

CS 445 / 645 Introduction to Computer Graphics *Lecture 21*

Representing Rotations

Parameterizing Rotations

Straightforward in 2D

• A scalar, $θ$, represents rotation in plane

More complicated in 3D

- Three scalars are required to define orientation
- Note that three scalars are also required to define position
- Objects free to translate and tumble in 3D have 6 degrees of freedom (DOF)

Representing 3 Rotational DOFs

3x3 Matrix (9 DOFs)

• Rows of matrix define orthogonal axes

Euler Angles (3 DOFs)

• Rot $x + Roty + Rotz$

Axis-angle (4 DOFs)

• Axis of rotation + Rotation amount

Quaternion (4 DOFs)

• 4 dimensional complex numbers

Rotation Matrix

Rows must be unit length (-3 DOFs)

Rows must be orthogonal (-3 DOFs)

Drifting matrices is very bad

- Numerical errors results when trying to gradually rotate matrix by adding derivatives
- Resulting matrix may scale / shear
- Gram-Schmidt algorithm will re-orthogonalize your matrix

Difficult to interpolate between matrices

• How would you do it?

Euler Angles

$(\theta_x, \theta_y, \theta_z) = R_z R_y R_x$

- Rotate θ_x degrees about x-axis
- Rotate $\theta_{\rm v}$ degrees about y-axis
- \bullet Rotate θ , degrees about z-axis

Axis order is not defined

- $(y, z, x), (x, z, y), (z, y, x)$ … are all legal
- Pick one

Euler Angles

Rotations not uniquely defined

- ex: $(z, x, y) = (90, 45, 45) = (45, 0, -45)$ takes positive x-axis to (1, 1, 1)
- Cartesian coordinates are independent of one another, but Euler angles are not
- Remember, the axes stay in the same place during rotations

Gimbal Lock

• Term derived from mechanical problem that arises in gimbal mechanism that supports a compass or a gyro

Gimbal Lock

http://www.anticz.com/eularqua.htm

Gimbal Lock

Occurs when two axes are aligned Second and third rotations have effect of transforming earlier rotations

- ex: Rot x, Rot y, Rot z
	- $-If$ Rot y = 90 degrees, $Rot z == -Rot x$

A Gimbal

Hardware implementation of Euler angles (used for mounting gyroscopes and globes)

Interpolation

Interpolation between two Euler angles is not unique

- *ex: (x, y, z) rotation*
	- (0, 0, 0) to (180, 0, 0) vs. (0, 0, 0) to (0, 180, 180)
	- Interpolation about different axes are not independent

Interpolation

Figure 15.19 Euler angle parametrization. (a) A single x-roll of π . (b) A y-roll of π followed by a z-roll of π .

 \star \star \star

Define an axis of rotation (x, y, z) and a rotation about that axis, ^θ: *R(*θ*, n)*

4 degrees of freedom specify 3 rotational degrees of freedom because axis of rotation is constrained to be a unit vector

Given

- r Vector in space to rotate
- n Unit-length axis in space about which to rotate
- θ The amount about n to rotate

Solve r ' – The rotated vector

Step 1

- Compute r_k an extended version of the rotation axis, n
- $r_k = (n \notin r) n$

Compute v, a vector perpendicular to r, and r, $v = r_k E r_2$ *Use v and r? and* θ *to compute r*'

No easy way to determine how to concatenate many axis-angle rotations that result in final desired axis-angle rotation

No simple way to interpolate rotations

Quaternion

Remember complex numbers: a + ib

• Where $i^2 = -1$

Invented by Sir William Hamilton (1843)

• Remember Hamiltonian path from Discrete II?

