OpenGL Buffers and Tests

Glenn G. Chappell

CHAPPELLG@member . ams.org
U. of Alaska Fairbanks

CS 481/681 Lecture Notes
Friday, February 8, 2002

Review:
The Math of Lighting

m The Phong model computes lighting separately for the ambient,
diffuse, and specular components, then combines the three
together.

m If the light-source color is (Lg,Lg,Lg), and the material color is
(Mg,Ms,Mg), then the basic calculation is the following:

| R = LR 1 MR'
| G = LG - MG.
| B = LB 1 MB'

m For ambient, this is exactly what is done.
For diffuse, the RGB values are multiplied by the Lambert cosine.

For specular, the RGB values are multiplied by the cosine of the angle
between the reflected ray and the viewing angle, raised to the power of
the shininess (this, I believe, is Phong’ s primary contribution).

m To combine all the types of light, the various colors are added, and then
the RGB values are clipped to [0,1].

8 Feb 2002 CS 481/681

OpenGL Buffers & Tests:
Buffers

= An OpenGL buffer is an array that holds one
piece of data for each pixel in the viewport.

m OpenGL has 4 types of buffers:
m Color buffers
s Depth buffer
s Stencil buffer
s Accumulation buffer

m Each buffer has an intended function; however,
you may use the buffers in any way you wish.

m We will be discussing buffers for a few class
meetings. The material will come primarily from
chapter 10 of the red book (starts on p. 429).

8 Feb 2002 CS 481/681

OpenGL Buffers & Tests:
Masking [1/2]

m Most buffers have masks associated with them.

m The mask determines whether a buffer (or part of a
buffer) is ever written.

m For example, the color-buffer mask is controlled

by the glColorMask command.

s This command takes 4 parameters, all GLboolean’s,
representing R, G, B, and A, respectively.

s For example,
glColorMask (false, true, true, true);
means that the R portion of the color buffer will not be
changed.

m Note: The mask affects al/l commands that would
change the buffer, even glClear.

8 Feb 2002 CS 481/681 4

OpenGL Buffers & Tests:
Masking [2/2]

m In masking.cpp, I define five bool variables: redmask, greenmask,
bluemask, depthmask, clearall.

m Each defaults to true and is toggled by pressing the first letter in its
name.

m The interesting part of the code is at the start of function display:

if (clearall)
{

glColorMask (true, true, true, true);

glDepthMask (true) ;

glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
}
glColorMask (redmask, greenmask, bluemask, true);
glDepthMask (depthmask) ;
if ('clearall)

glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;

8 Feb 2002 CS 481/681

OpenGL Buffers & Tests:
Tests [1/2]

m Associated with buffers are the OpenGL tests:
m Scissor test

s Alpha test
s Depth test
m Stencil test

m A test is an expression with a boolean value that

OpenGL evaluates for every pixel to be drawn.

m If the result is true, then the test passes, and the pixel
is drawn.

s Otherwise, the test fails, and the pixel is not drawn.

8 Feb 2002 CS 481/681 6

OpenGL Buffers & Tests:
Tests [2/2]

m EXxcept for the scissor test, each test is
associated with a particular buffer:
m Alpha test < Color buffer (Alpha portion)
m Depth test < Depth buffer
m Stencil test < Stencil buffer

m Typically, when a test is performed, some
value associated with the pixel to be
drawn is compared to the data for that
pixel in the buffer.

8 Feb 2002 CS 481/681 7

OpenGL Buffers & Tests:
The Scissor Test

m The scissor test is by far the simplest of the
tests.

m It allows you to restrict drawing to a rectangular
portion of the viewport.

= To enable: glEnable (GL_SCISSOR TEST) ;
m Then: glScissor(x, y, width, height) ;

s Parameters are as in the glviewport command.
m (X,y) is the lower-left corner of the rectangle.

m The scissor test passes if the pixel is within the
rectangle; otherwise, it fails.

m The scissor test is really just a quick, simple
version of stenciling.

