
Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 1	

2D Spline Curves	

CS 465 Lecture 15	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 2	

Motivation: smoothness	

•  In many applications we need smooth shapes	

–  that is, without discontinuities	

•  So far we can make	

–  things with corners (lines, squares, rectangles, …)	

–  circles and ellipses (only get you so far!)	

[B
oe

in
g]
	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 3	

Classical approach	

•  Pencil-and-paper draftsmen also needed smooth curves	

•  Origin of “spline:” strip of flexible metal	

–  held in place by pegs or weights to constrain shape	

–  traced to produce smooth contour	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 4	

Translating into usable math	

•  Smoothness	

–  in drafting spline, comes from physical curvature

minimization	

–  in CG spline, comes from choosing smooth functions	

•  usually low-order polynomials	

•  Control	

–  in drafting spline, comes from fixed pegs	

–  in CG spline, comes from user-specified control points	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 5	

Defining spline curves	

•  At the most general they are parametric curves	

•  Generally f(t) is a piecewise polynomial	

–  for this lecture, the discontinuities are at the integers	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 6	

Defining spline curves	

•  Generally f(t) is a piecewise polynomial	

–  for this lecture, the discontinuities are at the integers	

–  e.g., a cubic spline has the following form over [k, k + 1]:	

–  Coefficients are different for every interval	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 7	

Control of spline curves	

•  Specified by a sequence of control points	

•  Shape is guided by control points (aka control polygon)	

–  interpolating: passes through points	

–  approximating: merely guided by points	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 8	

Splines as reconstruction	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 9	

Trivial example: piecewise linear	

•  This spline is just a polygon	

–  control points are the vertices	

•  But we can derive it anyway as an illustration	

•  Each interval will be a linear function	

–  x(t) = at + b	

–  constraints are values at endpoints	

–  b = x0 ; a = x1 – x0	

–  this is linear interpolation	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 10	

Trivial example: piecewise linear	

•  Vector formulation	

•  Matrix formulation	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 11	

Trivial example: piecewise linear	

•  Basis function formulation	

–  regroup expression by p rather than t	

–  interpretation in matrix viewpoint	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 12	

Trivial example: piecewise linear	

•  Vector blending formulation: “average of points”	

–  weighting functions: contribution of each point as t changes	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 13	

Trivial example: piecewise linear	

•  Basis function formulation: “function times point”	

–  basis functions: contribution of each point as t changes	

–  this is just like a reconstruction filter!	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 14	

Hermite splines	

•  Less trivial example	

•  Form of curve: piecewise cubic	

•  Constraints: endpoints and tangents (derivatives)	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 15	

Hermite splines	

•  Solve constraints to find coefficients	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 16	

Hermite splines	

•  Matrix form is much simpler	

–  cofficients = rows	

–  basis functions = columns	

•  note p columns sum to [0 0 0 1]T	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 17	

Hermite splines	

•  Hermite blending functions	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 18	

Hermite splines	

•  Hermite basis functions	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 19	

Continuity	

•  Smoothness can be described by degree of continuity	

–  zero-order: position matches from both sides	

–  first-order: tangent matches from both sides	

–  second-order: curvature matches from both sides	

–  Gn vs. Cn	

zero order	

 first order	

 second order	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 20	

Control	

•  Local control	

–  changing control point only affects a limited part of spline	

–  without this, splines are very difficult to use	

–  many likely formulations lack this	

•  natural spline	

•  polynomial fits	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 21	

Control	

•  Convex hull property	

–  convex hull = smallest convex region containing points	

•  think of a rubber band around some pins	

–  some splines stay inside convex hull of control points	

•  make clipping, culling, picking, etc. simpler	

YES	

 YES	

 YES	

 NO	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 22	

Affine invariance	

•  Transforming the control points is the same as
transforming the curve	

–  true for all commonly used splines	

–  extremely convenient in practice…	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 23	

Matrix form of spline	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 24	

Hermite splines	

•  Constraints are endpoints���

 and endpoint tangents	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 25	

Hermite basis 	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 26	

Affine invariance	

•  Basis functions associated with points should always
sum to 1	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 27	

Hermite to Bézier	

•  Mixture of points and vectors is awkward	

•  Specify tangents as differences of points	

–  note derivative is defined as 3 times offset	

•  reason is illustrated by linear case	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 28	

Hermite to Bézier	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 29	

Bézier matrix	

–  note that these are the Bernstein polynomials	

	

 	

C(n,k) tk (1 – t)n – k���

	

and that defines Bézier curves for any degree	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 30	

Bézier basis	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 31	

Convex hull	

•  If basis functions are all positive, the spline has the
convex hull property	

–  we’re still requiring them to sum to 1	

–  if any basis function is ever negative, no convex hull prop.	