Quaternion:

 \bullet Q = a + bi + cj + dk

– Where $i^2 = j^2 = k^2 = -1$ and $ij = k$ and $ji = -k$

• Represented as: $q = (s, v) = s + v_x i + v_y j + v_z k$

Quaternion

A quaternion is a 4-D unit vector q = [x y z w]

• It lies on the unit hypersphere $x^2 + y^2 + z^2 + w^2 = 1$

For rotation about (unit) axis v by angle ^θ

- $\text{vector part} = (\sin \theta/2) \text{ } v = [x \text{ } y \text{ } z]$
- scalar part = $(\cos \theta/2) = w$
- (sin(θ /2) n_x, sin(θ /2) n_y, sin(θ /2) n_z cos (θ /2))

Only a unit quaternion encodes a rotation - normalize

Quaternion

Rotation matrix corresponding to a quaternion:

• $[x y z w] =$ | ! ! \rfloor \mathcal{I} \vert \vert \vert \lfloor \lceil $+ 2wy$ $2yz - 2wx$ $1 - 2x^2 -2wz$ $1-2x^2-2z^2$ $2yz +$ $-2y^2 - 2z^2$ 2xy + 2wz 2xz – 2 2^{12} 2 2^2 2 2^2 $2xz + 2wy$ $2yz - 2wx$ $1 - 2x^2 - 2$ $2xy - 2wz$ $1 - 2x^2 - 2z^2$ $2yz + 2$ $1 - 2y^2 - 2z^2$ 2xy + 2wz 2xz - 2 $xz + 2wy$ 2yz – 2wx 1 – 2x² – 2y $xy - 2wz$ $1 - 2x^2 - 2z^2$ $2yz + 2wx$ $y^2 - 2z^2$ $2xy + 2wz$ $2xz - 2wy$

Quaternion Multiplication

- $q_1 * q_2 = [\mathbf{v}_1, \mathbf{w}_1] * [\mathbf{v}_2, \mathbf{w}_2] = [(\mathbf{w}_1 \mathbf{v}_2 + \mathbf{w}_2 \mathbf{v}_1 + (\mathbf{v}_1 \times \mathbf{v}_2)), \mathbf{w}_1 \mathbf{w}_2 \mathbf{v}_1 \cdot \mathbf{v}_2]$
- quaternion $*$ quaternion = quaternion
- this satisfies requirements for mathematical *group*
- Rotating object twice according to two different quaternions is equivalent to one rotation according to product of two quaternions

Quaternion Example

X-roll of ^π

• (cos ($\pi/2$), sin ($\pi/2$) (1, 0, 0)) = (0, (1, 0, 0))

Y-roll 0f ^π

• $(0, (0, 1, 0))$

Z-roll of ^π

• $(0, (0, 0, 1))$

 $R_{V}(\pi)$ followed by $R_{z}(\pi)$

• $(0, (0, 1, 0)$ times $(0, (0, 0, 1)) = (0, (0, 1, 0) \times (0, 0, 1)$ $= (0, (1, 0, 0))$

Quaternion Interpolation

Biggest advantage of quaternions

- **Interpolation**
- Cannot linearly interpolate between two quaternions because it would speed up in middle
- Instead, Spherical Linear Interpolation, slerp()
- Used by modern video games for third-person perspective
- Why?

SLERP

Quaternion is a point on the 4-D unit sphere

- interpolating rotations requires a unit quaternion at each step
	- another point on the 4-D unit sphere
- move with constant angular velocity along the great circle between two points

Any rotation is defined by 2 quaternions, so pick the shortest SLERP

To interpolate more than two points, solve a non-linear variational constrained optimization

• Ken Shoemake in SIGGRAPH '85 (www.acm.org/dl)

Quaternion Interpolation

Quaternion (white) vs. Euler (black) interpolation

Left images are linear interpolation

Right images are cubic interpolation

Figure 15.25 Shows how R moves through the three keys. In all cases the white line tracks the motion of R when the interpolation is carried our Figure 15.25 Shows how R moves through the three keys. In all cases the write line tracks the ench for the left illustration compares linear inter-
In quaternion space; the black line tracks the motion of R when Euler angl in quaternion space; the black line tracks the motion of H when Euler angles are interpolated. In each flux the left mostrucion compares a cubic spline interpolation of
polation of Euler angles with spherical linear interp Euler angles to the spherical cubic spline interpolation of quaternions (using squad()).

TА

Quaternion Code

http://www.gamasutra.com/features/programming/ 19980703/quaternions_01.htm

• Registration required

Camera control code

- http://www.xmission.com/~nate/smooth.html
	- –File, gltb.c
	- –gltbMatrix and gltbMotion

