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2D Spline Curves	



CS 465 Lecture 15	
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Motivation: smoothness	



•  In many applications we need smooth shapes	


–  that is, without discontinuities	



•  So far we can make	


–  things with corners (lines, squares, rectangles, …)	



–  circles and ellipses (only get you so far!)	
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Classical approach	



•  Pencil-and-paper draftsmen also needed smooth curves	



•  Origin of “spline:” strip of flexible metal	


–  held in place by pegs or weights to constrain shape	


–  traced to produce smooth contour	
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Translating into usable math	



•  Smoothness	


–  in drafting spline, comes from physical curvature 

minimization	



–  in CG spline, comes from choosing smooth functions	



•  usually low-order polynomials	



•  Control	


–  in drafting spline, comes from fixed pegs	



–  in CG spline, comes from user-specified control points	
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Defining spline curves	



•  At the most general they are parametric curves	



•  Generally f(t) is a piecewise polynomial	


–  for this lecture, the discontinuities are at the integers	
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Defining spline curves	



•  Generally f(t) is a piecewise polynomial	


–  for this lecture, the discontinuities are at the integers	


–  e.g., a cubic spline has the following form over [k, k + 1]:	



–  Coefficients are different for every interval	
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Control of spline curves	



•  Specified by a sequence of control points	



•  Shape is guided by control points (aka control polygon)	


–  interpolating: passes through points	


–  approximating: merely guided by points	
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Splines as reconstruction	
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Trivial example: piecewise linear	



•  This spline is just a polygon	


–  control points are the vertices	



•  But we can derive it anyway as an illustration	


•  Each interval will be a linear function	



–  x(t) = at + b	


–  constraints are values at endpoints	



–  b = x0 ; a = x1 – x0	


–  this is linear interpolation	
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Trivial example: piecewise linear	



•  Vector formulation	



•  Matrix formulation	
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Trivial example: piecewise linear	



•  Basis function formulation	


–  regroup expression by p rather than t	



–  interpretation in matrix viewpoint	
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Trivial example: piecewise linear	



•  Vector blending formulation: “average of points”	


–  weighting functions: contribution of each point as t changes	
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Trivial example: piecewise linear	



•  Basis function formulation: “function times point”	


–  basis functions: contribution of each point as t changes	



–  this is just like a reconstruction filter!	
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Hermite splines	



•  Less trivial example	



•  Form of curve: piecewise cubic	


•  Constraints: endpoints and tangents (derivatives)	
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Hermite splines	



•  Solve constraints to find coefficients	
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Hermite splines	



•  Matrix form is much simpler	



–  cofficients = rows	


–  basis functions = columns	



•  note p columns sum to [0 0 0 1]T	
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Hermite splines	



•  Hermite blending functions	
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Hermite splines	



•  Hermite basis functions	
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Continuity	



•  Smoothness can be described by degree of continuity	


–  zero-order: position matches from both sides	


–  first-order: tangent matches from both sides	



–  second-order: curvature matches from both sides	


–  Gn vs. Cn	



zero order	

 first order	

 second order	
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Control	



•  Local control	


–  changing control point only affects a limited part of spline	


–  without this, splines are very difficult to use	



–  many likely formulations lack this	


•  natural spline	



•  polynomial fits	
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Control	



•  Convex  hull property	


–  convex hull = smallest convex region containing points	



•  think of a rubber band around some pins	



–  some splines stay inside convex hull of control points	


•  make clipping, culling, picking, etc. simpler	



YES	

 YES	

 YES	

 NO	
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Affine invariance	



•  Transforming the control points is the same as 
transforming the curve	


–  true for all commonly used splines	



–  extremely convenient in practice…	
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Matrix form of spline	
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Hermite splines	



•  Constraints are endpoints���

 and endpoint tangents	





Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 25	



Hermite basis 	
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Affine invariance	



•  Basis functions associated with points should always 
sum to 1	
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Hermite to Bézier	



•  Mixture of points and vectors is awkward	



•  Specify tangents as differences of points	



–  note derivative is defined as 3 times offset	



•  reason is illustrated by linear case	
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Hermite to Bézier	
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Bézier matrix	



–  note that these are the Bernstein polynomials	



	

 	

C(n,k) tk (1 – t)n – k���

	

and that defines Bézier curves for any degree	
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Bézier basis	
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Convex hull	



•  If basis functions are all positive, the spline has the 
convex hull property	


–  we’re still requiring them to sum to 1	



–  if any basis function is ever negative, no convex hull prop.	



