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Introduction to Computer Graphics

Lecture 23

Bezier Curves
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Splines - History

Draftsman use ‘ducks’ and
strips of wood (splines) to
draw curves

Wood splines have second- 5 . (weight)
order continuity

And pass through the
control points
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Representations of Curves

Problems with series of points used to model a curve
» Piecewise linear - Does not accurately model a smooth line
 It's tedious

- Expensive to manipulate curve because all points must be repositioned
Instead, model curve as piecewise-polynomial

© x=x(t), y =y(t), z=z(1)
— where x(), y(), z() are polynomials
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Specifying Curves ypering

Control Points

« A set of points that influence the
curve’'s shape Approximating |

Knots
« Control points that lie on the curve
Interpolating Splines

« Curves that pass through the control
points (knots)

Approximating Splines
« Control points merely influence shape
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Parametric Curves

Very flexible representation

They are not required to be functions

* They can be multivalued with respect to any dimension

Never a
Function

AN
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Cubic Polynomials

x(t)=at+bt:+ct+d
» Similarly for y(t) and z(t)
Lett: (0<=t<=1)
LetT=[ttt1]
Coefficient Matrix C

Curve: Q(t) = T*C
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Parametric Curves

i

How do we find the tangent to a curve?
« Iff(x) =x?-4
—tangent at (x=3) isf(x) =2 (x)—4=2(3) -4

Derivative of Q(t) is the tangent vector at t:
- d/dtQ(t)=Q(t) =d/dt T*C=[3t22t10]*C
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Piecewise Curve Segments

One curve constructed by connecting many smaller segments end-
to-end

Continuity describes the joint
- C, is tangent continuity (velocity)

« C, is 2" derivative continuity (acceleration)
C, continuity i Co & C; continuity Co & C; & C,continuity




Continuity of Curves

If direction (but not necessarily magnitude) of tangent
matches

- G' geometric continuity

- The tangent value at the end of one curve is proportional to the
tangent value of the beginning of the next curve

Matching direction and magnitude of d" / dt"

— C" continous
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In order to assure C, continuity, curves must be of
at least degree 3

Parametric Cubic Curves

Here is the parametric definition of a cubic
(degree 3) spline in two dimensions

How do we extend it to three dimensions?

x=at’+bt’+c t+d,

y = ayt3 + byl‘2 +e, f+d,
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Parametric Cubic Splines

Can represent this as a matrix too

x=a,t’ +bt’ +c t+d,

Y = ayt3 + byt2 +ed+d,




Coefficients

So how do we select the coefficients?

* [a, b, c,d,] and [a, b, c, d,] must satisfy the constraints
defined by the knots and the continuity conditions

UNIVERSITY
JVIRGINIA




Parametric Curves

Difficult to conceptualize curve as
x(t) =at3+bt:+c t+d,

(artists don’t think in terms of coefficients of cubics)

Instead, define curve as weighted combination of 4 well-defined
cubic polynomials
(wait a second! Artists don’t think this way either!)

Each curve type defines different cubic polynomials and weighting
schemes
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Parametric Curves

Hermite — two endpoints and two endpoint tangent
vectors

Bezier - two endpoints and two other points that define
the endpoint tangent vectors

Splines — four control points
* C1 and C2 continuity at the join points

» Come close to their control points, but not guaranteed to touch them

Examples of Splines
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An example of knot and continuity constraints

Hermite Cubic Splines

Hermite Specification
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A curve constrained to x/y-plane has two curves:

Hermite Cubic Splines

One cubic curve for each dimension

f(t) =at’ +bt’ +ct+d f,@) =et’+ ft> +gt+h
a

b
c
d
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Hermite Cubic Splines
A 2-D Hermite Cubic Spline is defined by eight
parameters: a, b, c,d, e, f, g, h

How do we convert the intuitive endpoint constraints into
these (relatively) unintuitive eight parameters?

We know:
* (X, y) positionatt=0, p,

X, y) position att =1, p, D>

° (
* (X, y) derivative att = 0, dp/dt
- (X, y) derivative att = 1, dp/dt Hermite Specification
UNIVERSITY
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Hermite Cubic Spline

We know:
* (X, y) position att =0, p,

£.(0) =a0’+b0*>+c0+d |/, (0) =e0’ + f0° +g0+h

a e

[ o 0 1] “lo* 0* o 1

f.(0)=d =p, f,(0)=h=p,




Hermite Cubic Spline

We know:
* (X, y) position att=1, p,

f(Q) =al’>+bl>+cl+d
a

b
e 21
C
d

fx(l)=a+b+c+d=p2x

f,) =el’+ f17+gl+h

f)=e+f+g+h=p, |




i

So far we have four equations, but we have eight
unknowns

Hermite Cubic Splines

Use the derivatives
f.(t)=at’> +bt’ +ct+d fL(@)=et’+ ft* +gt+h
fl(t) =3at® +2bt + ¢ fl(t)=3et> +2ft+g

fx'(f)=|:3l‘2 2t 10 fy'(t)=|;7>t2 2t 1 0
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f1(0) =3e0°+2/0 +g

