Sampling and reconstruction

CS 465 Lecture 5

Cornell CS465 Fall 2004 • Lecture 5

© 2004 Steve Marschner • I

Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points

Sampling

Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between



Filtering

- Processing done on a function
 - can be executed in continuous form (e.g. analog circuit)
 - but can also be executed using sampled representation
- Simple example: smoothing by averaging

Roots of sampling

- Nyquist 1928; Shannon 1949
 - famous results in information theory
- 1940s: first practical uses in telecommunications
- 1960s: first digital audio systems
- 1970s: commercialization of digital audio
- 1982: introduction of the Compact Disc

- the first high-profile consumer application

- This is why all the terminology has a communications or audio "flavor"
 - early applications are ID; for us 2D (images) is important

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - aliasing: signals "traveling in disguise" as other frequencies

Preventing aliasing

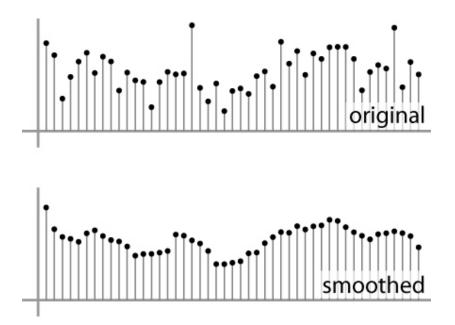
- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

Linear filtering: a key idea

- Transformations on signals; e.g.:
 - bass/treble controls on stereo
 - blurring/sharpening operations in image editing
 - smoothing/noise reduction in tracking
- Key properties
 - linearity: filter(f + g) = filter(f) + filter(g)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by convolution

Convolution warm-up

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



Convolution warm-up

• Same moving average operation, expressed mathematically:

$$b[k] = \frac{1}{2r+1} \sum_{i=k-r}^{k+r} a[k]$$

Discrete convolution

• Simple averaging:

$$b[k] = \frac{1}{2r+1} \sum_{i=k-r}^{k+r} a[k]$$

- every sample gets the same weight

• Convolution: same idea but with weighted average

$$b[k] = \sum_{i} c[i]a[k-i]$$

- each sample gets its own weight (normally zero far away)

- Sequence of weights c_i is called a filter
 - support, symmetry

Discrete convolution

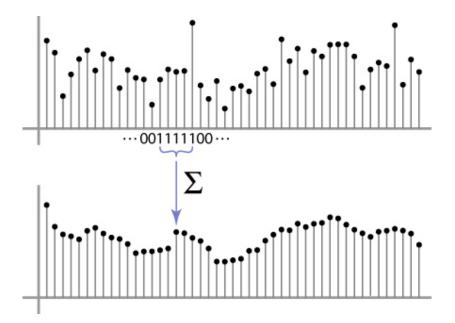
- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a \star (b + c) = a \star b + a \star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

 $a \star e = a$

• Conceptually no distinction between filter and signal

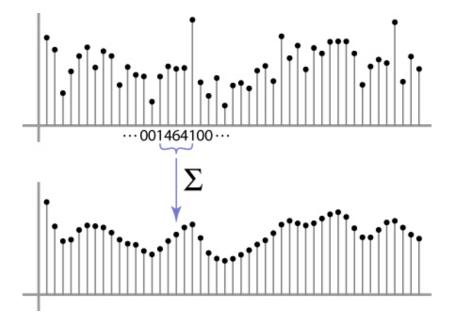
Convolution and filtering

- Can express sliding average as convolution with a box filter
- $c_{\text{box}} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$



Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., I, 4, 6, 4, I, ...]