•  proof: take the other three points at the same place	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 32	

Chaining spline segments	

•  Hermite curves are convenient because they can be
made long easily	

•  Bézier curves are convenient because their controls
are all points and they have nice properties	

–  and they interpolate every 4th point, which is a little odd	

•  We derived Bézier from Hermite by defining tangents
from control points	

–  a similar construction leads to the interpolating Catmull-Rom

spline	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 33	

Chaining Bézier splines	

•  No continuity built in	

•  Achieve C1 using collinear control points	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 34	

Subdivision	

•  A Bézier spline segment can be split into a two-
segment curve:	

–  de Casteljau’s algorithm	

–  also works for arbitrary t	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 35	

Cubic Bézier splines	

•  Very widely used type, especially in 2D	

–  e.g. it is a primitive in PostScript/PDF	

•  Can represent C1 and/or G1 curves with corners	

•  Can easily add points at any position	

•  Illustrator demo 	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 36	

•  Have not yet seen any interpolating splines	

•  Would like to define tangents automatically	

–  use adjacent control points	

–  end tangents: extra points or zero	

Hermite to Catmull-Rom	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 37	

Hermite to Catmull-Rom	

•  Tangents are (pk + 1 – pk – 1) / 2	

–  scaling based on same argument about collinear case	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 38	

Catmull-Rom basis	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 39	

Catmull-Rom splines	

•  Our first example of an interpolating spline	

•  Like Bézier, equivalent to Hermite	

–  in fact, all splines of this form are equivalent	

•  First example of a spline based on just a control point
sequence	

•  Does not have convex hull property	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 40	

Evaluating splines for display	

•  Need to generate a list of line segments to draw	

–  generate efficiently	

–  use as few as possible	

–  guarantee approximation accuracy	

•  Approaches	

–  recursive subdivision (easy to do adaptively)	

–  uniform sampling (easy to do efficiently)	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 41	

Evaluating by subdivision	

–  Recursively split spline 	

•  stop when polygon is ���
within epsilon of curve	

–  Termination criteria	

•  distance between control points	

•  distance of control points from line	

p1	

p2	

p3	

p4	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 42	

Evaluating with uniform spacing	

•  Forward differencing	

–  efficiently generate points for uniformly spaced t values	

–  evaluate polynomials using repeated differences	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 43	

B-splines	

•  We may want more continuity than C1	

•  We may not need an interpolating spline	

•  B-splines are a clean, flexible way of making long

splines with arbitrary order of continuity	

•  Various ways to think of construction	

–  a simple one is convolution	

–  relationship to sampling and reconstruction	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 44	

Cubic B-spline basis	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 45	

Deriving the B-Spline	

•  Approached from a different tack than Hermite-style
constraints	

–  Want a cubic spline; therefore 4 active control points	

–  Want C2 continuity	

–  Turns out that is enough to determine everything	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 46	

Efficient construction of any B-spline 	

•  B-splines defined for all orders	

–  order d: degree d – 1	

–  order d: d points contribute to value	

•  One definition: Cox-deBoor recurrence	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 47	

B-spline construction, alternate view	

•  Recurrence	

–  ramp up/down	

•  Convolution	

–  smoothing of basis fn	

–  smoothing of curve	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 48	

Cubic B-spline matrix	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 49	

Other types of B-splines	

•  Nonuniform B-splines	

–  discontinuities not evenly spaced	

–  allows control over continuity or interpolation at certain

points	

–  e.g. interpolate endpoints (commonly used case)	

•  Nonuniform Rational B-splines (NURBS)	

–  ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)	

–  key properties:	

•  invariance under perspective as well as affine	

•  ability to represent conic sections exactly	

Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 50	

Converting spline representations	

•  All the splines we have seen so far are equivalent	

–  all represented by geometry matrices	

•  where S represents the type of spline	

–  therefore the control points may be transformed from one
type to another using matrix multiplication	

