
OpenGL Buffers and Tests
Glenn G. Chappell
CHAPPELLG@member.ams.org
U. of Alaska Fairbanks

CS 481/681 Lecture Notes
Friday, February 8, 2002

8 Feb 2002 CS 481/681 2

Review:
The Math of Lighting
n  The Phong model computes lighting separately for the ambient,

diffuse, and specular components, then combines the three
together.

n  If the light-source color is (LR,LG,LB), and the material color is
(MR,MG,MB), then the basic calculation is the following:
n  R = LR · MR.
n  G = LG · MG.
n  B = LB · MB.

n  For ambient, this is exactly what is done.
n  For diffuse, the RGB values are multiplied by the Lambert cosine.
n  For specular, the RGB values are multiplied by the cosine of the angle

between the reflected ray and the viewing angle, raised to the power of
the shininess (this, I believe, is Phong’s primary contribution).

n  To combine all the types of light, the various colors are added, and then
the RGB values are clipped to [0,1].

8 Feb 2002 CS 481/681 3

OpenGL Buffers & Tests:
Buffers
n  An OpenGL buffer is an array that holds one

piece of data for each pixel in the viewport.
n  OpenGL has 4 types of buffers:

n  Color buffers
n  Depth buffer
n  Stencil buffer
n  Accumulation buffer

n  Each buffer has an intended function; however,
you may use the buffers in any way you wish.

n  We will be discussing buffers for a few class
meetings. The material will come primarily from
chapter 10 of the red book (starts on p. 429).

8 Feb 2002 CS 481/681 4

OpenGL Buffers & Tests:
Masking [1/2]
n  Most buffers have masks associated with them.

n  The mask determines whether a buffer (or part of a
buffer) is ever written.

n  For example, the color-buffer mask is controlled
by the glColorMask command.
n  This command takes 4 parameters, all GLboolean’s,

representing R, G, B, and A, respectively.
n  For example,
glColorMask(false, true, true, true);
means that the R portion of the color buffer will not be
changed.

n  Note: The mask affects all commands that would
change the buffer, even glClear.

8 Feb 2002 CS 481/681 5

OpenGL Buffers & Tests:
Masking [2/2]
n  In masking.cpp, I define five bool variables: redmask, greenmask,

bluemask, depthmask, clearall.
n  Each defaults to true and is toggled by pressing the first letter in its

name.
n  The interesting part of the code is at the start of function display:

if (clearall)
{
 glColorMask(true, true, true, true);
 glDepthMask(true);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
glColorMask(redmask, greenmask, bluemask, true);
glDepthMask(depthmask);
if (!clearall)
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

8 Feb 2002 CS 481/681 6

OpenGL Buffers & Tests:
Tests [1/2]
n  Associated with buffers are the OpenGL tests:

n  Scissor test
n  Alpha test
n  Depth test
n  Stencil test

n  A test is an expression with a boolean value that
OpenGL evaluates for every pixel to be drawn.
n  If the result is true, then the test passes, and the pixel

is drawn.
n  Otherwise, the test fails, and the pixel is not drawn.

8 Feb 2002 CS 481/681 7

OpenGL Buffers & Tests:
Tests [2/2]
n  Except for the scissor test, each test is

associated with a particular buffer:
n  Alpha test ↔ Color buffer (Alpha portion)
n  Depth test ↔ Depth buffer
n  Stencil test ↔ Stencil buffer

n  Typically, when a test is performed, some
value associated with the pixel to be
drawn is compared to the data for that
pixel in the buffer.

8 Feb 2002 CS 481/681 8

OpenGL Buffers & Tests:
The Scissor Test
n  The scissor test is by far the simplest of the

tests.
n  It allows you to restrict drawing to a rectangular

portion of the viewport.
n  To enable: glEnable(GL_SCISSOR_TEST);
n  Then: glScissor(x, y, width, height);

n  Parameters are as in the glViewport command.
n  (x,y) is the lower-left corner of the rectangle.

n  The scissor test passes if the pixel is within the
rectangle; otherwise, it fails.

n  The scissor test is really just a quick, simple
version of stenciling.