Discrete filtering in 2D

• Same equation, one more index

$$b[k,l] = \sum_{i,j} c[i,j]a[k-i,l-j]$$

- now the filter is a rectangle you slide around over a grid of numbers
- Commonly applied to images
 - blurring (using box, using gaussian, ...)
 - sharpening (impulse minus blur)
 - usefulness of associativity

Optimization: separable filters

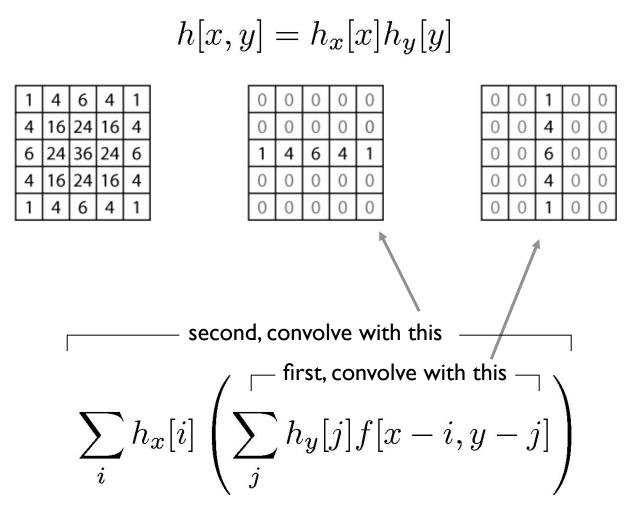
- basic alg. is $O(r^2)$: large filters get expensive fast!
- definition: h(x,y) is separable if it can be written as:
 h[x,y] = h_x[x]h_y[y]
 - this is a useful property for filters because it allows factoring:

$$g[x,y] = \sum_{i} \sum_{j} h[i,j]f[x-i,y-j]$$
$$= \sum_{i} \sum_{j} h_{x}[i]h_{y}[j]f[x-i,y-j]$$
$$= \sum_{i} h_{x}[i] \left(\sum_{j} h_{y}[j]f[x-i,y-j]\right)$$

Cornell CS465 Fall 2004 • Lecture 5

© 2004 Steve Marschner • 18

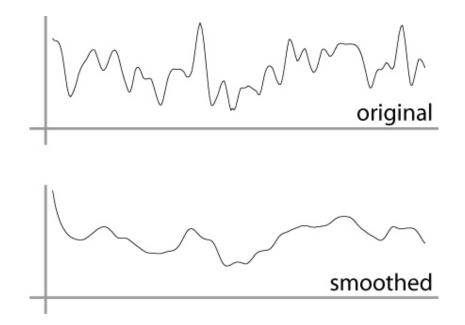
Separable filtering



© 2004 Steve Marschner • 19

Continuous convolution: warm-up

- Can apply sliding-window average to a continuous function just as well
 - output is continuous
 - integration replaces summation



Continuous convolution

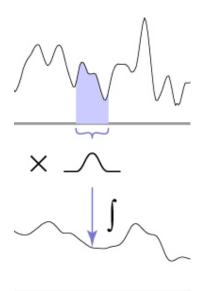
• Sliding average expressed mathematically:

$$g(x) = \frac{1}{2r} \int_{x-r}^{x+r} f(t)dt$$

- note difference in normalization (only for box)
- Convolution just adds weights

$$g(x) = \int_{-\infty}^{\infty} h(t)f(x-t)dt$$

- weighting is now by a function
- weighted integral is like weighted average
- again bounds are set by support of h(x)