•  proof: take the other three points at the same place	
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Chaining spline segments	



•  Hermite curves are convenient because they can be 
made long easily	



•  Bézier curves are convenient because their controls 
are all points and they have nice properties	


–  and they interpolate every 4th point, which is a little odd	



•  We derived Bézier from Hermite by defining tangents 
from control points	


–  a similar construction leads to the interpolating Catmull-Rom 

spline	
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Chaining Bézier splines	



•  No continuity built in	



•  Achieve C1 using collinear control points	
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Subdivision	



•  A Bézier spline segment can be split into a two-
segment curve:	



–  de Casteljau’s algorithm	



–  also works for arbitrary t	
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Cubic Bézier splines	



•  Very widely used type, especially in 2D	


–  e.g. it is a primitive in PostScript/PDF	



•  Can represent C1 and/or G1 curves with corners	


•  Can easily add points at any position	



•  Illustrator demo 	
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•  Have not yet seen any interpolating splines	



•  Would like to define tangents automatically	


–  use adjacent control points	



–  end tangents: extra points or zero	



Hermite to Catmull-Rom	
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Hermite to Catmull-Rom	



•  Tangents are (pk + 1 – pk – 1) / 2	


–  scaling based on same argument about collinear case	
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Catmull-Rom basis	
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Catmull-Rom splines	



•  Our first example of an interpolating spline	



•  Like Bézier, equivalent to Hermite	


–  in fact, all splines of this form are equivalent	



•  First example of a spline based on just a control point 
sequence	



•  Does not have convex hull property	
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Evaluating splines for display	



•  Need to generate a list of line segments to draw	


–  generate efficiently	


–  use as few as possible	



–  guarantee approximation accuracy	



•  Approaches	


–  recursive subdivision (easy to do adaptively)	


–  uniform sampling (easy to do efficiently)	
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Evaluating by subdivision	



–  Recursively split spline 	



•  stop when polygon is ���
within epsilon of curve	



–  Termination criteria	



•  distance between control points	


•  distance of control points from line	



p1	



p2	



p3	



p4	
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Evaluating with uniform spacing	



•  Forward differencing	


–  efficiently generate points for uniformly spaced t values	


–  evaluate polynomials using repeated differences	
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B-splines	



•  We may want more continuity than C1	



•  We may not need an interpolating spline	


•  B-splines are a clean, flexible way of making long 

splines with arbitrary order of continuity	



•  Various ways to think of construction	


–  a simple one is convolution	



–  relationship to sampling and reconstruction	





Cornell CS465 Fall 2004 • Lecture 15	

 © 2004 Steve Marschner • 44	



Cubic B-spline basis	
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Deriving the B-Spline	



•  Approached from a different tack than Hermite-style 
constraints	


–  Want a cubic spline; therefore 4 active control points	



–  Want C2 continuity	


–  Turns out that is enough to determine everything	
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Efficient construction of any B-spline 	



•  B-splines defined for all orders	


–  order d: degree d – 1	


–  order d: d points contribute to value	



•  One definition: Cox-deBoor recurrence	
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B-spline construction, alternate view	



•  Recurrence	


–  ramp up/down	



•  Convolution	


–  smoothing of basis fn	



–  smoothing of curve	
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Cubic B-spline matrix	
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Other types of B-splines	



•  Nonuniform B-splines	


–  discontinuities not evenly spaced	


–  allows control over continuity or interpolation at certain 

points	



–  e.g. interpolate endpoints (commonly used case)	



•  Nonuniform Rational B-splines (NURBS)	


–  ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)	



–  key properties:	



•  invariance under perspective as well as affine	


•  ability to represent conic sections exactly	
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Converting spline representations	



•  All the splines we have seen so far are equivalent	


–  all represented by geometry matrices	



•  where S represents the type of spline	



–  therefore the control points may be transformed from one 
type to another using matrix multiplication	