8 Feb 2002 CS 481/681 9

Review:
OpenGL Buffers & Tests
n  OpenGL has 4 kinds of buffers.

n  Each buffer holds a piece of data about every pixel in the viewport.
n  The kind of data depends on the kind of buffer and how it is used.

n  OpenGL has 4 tests.
n  A test gives a true/false result for each pixel; if true, the test passes,

and the pixel is drawn.
n  Buffers and tests are associated:

Buffer Corresponding Test
-- Scissor Test

Color Buffers Alpha Test

Depth Buffer Depth Test

Stencil Buffer Stencil Test

Accumulation Buffer --

8 Feb 2002 CS 481/681 10

Review:
Buffer Masks
n  Most buffers have masks associated with

them.
n  For example, the color-buffer mask is

controlled by the glColorMask command.
n  The statement
glColorMask(false, true, true, true);
means that the R portion of the color buffer
will not be changed.

n  Note: The mask affects all commands that
would change the buffer, even glClear.

8 Feb 2002 CS 481/681 11

Review:
The Scissor Test
n  The scissor test allows you to restrict

drawing to a rectangular portion of the
viewport.
n  To use: enable the scissor test, and specify a

rectangle with glScissor.
n  The scissor test passes if the pixel is within

the rectangle; otherwise, it fails.
n  The scissor test is really just a quick, simple

version of stenciling.

8 Feb 2002 CS 481/681 12

The Accumulation Buffer:
Overview
n  The most interesting of the buffers (IMHO) is the

accumulation buffer.
n  The accumulation buffer allows you to blend together

different 2-D scenes.
•  These can be renderings of 3-D scenes.

n  The accumulation buffer holds RGBA color data, just
like the color buffers.

n  There are special commands that allow you to blend a
color buffer with the accumulation buffer (possibly
several times) and then transfer the contents of the
accumulation buffer to a color buffer.

n  Allocate the accumulation buffer using GLUT_ACCUM in
your glutInitDisplayMode call.

8 Feb 2002 CS 481/681 13

The Accumulation Buffer:
Operations
n  Five operations can be performed on the accumulation buffer (AB):

n  The AB can be cleared.
n  The contents of a color buffer can be multiplied by a value and then copied to the AB.
n  The contents of a color buffer can be multiplied by a value and then added to the AB.
n  An arithmetic operation (× or +) can be performed on every pixel in the AB.
n  The contents of the AB can be multiplied by a value and copied to a color buffer.

n  The first operation above, clearing, is accomplished using the glClear command:

glClearAccum(R, G, B, A); // like glClearColor (optional)
glClear(GL_ACCUM_BUFFER_BIT); // Clear AB

n  The other four operations involve the glAccum command.

8 Feb 2002 CS 481/681 14

The Accumulation Buffer:
glAccum [1/2]
n  glAccum takes two parameters:

n  A GLenum telling which operation to perform.
n  A GLfloat giving a relevant constant value.

n  To multiply the contents of a color buffer by a value and copy the result
to the AB:

glAccum(GL_LOAD, value);

n  This uses the color buffer selected for reading. Use glReadBuffer to change

this. (Generally, you do not need to worry about it.)
n  To multiply the contents of a color buffer by a value and add the result to

the AB:

glAccum(GL_ACCUM, value);

8 Feb 2002 CS 481/681 15

The Accumulation Buffer:
glAccum [2/2]
n  To multiply the contents of the AB by a value:

glAccum(GL_MULT, value);

n  There is also GL_ADD, to add instead of multiplying, but I have

never seen a use for it.
n  To multiply the contents of the AB by a value and copy the

result to a color buffer:

glAccum(GL_RETURN, value);

n  This uses the color buffer selected for drawing. Use

glDrawBuffer to change this. (Generally, you do not need to
worry about it.)