One more convolution

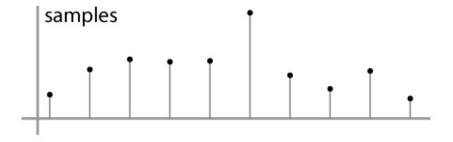
Continuous–discrete convolution

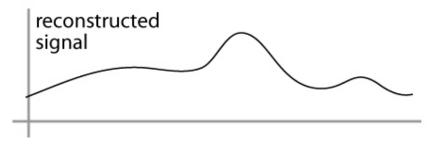
$$g(x) = \sum_{i} c[i]f(x-i)$$

$$g(x,y) = \sum_{i,j} c[i,j]f(x-i,y-j)$$

- used for reconstruction and resampling

Continuous-discrete convolution



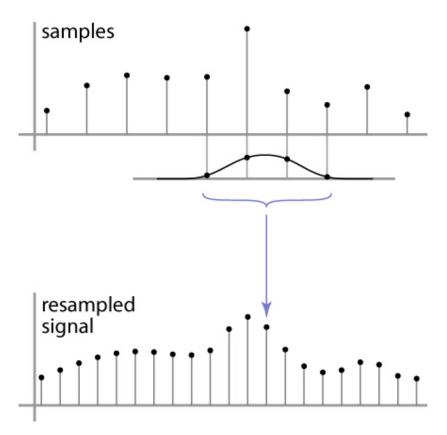


Resampling

- Changing the sample rate
 - in images, this is enlarging and reducing
- Creating more samples:
 - increasing the sample rate
 - "upsampling"
 - "enlarging"
- Ending up with fewer samples:
 - decreasing the sample rate
 - "downsampling"
 - "reducing"

Resampling

- Reconstruction creates a continuous function
 - forget its origins, go ahead and sample it

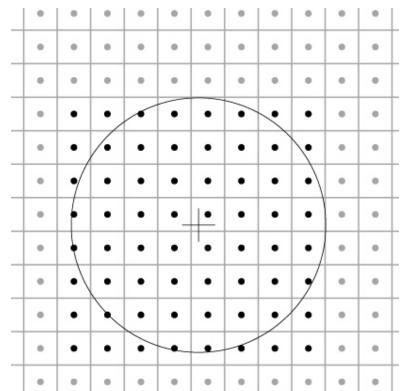


Cont.–disc. convolution in 2D

same convolution—just two variables now

$$g(x,y) = \sum_{k,l} h(x-k,y-l)f[k,l]$$

- loop over nearby pixels, average using filter weight
- looks like convolution filter,
 but offsets are not integers
 and filter is continuous
- remember placement of filter relative to grid is variable



Separable filters for resampling

- just as in filtering, separable filters are useful
 - separability in this context is a statement about a continuous filter, rather than a discrete one:

 $h(x,y) = h_x(x)h_y(y)$

- resample in two passes, one resampling each row and one resampling each column
- intermediate storage required: product of one dimension of src. and the other dimension of dest.
- same yucky details about boundary conditions

two-stage resampling using a separable filter

Cornell CS465 Fall 2004 • Lecture 5

© 2004 Steve Marschner • 28

A gallery of filters

- Box filter
 - Simple and cheap
- Tent filter
 - Linear interpolation
- Gaussian filter
 - Very smooth antialiasing filter
- B-spline cubic
 - Very smooth
- Catmull-rom cubic
 - interpolating

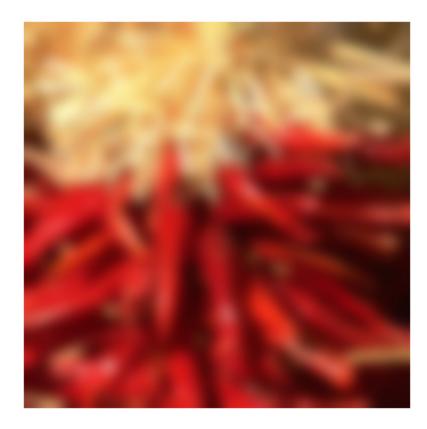
- Mitchell-Netravali cubic
 - Good for image upsampling

Properties of filters

- Degree of continuity
- Impulse response
- Interpolating or no
- Ringing, or overshoot

Yucky details

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge
 - vary filter near edge



Cornell CS465 Fall 2004 • Lecture 5

Reducing and enlarging

- very common operation
 - devices have differing resolutions
 - applications have different memory/quality tradeoffs
- also very commonly done poorly
- simple approach: drop/replicate pixels