8 Feb 2002 CS 481/681

Review:
OpenGL Buffers & Tests

m OpenGL has 4 kinds of buffers.
m Each buffer holds a piece of data about every pixel in the viewport.
m The kind of data depends on the kind of buffer and how it is used.
m OpenGL has 4 tests.

m A test gives a true/false result for each pixel; if true, the test passes,
and the pixel is drawn.

m Buffers and tests are associated:

Buffer
-- Scissor Test

Corresponding Test

8 Feb 2002

Color Buffers Alpha Test
Depth Buffer Depth Test
Stencil Buffer Stencil Test

Accumulation Buffer

CS 481/681

Review:
Buffer Masks

m Most buffers have masks associated with
them.

m For example, the color-buffer mask is
controlled by the glColorMask command.

s The statement
glColorMask (false, true, true, true);
means that the R portion of the color buffer
will not be changed.

m Note: The mask affects al/l commands that
would change the buffer, even glClear.

8 Feb 2002 CS 481/681 10

Review:
The Scissor Test

m The scissor test allows you to restrict
drawing to a rectanqgular portion of the
viewport.

m To use: enable the scissor test, and specify a
rectangle with glscissor.

m The scissor test passes if the pixel is within
the rectangle; otherwise, it fails.

m The scissor test is really just a quick, simple
version of stenciling.

8 Feb 2002 CS 481/681 11

The Accumulation Buffer:
Overview

m The most interesting of the buffers (IMHO) is the
accumulation buffer.
s The accumulation buffer allows you to blend together

different 2-D scenes.
e These can be renderings of 3-D scenes.
m The accumulation buffer holds RGBA color data, just
like the color buffers.

m There are special commands that allow you to blend a

color buffer with the accumulation buffer (possibly
several times) and then transfer the contents of the
accumulation buffer to a color buffer.

= Allocate the accumulation buffer using GLUT ACCUM in
your glutInitDisplayMode call.

8 Feb 2002 CS 481/681 12

The Accumulation Buffer:
Operations

m Five operations can be performed on the accumulation buffer (AB):
m The AB can be cleared.
m The contents of a color buffer can be multiplied by a value and then copied to the AB.
m The contents of a color buffer can be multiplied by a value and then added to the AB.
m An arithmetic operation (x or +) can be performed on every pixel in the AB.
m The contents of the AB can be multiplied by a value and copied to a color buffer.

m The first operation above, clearing, is accomplished using the glClear command:

glClearAccum(R, G, B, A); // like glClearColor (optional)
glClear (GL_ACCUM BUFFER BIT); // Clear AB

m The other four operations involve the glAccum command.

8 Feb 2002 CS 481/681

13

The Accumulation Buffer:
glAccum [1/2]

m glAccum takes two parameters:
m A GLenum telling which operation to perform.
m A GLfloat giving a relevant constant value.

m To multiply the contents of a color buffer by a value and copy the result
to the AB:

glAccum (GL_LOAD, value) ;
m This uses the color buffer selected for reading. Use glReadBuffer to change

this. (Generally, you do not need to worry about it.)

m To multiply the contents of a color buffer by a value and add the result to
the AB:

glAccum (GL_ACCUM, value) ;

8 Feb 2002 CS 481/681 14

The Accumulation Buffer:
glAccum [2/2]

m To multiply the contents of the AB by a value:

glAccum (GL MULT, value) ;

m There is also GL._ADD, to add instead of multiplying, but I have
never seen a use for it.

m To multiply the contents of the AB by a value and copy the
result to a color buffer:

glAccum (GL RETURN, value) ;

m This uses the color buffer selected for drawing. Use
glDrawBuffer to change this. (Generally, you do not need to
worry about it.)

8 Feb 2002 CS 481/681 15

The Accumulation Buffer:
Typical Code

void display() // The display function
{
glClear (GL_ACCUM BUFFER BIT) ;
for (int i = 0; i < numscenes; ++i)
{
glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;
Draw scene number i here
glAccum (GL_ACCUM, scenefraction[i]);
}
glAccum (GL_RETURN, 1.0);
glutSwapBuffers () ;

m The values scenefraction[i] should be in [0,1] and should probably add up to 1.

m Replacing “scenefraction[i]” with “1.0/numscenes” would give equal weight to all scenes
being blended.

m Note how the clearing works: AB outside the loop, color & depth inside.