8 Feb 2002 CS 481/681 16

The Accumulation Buffer:
Typical Code
void display() // The display function
{
 glClear(GL_ACCUM_BUFFER_BIT);
 for (int i = 0; i < numscenes; ++i)
 {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 Draw scene number i here
 glAccum(GL_ACCUM, scenefraction[i]);
 }
 glAccum(GL_RETURN, 1.0);
 glutSwapBuffers();
}

n  The values scenefraction[i] should be in [0,1] and should probably add up to 1.

n  Replacing “scenefraction[i]” with “1.0/numscenes” would give equal weight to all scenes
being blended.

n  Note how the clearing works: AB outside the loop, color & depth inside.

8 Feb 2002 CS 481/681 17

The Accumulation Buffer:
Applications
n  The AB can be used for:

n  Motion blur.
n  Fading between scenes.
n  Anti-aliasing.
n  Depth-of-field effects.
n  Soft shadows (if you know how to do shadows).

n  The last three applications above are usually done with “jittering”.
n  Jittering means making repeated small perturbations to a scene.
n  Then we blend the jittered scenes together to form the finished product.
n  To do anti-aliasing and depth-of-field effects, we jitter the projection matrix; to

do soft shadows, we do shadows (somehow …) and jitter the light source.
n  What are some problems with using the AB?

n  AB operations are generally slow; they may be unsuitable for real-time
graphics.

n  OpenGL implementations are not required to support accumulation buffers, so
it might reduce the portability of code. (In practice, this does not seem to be a
problem.)

8 Feb 2002 CS 481/681 18

Stenciling:
Overview
n  The stencil buffer and its associated test, the stencil test, can be

used for a variety of yes/no, pass/fail-type effects.
n  The stencil buffer holds a single integer for each pixel in the viewport.
n  You can place values in the stencil buffer and then test them to

determine whether to draw pixels.
n  Allocate the stencil buffer using GLUT_STENCIL in your

glutInitDisplayMode call.
n  Clear the stencil buffer using

glClear(GL_STENCIL_BUFFER_BIT);
after setting the clearing value with glClearStencil.

n  Enable the stencil test using
glEnable(GL_STENCIL_TEST);

8 Feb 2002 CS 481/681 19

Stenciling:
Functions
n  The two major functions used in stenciling are
glStencilFunc and glStencilOp.
n  glStencilFunc determines what the stencil test does.
n  glStencilOp determines what happens to the stencil

buffer if the stencil test passes or fails.
•  If the stencil test passes, then you can also have different

outcomes based on the depth test.

8 Feb 2002 CS 481/681 20

Stenciling:
glStencilFunc
n  glStencilFunc takes three parameters:

n  A GLenum telling what comparison the stencil test will
do.

n  A GLint used as a “reference value” in the stencil test.
n  A GLuint used as a mask (an “and” mask).

n  Examples,
n  Stencil test passes if bit in SB is on:
glStencilFunc(GL_EQUAL, 0x1, 0x1);

n  Stencil test passes if bit in SB is off:
glStencilFunc(GL_NOTEQUAL, 0x1, 0x1);

n  Test passes if 20 < low 8 bits in SB:
glStencilFunc(GL_LESS, 20, 0xff);

8 Feb 2002 CS 481/681 21

Stenciling:
glStencilOp
n  glStencilOp takes three parameters, all GLenum’s:

n  The operation to perform if the stencil test fails.
n  The operation to perform if the stencil test passes and the

depth test fails.
n  The operation to perform if the stencil test passes and the

depth test passes.
n  Examples,

n  Do not modify the SB:
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

n  Replace SB value with zero, the reference value (from
glStencilFunc), or its bitwise inversion, respectively:
glStencilFunc(GL_ZERO, GL_REPLACE, GL_INVERT);

n  Increment or decrement the SB value, as appropriate:
glStencilFunc(GL_DECR, GL_INCR, GL_INCR);