Hermite Cubic Spline

We know:
* (X, y) derivative at t = 0, dp/dt
f1(0) =3a0’+2b0 +c

o> 2.0 1 0

e

o> 20 10 /
g

h

dl
f0=-g="/

f=c=Py
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Hermite Cubic Spline

We know:
* (X, y) derivative att = 1, dp/dt

1) =3al’>+2bl +c fy'(l) =3el’+2f1 +g

b 21 1 0 b1z 21 1 0

, dp , dp
S (D) =3a+2b+c= 14 J,(D)=3e+2f +g= 1%
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Hermite Specification

Matrix equation for Hermite Curve
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Solve Hermite Matrix
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Spline and Geometry Matrices

M :
Hermite GHermite UNIVERSITY
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Resulting Hermite Spline Equation
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Demonstration

Hermite
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Blending Functions

By multiplying first two matrices in lower-left
equation, you have four functions of ‘t’ that

blend the four control parameters

These are blending
functions

2 -2 1 1 } X W

-3 3 =2 -1(x,

[x »]=[7 ¢ ¢ 1]

- - - ~ dx, dy,
0 0 1 0% &

dx, dy,
dt dt

1 0 0 0
'\________“ BT
M Hermite G Hermite




Hermite Blending Functions

If you plot the
blending
functions on

the parameter
ttl

Hermite Blending
Functions




Hermite Blending Functions

Remember, each

blending function
reflects influence
of P,, P,, AP,, AP,
on spline’s shape

Hermite Blending
Functions




Bézier Curves

Similar to Hermite, but more intuitive definition of
endpoint derivatives

Four control points, two of which are knots

D,

"support"
(=0 "chord" H,
t=1
I
r -
Bezier
b

Specification
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Bézier Curves

i

The derivative values of the Bezier Curve at the
knots are dependent on the adjacent points

The scalar 3 was selected just for this curve
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Bézier vs. Hermite

We can write our Bezier in terms of Hermite

* Note this is just matrix form of previous equations

I 0 0O O
O 0 O

Hermite




Bézier vs. Hermite

Now substitute this in for previous Hermite

I=33
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Bézier Basis and Geometry Matrices

Matrix Form

But why is Mg

a good basis matrix?

ezier UNIVERSITY
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Bézier Blending Functions

Look at the blending
functions

This family of
polynomials is called
order-3 Bernstein
Polynomials
« C(3, k) tk (1-t)3k: 0<=k <=3
* They are all positive in interval [0,1]

* Their sum is equal to 1
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Bézier Blending Functions

Thus, every point on curve is
linear combination of the Bezier Blending
control points | Functions

The weights of the
combination are all positive

The sum of the weights is 1 )
Therefore, the curve is a ~
convex combination of the 9

control points UNIVERSITY
TVIRGINIA




Bézier Curves

Will always remain within bounding region
defined by control points

Figure 10-34

Examples of two-dimensional Bézier curves generated from three, four, [ ] IVERSITY
and five control points. Dashed lines connect the control-point 9 TIRGINIA




Bézier Curves

i

[=1-Y4[-14
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Why more spline slides?

Bezier and Hermite splines have global influence

* Piecewise Bezier or Hermite don’t enforce derivative continuity at join
points

* Moving one control point affects the entire curve

B-splines consist of curve segments whose polynomial
coefficients depend on just a few control points

* Local control

Examples of Splines
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B-Spline Curve

Start with a sequence of control points

Select four from middle of sequence (p,.,, p.., Py P;i.;) d
- Bezier and Hermite goes between p., and p;,

« B-Spline doesn’t interpolate (touch) any of them but
approximates the going through p,_; and p,

Pie Q .Pz ® Ps
Q;
: o
| Ps 4
o o
& #; Ps UNIVERSITY
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Uniform B-Splines

Approximating Splines
Approximates n+1 control points
* Py, Py ..., PN, 3
Curve consists of n —2 cubic polynomial segments
* Qg Q4 ... Q,
t varies along B-spline as Q;: t;<=t< t,,,
t; (i = integer) are knot points that join segment Q; , to Q;

Curve is uniform because knots are spaced at equal intervals of

parameter, t
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Uniform B-Splines

i

First curve segment, Q,, is defined by first four
control points

Last curve segment, Q,_, is defined by last four
control points, P, ;, P,. ,, P, 4, P

m m m

Each control point affects four curve segments
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Formulate 16 equations to solve the 16 unknowns