8 Feb 2002 CS 481/681 16

The Accumulation Buffer:
Applications

m The AB can be used for:
= Motion blur.
m Fading between scenes.
m Anti-aliasing.
m Depth-of-field effects.
m Soft shadows (if you know how to do shadows).
m The last three applications above are usually done with “jittering”.
m Jittering means making repeated small perturbations to a scene.
m Then we blend the jittered scenes together to form the finished product.

m To do anti-aliasing and depth-of-field effects, we jitter the projection matrix; to
do soft shadows, we do shadows (somehow ...) and jitter the light source.

m What are some problems with using the AB?

m AB operations are generally slow; they may be unsuitable for real-time
graphics.

= OpenGL implementations are not required to support accumulation buffers, so
it might reduce the portability of code. (In practice, this does not seem to be a
problem.)

8 Feb 2002 CS 481/681 17

Stenciling:
Overview

m The stencil buffer and its associated test, the stencil test, can be
used for a variety of yes/no, pass/fail-type effects.

The stencil buffer holds a single integer for each pixel in the viewport.

You can place values in the stencil buffer and then test them to
determine whether to draw pixels.

Allocate the stencil buffer using GLUT STENCIL in your
glutInitDisplayMode call.

Clear the stencil buffer using
glClear (GL_STENCIL BUFFER BIT) ;
after setting the clearing value with glclearStencil.

Enable the stencil test using
glEnable (GL_STENCIL TEST) ;

8 Feb 2002 CS 481/681 18

Stenciling:
Functions

m The two major functions used in stenciling are
glStencilFunc and glStencilOp.
m glStencilFunc determines what the stencil test does.

m glStencilOp determines what happens to the stencil
buffer if the stencil test passes or fails.

e If the stencil test passes, then you can also have different
outcomes based on the depth test.

8 Feb 2002 CS 481/681 19

Stenciling:
glStencilFunc

B glStencilFunc takes three parameters:

s A GLenum telling what comparison the stencil test will
do.
m A GLint used as a “reference value” in the stencil test.

s A GLuint used as a mask (an “and” mask).

m Examples,

m Stencil test passes if bit in SB is on:
glStencilFunc (GL _EQUAL, 0Oxl, O0Ox1);

m Stencil test passes if bit in SB is off:
glStencilFunc (GL NOTEQUAL, Ox1l, Ox1l);

m Test passes if 20 < low 8 bits in SB:
glStencilFunc (GL_LESS, 20, Oxff);

8 Feb 2002 CS 481/681 20

Stenciling:
glStencilOp

m glStencilOp takes three parameters, all GLenum’s:
m The operation to perform if the stencil test fails.
m The operation to perform if the stencil test passes and the
depth test fails.
m The operation to perform if the stencil test passes and the
depth test passes.
m Examples,

s Do not modify the SB:
glStencilOp (GL_KEEP, GL KEEP, GL KEEP);

m Replace SB value with zero, the reference value (from
glStencilFunc), or its bitwise inversion, respectively:
glStencilFunc (GL_ZERO, GL REPLACE, GL INVERT) ;

m Increment or decrement the SB value, as appropriate:
glStencilFunc (GL_DECR, GL INCR, GL INCR);

8 Feb 2002 CS 481/681 21

Review:
Accumulation Buffer [1/2]

The accumulation buffer (AB) holds RGBA color data.
It allows you to blend 2-D scenes.

Five operations can be performed on the AB:
m Clear AB.
m Color buf. x value — copy to AB.
m Color buf. x value — add to AB.
m Arithmetic operation (x or +) on AB.
= AB x value — copy to color buf.
m Typically:
m Clear AB.

m Repeat:

e (Clear color buf. And draw a scene in it.
e Color buf. x value — add to AB.

m Copy AB to color buf.
m Above, the values we multiply the color info by are numbers, in [0,1],

whose sum is 1. Multiplying by a larger value gives that particular scene
a greater weight in the final displayed image.

