
CS 445 / 645
Introduction to Computer Graphics

Lecture 21
Representing Rotations

Parameterizing Rotations
Straightforward in 2D

•  A scalar, θ, represents rotation in plane

More complicated in 3D

•  Three scalars are required to define orientation

•  Note that three scalars are also required to define position

•  Objects free to translate and tumble in 3D have 6 degrees
of freedom (DOF)

Representing 3 Rotational DOFs
3x3 Matrix (9 DOFs)

•  Rows of matrix define orthogonal axes

Euler Angles (3 DOFs)
•  Rot x + Rot y + Rot z

Axis-angle (4 DOFs)
•  Axis of rotation + Rotation amount

Quaternion (4 DOFs)
•  4 dimensional complex numbers

Rotation Matrix

9 DOFs must reduce to 3
Rows must be unit length (-3 DOFs)
Rows must be orthogonal (-3 DOFs)
Drifting matrices is very bad

•  Numerical errors results when trying to gradually rotate matrix by
adding derivatives

•  Resulting matrix may scale / shear

•  Gram-Schmidt algorithm will re-orthogonalize your matrix

Difficult to interpolate between matrices
•  How would you do it?

Euler Angles
(θx, θy, θz) = RzRyRx

•  Rotate θx degrees about x-axis
•  Rotate θy degrees about y-axis
•  Rotate θz degrees about z-axis

Axis order is not defined
•  (y, z, x), (x, z, y), (z, y, x)…

 are all legal
•  Pick one

Euler Angles
Rotations not uniquely defined

•  ex: (z, x, y) = (90, 45, 45) = (45, 0, -45)
takes positive x-axis to (1, 1, 1)

•  Cartesian coordinates are independent of one another, but Euler
angles are not

•  Remember, the axes stay in the same place during rotations

Gimbal Lock
•  Term derived from mechanical problem that arises in gimbal

mechanism that supports a compass or a gyro

Gimbal Lock

http://www.anticz.com/eularqua.htm

Gimbal Lock
Occurs when two axes are

aligned
Second and third rotations

have effect of transforming
earlier rotations
•  ex: Rot x, Rot y, Rot z

– If Rot y = 90 degrees,
Rot z == -Rot x

A Gimbal
Hardware implementation of Euler angles (used for
mounting gyroscopes and globes)

Interpolation

Interpolation between two Euler angles is not
unique

ex: (x, y, z) rotation
•  (0, 0, 0) to (180, 0, 0) vs. (0, 0, 0) to (0, 180, 180)

•  Interpolation about different axes are not
independent

Interpolation

Axis-angle Notation
Define an axis of rotation (x, y, z) and a rotation

about that axis, θ: R(θ, n)
4 degrees of freedom specify 3 rotational degrees

of freedom because axis of rotation is
constrained to be a unit vector

Axis-angle Notation

r

Rr

n

θ

rpar = (n.r) n

rperp = r – (n.r) n

V = n x (r – (n.r) n) = n x r

Rr = Rrpar + Rrperp
= Rrpar + (cos θ) rperp + (sin θ) V
=(n.r) n + cos θ(r – (n.r)n) + (sin θ) n x r
= (cos θ)r + (1 – cos θ) n (n.r) + (sin θ) n x r

Axis-angle Rotation

r
r’

n

Given
 r – Vector in space to rotate
 n – Unit-length axis in space about which to rotate
 θ – The amount about n to rotate

Solve
 r’ – The rotated vector

Axis-angle Rotation
Step 1

•  Compute rk an extended version of the rotation axis, n

•  rk = (n ¢ r) n

r
r’

rk

Axis-angle Rotation
Compute r?

r? = r – (n ¢ r) n

r
r’ r?

Axis-angle Rotation

Compute v, a vector perpendicular to rk and r?

v = rk £ r?
Use v and r? and θ to compute r’

v

θ

cos(θ) r? + sin(θ) v

r?

Axis-angle Notation
No easy way to determine how to concatenate

many axis-angle rotations that result in final
desired axis-angle rotation

No simple way to interpolate rotations

Quaternion
Remember complex numbers: a + ib

•  Where i2 = -1

Invented by Sir William Hamilton (1843)
•  Remember Hamiltonian path from Discrete II?

Quaternion:
•  Q = a + bi + cj + dk

– Where i2 = j2 = k2 = -1 and ij = k and ji = -k
•  Represented as: q = (s, v) = s + vxi + vyj + vzk

Quaternion
A quaternion is a 4-D unit vector q = [x y z w]
•  It lies on the unit hypersphere x2 + y2 + z2 + w2 = 1

For rotation about (unit) axis v by angle θ
•  vector part = (sin θ/2) v = [x y z]

•  scalar part = (cos θ/2) = w

•  (sin(θ/2) nx, sin(θ/2) ny, sin(θ/2) nz, cos (θ/2))

Only a unit quaternion encodes a rotation - normalize

Quaternion
Rotation matrix corresponding to a quaternion:
•  [x y z w] =

Quaternion Multiplication
•  q1 * q2 = [v1, w1] * [v2, w2] = [(w1v2+w2v1+ (v1 x v2)), w1w2-v1.v2]
•  quaternion * quaternion = quaternion
•  this satisfies requirements for mathematical group
•  Rotating object twice according to two different quaternions is equivalent

to one rotation according to product of two quaternions

!
!
!

"

#

$
$
$

%

&

−−−+

+−−−

−+−−

22

22

22

2212222
2222122
2222221

yxwxyzwyxz
wxyzzxwzxy
wyxzwzxyzy

Quaternion Example
X-roll of π

•  (cos (π/2), sin (π/2) (1, 0, 0)) = (0, (1, 0, 0))

Y-roll 0f π
•  (0, (0, 1, 0))

Z-roll of π
•  (0, (0, 0, 1))

Ry (π) followed by Rz (π)
•  (0, (0, 1, 0) times (0, (0, 0, 1)) = (0, (0, 1, 0) x (0, 0, 1)

 = (0, (1, 0, 0))

Quaternion Interpolation
Biggest advantage of quaternions

•  Interpolation
•  Cannot linearly interpolate between two quaternions

because it would speed up in middle
•  Instead, Spherical Linear Interpolation, slerp()
•  Used by modern video games for third-person

perspective
•  Why?

SLERP
Quaternion is a point on the 4-D unit sphere
•  interpolating rotations requires a unit quaternion at each step

–  another point on the 4-D unit sphere
•  move with constant angular velocity along the great circle between two

points

Any rotation is defined by 2 quaternions, so pick the
shortest SLERP
To interpolate more than two points, solve a non-linear
variational constrained optimization
•  Ken Shoemake in SIGGRAPH ’85 (www.acm.org/dl)

Quaternion Interpolation
Quaternion (white) vs.

Euler (black)
interpolation

Left images are linear
interpolation

Right images are cubic
interpolation

Quaternion Code
http://www.gamasutra.com/features/programming/

19980703/quaternions_01.htm
•  Registration required

Camera control code

•  http://www.xmission.com/~nate/smooth.html
– File, gltb.c
– gltbMatrix and gltbMotion