1000 pixel width

Cornell CS465 Fall 2004 • Lecture 5

© 2004 Steve Marschner • 33

[Philip Greenspun]

by dropping pixels

gaussian filter

250 pixel width

box reconstruction filter

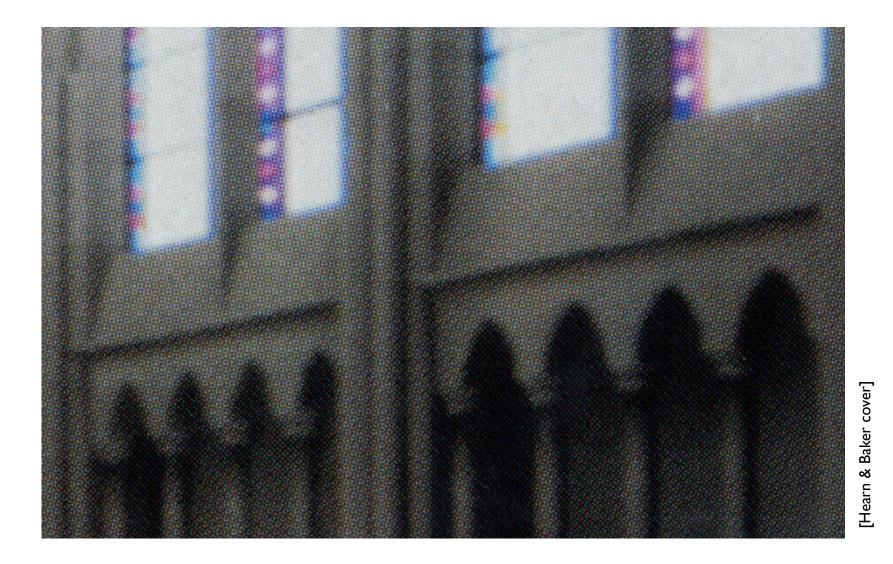
bicubic reconstruction filter

4000 pixel width

© 2004 Steve Marschner • 35

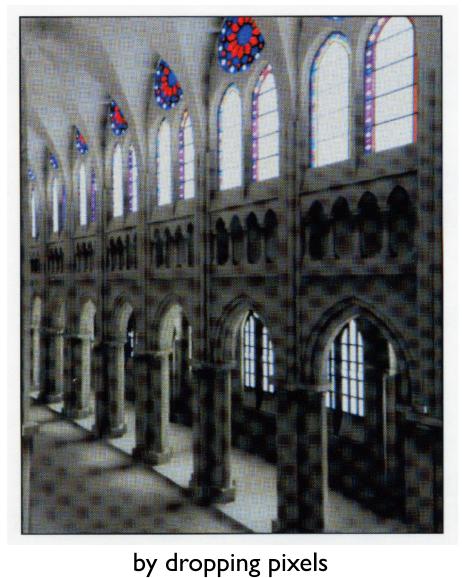
Types of artifacts

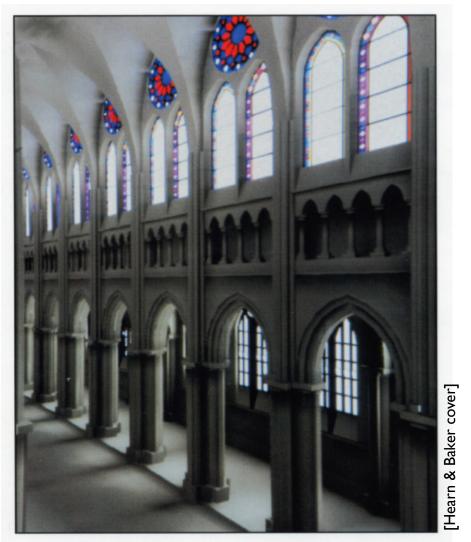
- garden variety
 - what we saw in this natural image
 - fine features become jagged or sparkle
- moiré patterns



600ppi scan of a color halftone image

© 2004 Steve Marschner • 37





gaussian filter

downsampling a high resolution scan

Cornell CS465 Fall 2004 • Lecture 5

© 2004 Steve Marschner • 38

Types of artifacts

- garden variety
 - what we saw in this natural image
 - fine features become jagged or sparkle
- moiré patterns
 - caused by repetitive patterns in input
 - produce low-frequency artifacts; highly visible
- these artifacts are called *aliasing*
 - why is beyond our scope for now
 - find out in CS467 or a signal processing class