8 Feb 2002 CS 481/681 22

Review:
Accumulation Buffer [2/2]

m Here is an implementation of “fade between scenes”:

void display() // The display function
{
glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;
Draw scene 1 here
glAccum (GL _LOAD, 1.0-fadefraction);
glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;
Draw scene 2 here
glAccum (GL_ACCUM, fadefraction);
glAccum (GL _RETURN, 1.0);
glutSwapBuffers () ;

m The variable fadefraction should be in [0,1]. It should slowly increase from 0 to 1,
changing values each time the display function is called.

m The accumulation buffer is never cleared; how can I get away with this?

8 Feb 2002 CS 481/681 23

Review:
Stenciling [1/2]

m Stenciling involves the stencil buffer and the stencil test.
m Remember: allocate the buffer, enable the test.
m Clear the buffer the same way you clear any buffer.
m The two major functions used in stenciling are
glStencilFunc and glStencilOp.
m glStencilFunc determines what the stencil test does.

m glStencilOp determines what happens to the stencil buffer if
the stencil test passes or fails.

e If the stencil test passes, then you can also have different
outcomes based on the depth test.

8 Feb 2002 CS 481/681 24

Review:
Stenciling [2/2]

m glStencilFunc takes three parameters:
m GLenum: Which comparison the stencil test will do.
m GLint: “Reference value” in the stencil test.
m GLuint: Used as a mask (an “and” mask).
m glStencilOp takes three parameters:
m GLenum: Operation to do if stencil test fails.
m GLenum: Operation if stencil passes and depth fails.
m GLenum: Operation if stencil passes and depth passes.

8 Feb 2002 CS 481/681 25

Stenciling Examples:
Ordinary Stenciling

m To draw a shape in the stencil buffer:
s Redo when viewport changes size! Code goes in the reshape function.

glClearStencil (0) ;

glClear (GL_STENCIL BUFFER BIT) ;

glStencilFunc (GL_NEVER, 1, 1);

glStencilOp (GL _REPLACE, GL REPLACE, GL REPLACE); // only lst param matters
Draw a shape here.

ngtencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

m To use the above shape:
glStencilFunc (GL_EQUAL, 1, 1);
Draw something; it will appear only inside the above shape.

glStencilFunc (GL_NOTEQUAL, 1, 1);
Draw something, it will appear only outside the above shape.

8 Feb 2002 CS 481/681

26

Stenciling Examples:
Odd Things to Do

m Draw each pixel at most 5 times:

glClearStencil (0) ;

glClear (GL_STENCIL BUFFER BIT) ;
glStencilFunc (GL_GREATER, 5, Oxff);
glStencilOp (GL KEEP, GL INCR, GL_ INCR);

m Draw each pixel successfully only on every other attempt:

glClearStencil (0) ;

glClear (GL_STENCIL BUFFER BIT);
glStencilFunc (GL _EQUAL, 0, 1);

glStencilOp (GL_INVERT, GL INVERT, GL_INVERT) ;

8 Feb 2002 CS 481/681

Stenciling Examples:
Capping

m Here is an implementation of “capping” (see Red p. 446).

m You are drawing a number of closed objects. You wish to make sure
that the inside of these is never visible, even if the near clipping
plane slices one of them.

glClearStencil (0) ;
glClear (GL_STENCIL BUFFER BIT |
GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;
glStencilFunc (GL_ALWAYS, 1, 1);
glStencilOp (GL_INVERT, GL INVERT, GL INVERT) ;
Draw scene.
glStencilFunc (GL _EQUAL, 1, 1);
Draw rectangle covering entire viewport, in “capping” color.

8 Feb 2002 CS 481/681 28

Using Alpha:
Overview

The 4th component of RGBA color is “alpha”.