8 Feb 2002 CS 481/681 22

Review:
Accumulation Buffer [1/2]
n  The accumulation buffer (AB) holds RGBA color data.
n  It allows you to blend 2-D scenes.
n  Five operations can be performed on the AB:

n  Clear AB.
n  Color buf. × value → copy to AB.
n  Color buf. × value → add to AB.
n  Arithmetic operation (× or +) on AB.
n  AB × value → copy to color buf.

n  Typically:
n  Clear AB.
n  Repeat:

•  Clear color buf. And draw a scene in it.
•  Color buf. × value → add to AB.

n  Copy AB to color buf.
n  Above, the values we multiply the color info by are numbers, in [0,1],

whose sum is 1. Multiplying by a larger value gives that particular scene
a greater weight in the final displayed image.

8 Feb 2002 CS 481/681 23

Review:
Accumulation Buffer [2/2]
n  Here is an implementation of “fade between scenes”:

void display() // The display function
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 Draw scene 1 here
 glAccum(GL_LOAD, 1.0-fadefraction);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 Draw scene 2 here
 glAccum(GL_ACCUM, fadefraction);
 glAccum(GL_RETURN, 1.0);
 glutSwapBuffers();
}

n  The variable fadefraction should be in [0,1]. It should slowly increase from 0 to 1,
changing values each time the display function is called.

n  The accumulation buffer is never cleared; how can I get away with this?

8 Feb 2002 CS 481/681 24

Review:
Stenciling [1/2]
n  Stenciling involves the stencil buffer and the stencil test.

n  Remember: allocate the buffer, enable the test.
n  Clear the buffer the same way you clear any buffer.

n  The two major functions used in stenciling are
glStencilFunc and glStencilOp.
n  glStencilFunc determines what the stencil test does.
n  glStencilOp determines what happens to the stencil buffer if

the stencil test passes or fails.
•  If the stencil test passes, then you can also have different

outcomes based on the depth test.

8 Feb 2002 CS 481/681 25

Review:
Stenciling [2/2]
n  glStencilFunc takes three parameters:

n  GLenum: Which comparison the stencil test will do.
n  GLint: “Reference value” in the stencil test.
n  GLuint: Used as a mask (an “and” mask).

n  glStencilOp takes three parameters:
n  GLenum: Operation to do if stencil test fails.
n  GLenum: Operation if stencil passes and depth fails.
n  GLenum: Operation if stencil passes and depth passes.

8 Feb 2002 CS 481/681 26

Stenciling Examples:
Ordinary Stenciling
n  To draw a shape in the stencil buffer:

n  Redo when viewport changes size! Code goes in the reshape function.

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_NEVER, 1, 1);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE); // only 1st param matters

Draw a shape here.
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

n  To use the above shape:

glStencilFunc(GL_EQUAL, 1, 1);
Draw something; it will appear only inside the above shape.
glStencilFunc(GL_NOTEQUAL, 1, 1);
Draw something; it will appear only outside the above shape.

8 Feb 2002 CS 481/681 27

Stenciling Examples:
Odd Things to Do
n  Draw each pixel at most 5 times:

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_GREATER, 5, 0xff);
glStencilOp(GL_KEEP, GL_INCR, GL_INCR);

n  Draw each pixel successfully only on every other attempt:

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_EQUAL, 0, 1);
glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);

8 Feb 2002 CS 481/681 28

Stenciling Examples:
Capping
n  Here is an implementation of “capping” (see Red p. 446).

n  You are drawing a number of closed objects. You wish to make sure
that the inside of these is never visible, even if the near clipping
plane slices one of them.

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT |
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 1, 1);
glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);
Draw scene.
glStencilFunc(GL_EQUAL, 1, 1);
Draw rectangle covering entire viewport, in “capping” color.

