = cos(π / 2)O + sin(π / 2)N = N

gives the mirror image of v in the plane ⊥  N.



Perspective Projection

� 

E(eye)

� 

•

� 

(Perspective Plane)

� 

(Perspective Point)  

� 

P

� 

Pnew

� 

Q

N

S

� 

R

� 

•

� 

•

� 

•

� 

•

ΔEQPnew ≈ ΔE RP



Perspective Projection:  Sandwiching in the Plane of O, N

N

O N

O

Plane of O, N Plane of O, N
Before Sandwiching with q(N,− π / 4) After Sandwiching with q(N,− π / 4)

Length along N is mapped to mass at O



Perspective Projection:  Sandwiching in Complementary Planes

N

O

 
v

 
v

new

N × v

v

Plane of O, N Plane Perpendicular to O, N

q(N,− π / 4) d N q(N ,− π / 4) = d O q(N,− π / 4) v q(N,−π / 4) = v
Rotation by π / 2 Identity



Perspective Projection

� 

E(eye) = O − N

� 

S (Perspective Plane)

� 

(Perspective Point)

� 

P

� 

Pnew

� 

•

� 

O

dN
v

P − E

v / d

N

� 

•
� 

•

� 

•

� 

R

� 

•

P − E = d N + v→ dO + v →O + v / d

ΔEOPnew ≈ ΔE RP



  Theorem 3:  Sandwiching Vectors to the Eye with q(N,− π / 4)  Gives Perspective

Let

• S = plane through the origin O perpendicular to the unit normal N 

• E = O − N =  eye point

• P = point in R3

Then

• q(N,− π / 4) (P − E) q(N,−π / 4)   is a mass-point, where:

--  the point is located at the perspective projection of  the point P from the eye

 point E onto the plane S;

--  the mass is equal to the distance d of the point P from the plane through 

the eye point E perpendicular to the unit normal N.



Hidden Surfaces

� 

E(eye) = O − N

� 

S (Perspective Plane)

� 

(Perspective Point)

� 

P

� 

Pnew

� 

•

� 

O

d N
v

v / d = v∗ / d∗

d∗ N

� 

•
� 

•

� 

•

� 

• P∗v∗

d < d∗ ⇒ P  obscures  P∗

Converts Distance Along N to Mass at O



Summary:  Sandwiching with q(N,− π / 4)

Maps the Vector N to the Point O

• q(N,− π / 4) N q(N ,−π / 4) = O

• Projects a Vector to a Point

• Projects Points into a Plane

Converts Distance Along N to Mass at O

•  q(N,− π / 4) dN q(N ,− π / 4) = d O

• No Information is Lost

• Hidden Surfaces 



Perspective Projection:  Sandwiching in Complementary Planes

N

O

 
v

 
v

newθ

N new

Onew

N × v

v

Plane of O, N Plane Perpendicular to O, N

q(N,−θ / 2) N q(N,−θ / 2) = sin(θ)O + cos(θ)N q(N,θ / 2) v q(N,θ / 2) = v
Rotation by −θ Identity



Perspective Projection

� 

E(eye) = O + cot(θ) − csc(θ)( )N

� 

•

� 

S (Perspective Plane)

� 

(Perspective Point)

� 

P

� 

Pnew

� 

Q = O + cot(θ)N

dN
v

P − E

csc(θ ) v
d

csc(θ )N

� 

•

� 

•
� 

•R

� 

•

P − E = d N + v→ d sin(θ)O + d cos(θ )N + v ≡ O + cot(θ)N + csc(θ) v
d

ΔEQPnew ≈ ΔE RP



  Theorem 4:  Sandwiching Vectors to the Eye with q(N,−θ / 2)  Gives Perspective

Let

• S = plane through the point O + cot(θ)N ≡ q(N,−θ / 2) N q(N, −θ / 2)  
perpendicular to the unit normal N

• E = O + cot(θ)− csc(θ)( ) N =  eye point

• P = point in R3

Then

• q(N,−θ / 2) (P − E ) q(N ,−θ / 2)   is a mass-point, where:

--  the point is located at the perspective projection of  the point P from the eye

 point E onto the plane S;

--  the mass is equal sin(θ)  times the distance d of the point P from the plane 

through the eye point E perpendicular to the unit normal N.



Translation and Perspective Commute

� 

E(eye)

� 

S(Perspective Plane)

� 

(Perspective Point )

� 

P

� 

Pnew

� 

•

� 

Q

dN
v

P − E

csc(θ ) v
d

� 

•
� 

•

� 

•

csc(θ )N

 

� 

E(eye) = O + cot(θ ) − csc(θ)( )N

� 

•

� 

S (Perspective Plane)

� 

(Perspective Point)

� 

P

� 

Pnew

� 

O + cot(θ) N

dN
v

P − E

csc(θ ) v
d

� 

•

� 

•
� 

•
csc(θ )N



  Theorem 5:  Sandwiching Vectors to the Eye with q(N,−θ / 2)  Gives Perspective

Let

• E =  eye point

• S = plane at a distance csc(θ ) from E perpendicular to the unit normal N

• P = point in R3

Then

• q(N,−θ / 2) (P − E ) q(N ,−θ / 2)   is a mass-point, where:

--  the point is located at the perspective projection of  the point P from the eye

 point E onto the plane S translated to the canonical plane;

--  the mass is equal sin(θ)  times the distance d of the point P from the plane 

through the eye point E perpendicular to the unit normal N.

Proof:  Translation and Perspective Commute. 



Conclusions

Rotations, Reflections, and Perspective Projections in 3–Dimensions 

can all be Modeled by Simple Rotations in 4–Dimensions

Simple Rotations in 4-Dimensions can be Modeled by Sandwiching either 

i. Between a Unit Quaternion and its Conjugate  (Rotation)

ii. Between Two Copies of the Same Unit Quaternion  (Reflection and 

Perspective Projection)



Formulas

Rotation

•  v q(N,θ) v q∗(N,θ)

Reflection

•  v N v N

Perspective Projection

•  P q(N ,θ) (P − E) q∗(N,θ)

Inversion

•  P Q − (P −Q)−1
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