Alpha is specified with the glColor* and glClearColor
commands, as well as various lighting and material-
definition commands.

m Alpha is stored in the color buffer, along with R, G, and B.

m Alpha is always there in OpenGL’s RGB mode; so far we
have not used it.

m There are two major uses of alpha:

s Blending

e Alpha can determine how a color to be draw is blended with the
color already present at that pixel.

e The most common application of blending is transparent objects.
m The Alpha Test

e Alpha can be tested, in ways similar to the stencil buffer

8 Feb 2002 CS 481/681 29

Using Alpha:
Blending

m Blending is covered in chapter 6 of the Red Book.

= You may also wish to read about anti-aliasing and depth-
cueing (“fog”) in that chapter.

m To do blending, enable it, and specify a blend function.

m Blending is enabled with
glEnable (GL_BLEND) ;

m It is not necessary to allocate anything; alpha is stored in the
color buffer.

m The blending function is specified with glBlendFunc.

8 Feb 2002 CS 481/681 30

Using Alpha:
glBlendFunc [1/2]

m Blending involve mixing colors based on their respective
alpha values.
m A blending function blends two colors:
m The source color: the color to be drawn.

m The destination color: the color already present in the color
buffer.

m Blending functions are specified using glBlendFunc, wWhich
takes two parameters:
m GLenum: blending factor for the source color.
m GLenum: blending factor for the destination color.

8 Feb 2002 CS 481/681 31

Using Alpha:
glBlendFunc [2/2]

m Some possible blending factors are:

GL_ZERO: Multiply this color by zero (0,0,0,0).
GL_ONE: Multiply this color by one (1,1,1,1).
GL_SRC_ALPHA: Multiply this color by the source alpha.

GL_ONE_MINUS_ SRC ALPHA: Multiply this color by one minus the
source alpha.

GL_DST ALPHA: Multiply this color by the destination alpha.

GL_SRC_COLOR (for dest. blend factor only): Multiply this color by the
source color, component by component.

m For a complete list of possible blend factors, see p. 223 of the
Red Book.

8 Feb 2002 CS 481/681 32

Using Alpha:
Applications of Blending

m What are some effects one can do with a blend function?
m Painter’s Algorithm
e Src blend factor: 1, dest blend factor: 0 (same as no blending).
m Transparency

e Src bf: source alpha, dest bf: 1-source alpha.
e Src alpha = 1: opaque, 0: invisible, between: translucent.

s Weird Lighting Method
e Src bf: 0, dest bf: source color.

e Buffer holds unlit scene, source color is color of light at that point in the
scene. (Alpha is ignored.)

m What difficulties are involved in using a blend function?

m Drawing order matters. For example, when doing transparency via
blending, polygons should be drawn back-to-front (use an object
space HSR method).

m Sadly, blending often gives rather bad-looking results.

8 Feb 2002 CS 481/681

33

Using Alpha:
The Alpha Test [1/2]

m We’'re back in chapter 10 now.

m The alpha test, like the other OpenGL
tests, allows you to accept or reject
individual pixels.

m As in the stencil test, a reference value is
specified. The alpha value of the pixel to be
drawn is compared to it.

m To use the alpha test, enable it:
glEnable (GL ALPHA TEST) ;

m Specify an alpha test with glAlphaFunc.

8 Feb 2002 CS 481/681 34

Using Alpha:
The Alpha Test [2/2]

m glAlphaFunc takes two parameters:
m GLenum: What test to perform.
m GLclampf: Reference value
e Type is GLfloat, required to be in [0,1], that is, “clamped”.
m The possible tests all compare the alpha value of the pixel to be drawn
with the reference value.
m GL_LESS: Passes if alpha to be drawn is less than the ref value.
m GL_EQUAL: Passes if the two are equal.
m GL_ALWAYS: Always passes.
m FEtc...

m Warning: The alpha test is done backwards from the stencil test.
m Stencil test: REF comparison VALUE_IN_BUFFER.
m Alpha test: VALUE_FOR_NEW_PIXEL comparison REF.

8 Feb 2002 CS 481/681