8 Feb 2002 CS 481/681 29

Using Alpha:
Overview
n  The 4th component of RGBA color is “alpha”.
n  Alpha is specified with the glColor* and glClearColor

commands, as well as various lighting and material-
definition commands.

n  Alpha is stored in the color buffer, along with R, G, and B.
n  Alpha is always there in OpenGL’s RGB mode; so far we

have not used it.
n  There are two major uses of alpha:

n  Blending
•  Alpha can determine how a color to be draw is blended with the

color already present at that pixel.
•  The most common application of blending is transparent objects.

n  The Alpha Test
•  Alpha can be tested, in ways similar to the stencil buffer

8 Feb 2002 CS 481/681 30

Using Alpha:
Blending
n  Blending is covered in chapter 6 of the Red Book.

n  You may also wish to read about anti-aliasing and depth-
cueing (“fog”) in that chapter.

n  To do blending, enable it, and specify a blend function.
n  Blending is enabled with

glEnable(GL_BLEND);
n  It is not necessary to allocate anything; alpha is stored in the

color buffer.
n  The blending function is specified with glBlendFunc.

8 Feb 2002 CS 481/681 31

Using Alpha:
glBlendFunc [1/2]
n  Blending involve mixing colors based on their respective

alpha values.
n  A blending function blends two colors:

n  The source color: the color to be drawn.
n  The destination color: the color already present in the color

buffer.
n  Blending functions are specified using glBlendFunc, which

takes two parameters:
n  GLenum: blending factor for the source color.
n  GLenum: blending factor for the destination color.

8 Feb 2002 CS 481/681 32

Using Alpha:
glBlendFunc [2/2]
n  Some possible blending factors are:

n  GL_ZERO: Multiply this color by zero (0,0,0,0).
n  GL_ONE: Multiply this color by one (1,1,1,1).
n  GL_SRC_ALPHA: Multiply this color by the source alpha.
n  GL_ONE_MINUS_SRC_ALPHA: Multiply this color by one minus the

source alpha.
n  GL_DST_ALPHA: Multiply this color by the destination alpha.
n  GL_SRC_COLOR (for dest. blend factor only): Multiply this color by the

source color, component by component.
n  For a complete list of possible blend factors, see p. 223 of the

Red Book.

8 Feb 2002 CS 481/681 33

Using Alpha:
Applications of Blending
n  What are some effects one can do with a blend function?

n  Painter’s Algorithm
•  Src blend factor: 1, dest blend factor: 0 (same as no blending).

n  Transparency
•  Src bf: source alpha, dest bf: 1-source alpha.
•  Src alpha = 1: opaque, 0: invisible, between: translucent.

n  Weird Lighting Method
•  Src bf: 0, dest bf: source color.
•  Buffer holds unlit scene, source color is color of light at that point in the

scene. (Alpha is ignored.)
n  What difficulties are involved in using a blend function?

n  Drawing order matters. For example, when doing transparency via
blending, polygons should be drawn back-to-front (use an object
space HSR method).

n  Sadly, blending often gives rather bad-looking results.

8 Feb 2002 CS 481/681 34

Using Alpha:
The Alpha Test [1/2]
n  We’re back in chapter 10 now.
n  The alpha test, like the other OpenGL

tests, allows you to accept or reject
individual pixels.
n  As in the stencil test, a reference value is

specified. The alpha value of the pixel to be
drawn is compared to it.

n  To use the alpha test, enable it:
glEnable(GL_ALPHA_TEST);

n  Specify an alpha test with glAlphaFunc.

8 Feb 2002 CS 481/681 35

Using Alpha:
The Alpha Test [2/2]
n  glAlphaFunc takes two parameters:

n  GLenum: What test to perform.
n  GLclampf: Reference value

•  Type is GLfloat, required to be in [0,1], that is, “clamped”.

n  The possible tests all compare the alpha value of the pixel to be drawn
with the reference value.
n  GL_LESS: Passes if alpha to be drawn is less than the ref value.
n  GL_EQUAL: Passes if the two are equal.
n  GL_ALWAYS: Always passes.
n  Etc…

n  Warning: The alpha test is done backwards from the stencil test.
n  Stencil test: REF comparison VALUE_IN_BUFFER.
n  Alpha test: VALUE_FOR_NEW_PIXEL comparison REF.