B-spline Basis Matrix

The 16 equations enforce the C,, C,, and C,
continuity between adjoining segments, Q

MB

1
—spline = g
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B-Spline Basis Matrix

Note the order of the rows in my Mg g, ;.. IS
different from in the book

* QObserve also that the order in which | number the points is
different

» Therefore my matrix aligns with the book’s matrix if you
reorder the points, and thus reorder the rows of the matrix
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Points along B-Spline are computed just as with
Bezier Curves

B-Spline

Qz’ (t ) = UMB—SplineP




B-Spline

By far the most popular spline used

C, C,, and C, continuous

| NIVERSITY
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B-Spline

Locality of points

Figure 10-41

Local modification of a B-spline curve. Changing one of the control points in
curve (b), which is modified only in the neighborhood of the altered control point.

(a) produces
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Nonuniform, Rational B-Splines
(NURBS)

The native geometry element in Maya

i

Models are composed of surfaces defined by
NURBS, not polygons

NURBS are smooth

NURBS require effort to make non-smooth
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NURBSs

To generate three-dimension points

* Four B-Splines are used
— Three define the x, y, and z position
— One defines a weighting term

* The 3-D point output by a NURB is the x, y, z coordinates
divided by the weighting term (like homogeneous
coordinates)
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What is a NURB?

Nonuniform: The amount of parameter, t, that is
used to model each curve segment varies

+ Nonuniformity permits either C2, C', or C° continuity at
join points between curve segments

* Nonuniformity permits control points to be added to
middle of curve
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What do we get?

NURBs are invariant under rotation, scaling,
translation, and perspective transformations of
the control points (nonrational curves are not
preserved under perspective projection)

« This means you can transform the control points and redraw the
curve using the transformed points

- |If this weren't true you'd have to sample curve to many points
and transform each point individually

« B-spline is preserved under affine transformations, but that is all
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Converting Between Splines

Consider two spline basis formulations for two
spline types

P=Tx A X (

spline, spline,

P=TxM

spline,

X (

spline,

' x M

spline,

x (

spline,

=7 x A

spline,

X (

spline,
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Converting Between Splines

We can transform the control points from one
spline basis to another

P=Tx A x (&

splineg; spline,

M

: X :
spline, spline

=M

: X :
spline, spline,

P=TxM_. . xG,,

spline, spline,

=AM x A

spline spline spline,

G X (

spline,

.1=TXIM

spline,

x (&

spline,
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Converting Between Splines

i

With this conversion, we can convert a B-Spline
into a Bezier Spline

Bezier Splines are easy to render
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Rendering Splines

Horner’s Method
Incremental (Forward Difference) Method
Subdivision Methods

UNIVERSITY
JVIRGINIA




Horner’s Method

i

3 2
x(u)=au +bu" +cu+d,

x(u)=[(au+b ) u+c_lu+d.

Three multiplications

Three additions
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Forward Difference

Xp =X + A%y

3 2
X, =au +bu+cu+d

X, =a,.(u, +(‘5)3 +b_(u, +(‘5)2 +c (u, +0)+d,

X, —X, =Ax, =3a.0u,” +Ba.6”+2b0)u, +(a.0’ +bd> +c.0)

But this still is expensive to compute
» Solve for change at k (A,) and change at k+1 (A, 1)
- Boot strap with initial values for x,, A,, and A,
- Compute x5 by adding x; + Ay + A,
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Subdivision Methods

P13 = P2o
p.. P12. ‘P21 .
& & Y22
P1o P23

Before After
Subdivision Subdivision

Figure 10-52
Subdividing a cubic Bézier curve section into two
sections, each with four control points. BT,

:.-l.'
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Rendering Bezier Spline

public void spline(ControlPoint p0, ControlPoint pl,

ControlPoint p2, ControlPoint p3, int pix) {

float len = ControlPoint.dist(p0,p1) + ControlPoint.dist(p1,p2) py Pu=Pa p,

+ ControlPoint.dist(p2,p3); p1mpzz
float chord = ControlPoint.dist(p0,p3); Py Ps
if (Math.abs(len - chord) < 0.25f) return; Before Atter
fatPixel(pix, p0.x, p0.y); Subdivision Subdivision
ControlPoint p11 = ControlPoint.midpoint(p0, p1); e R
ControlPoint tmp = ControlPoint.midpoint(p1, p2); Figure 10-5
ControlPoint p12 = ControlPoint. midpoint(p11, tmp); Subdividing a cubic Bézier curve section into two
ControlPoint p22 = ControlPoint.midpoint(p2, p3); sectonseach with four control poins.

ControlPoint p21 = ControlPoint.midpoint(p22, tmp);
ControlPoint p20 = ControlPoint.midpoint(p12, p21);
spline(p20, p12, p11, p0, pix);
spline(p3, p22, p21, p20, pix);
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