Illumination Models

Z-buffer methods:

- \star Compute only direct lighting.
- \star Ignore secondary light sources.

Ray-tracing methods:

- \star Model specular reflection and refraction well.
- \star Still uses directionless ambient lighting.
- \star Not good for global lighting.

Radiosity methods:

- \star Introduced in 1984 by (Goral, Torrance, Greenberg, & Battaile).
- \star Use thermal radiation models to calculate global lighting.
- \star Good for ideal *diffuse* environments.
- \star Assumes conservation of light energy in a closed environment.
- \star Determines all light interactions in a viewindependent way.

Radiosity

- \star S_1, \ldots, S_n : Set of surface patches.
- \star A_i: Area of S_i .
- \star ρ_i : Reflectance of S_i .
- \star B_i: Radiosity of S_i .
- \star E_i : Rate at which S_i emits power. (Energy per unit time per unit area.)
- $B_i A_i = E_i A_i + \rho_i \cdot$ total power incident to S_i $= E_i A_i + \rho_i \sum$ Incident power from S_i j=1 Incident power from Sight power from Sight S $= E_i A_i + \rho_i \sum B_i A_i F_{ii}$ je teksto i koji se od obrazu u koji se o and the state of th

 F_{ji} : Fraction of light leaving S_j that reaches S_i .

$$
B_i = E_i + \rho_i \sum_{j=1}^n B_j F_{ji} \frac{A_j}{A_i}.
$$

Form Factors

- \star F_{ji} : Fraction of light leaving S_j that arrives at S_i
	- Depends on shape, orientation, & occlusion.
	- $F_{ii} \neq 0$ (e.g., concave surfaces).

- \star *MA*_i: Number of lines through S_i .
- \star MA_j : Number of lines through S_j .
- \star MA_jF_{ji} : # lines leaving S_j & reaching S_i .
- \star MA_iF_{ij} : # lines leaving S_i & reaching S_j .

 $A_iF_{ii} = A_iF_{ii}$

$$
F_{ij}=\frac{A_j}{A_i}F_{ji}.
$$

- \star No closed form for the radiosity equation.
- \star Use numerical methods.
- \star Compute form factors F_{ij} , $1 \leq i, j, \leq n$.
- \star Set up initial conditions
	- $E_i > 0$ for light sources.
	- $E_i = 0$ for other surfaces.
	- Guess initial values of B_i , $1 \leq i \leq n$.

- \star Iterate the system until convergence.
- \star Computes a better approximation of B_i at each step.

$$
\mathbf{M} \cdot \mathbf{B} = \mathbf{E} \qquad \mathbf{M} = [M_{ij}] \quad M_{ii} > 0
$$

$$
B_i = -\sum_{j=1}^n \frac{M_{ij}}{M_{ii}} B_j + \frac{E_i}{M_{ii}}.
$$

 $j\neq i$

Use any of the relaxation methods to compute the new value of B_i .

 \star Jacobian relaxation

✫ Gauss-Seidel relaxation

Iterative Methods

How do we compute $B_i^{(m)}$, value of B_i in the m-th iteration?

Jacobian relaxation:

Use values from the previous iteration for all B_i .

$$
B_i^{(m)} = - \sum_{\substack{j=1\\j\neq i}}^n \frac{M_{ij}}{M_{ii}} B_j^{(m-1)} + \frac{E_i}{M_{ii}}.
$$

Use values from the previous iteration for $j < i$ and from the current iteration for $j > i$.

$$
B_i^{(m)} = -\sum_{j=1}^{i-1} \frac{M_{ij}}{M_{ii}} B_j^{(m)} - \sum_{j=i+1}^n \frac{M_{ij}}{M_{ii}} B_j^{(m-1)} + \frac{E_i}{M_{ii}}.
$$

 \star In-place update of B_i 's.

 \star Convergence rate is better.

 \star Strictly diagonal dominant matrices converge.

CPS124, 296: Computer Graphics Radiosity Page ⁹

the contract of the contract o

Continuous Shading

Decompose each surface into smaller pacthes Radiosity within each patch is the same.

Interpolated Shading:

- ✫ Convert patch radiosity to vertex radiosity.
- \star Interpolate patch radiosity.

vertex radiosity: where \sim 100 minutes radiosity: where \sim

 \star Interior vertex v: Average of radiosity over adjacent patches

 $B_e = (B_1 + B_2 + B_3 + B_4)/4$

 \mathcal{L} is the complex variable variable

- Find a nearest interior vertex v_I .
- f_1,\ldots,f_k : faces adjacent to v_b .

$$
\bullet \ \ (B_b+B_I)/2=\sum_{i=1}^n B_i/k.
$$

•
$$
(B_b + B_e)/2 = (B_1 + B_2)/2 \Rightarrow
$$

\n $B_b = (3B_1 + 3B_2 - B_3 - B_4)/4.$

 F_{ij} : What is the average number of lines leaving a point from S_i and reaching S_j ?

Example:

- \star Small patch dS_i with area dA_i .
- \star Parallel disk of radius r at distance h.
- \star F_{ij} : Solid angle from a point in dS_i to S_j .

$$
\displaystyle\star\ \ F_{ij}=\frac{r^2}{h^2+r^2}
$$

★
$$
F_{di,j}
$$
: Form factor from dS_i to S_j .
★ F_{ij} : Form factor from S_i to S_j .

$$
F_{di,j} = \int_{A_j} \frac{\cos \theta_i \cos \theta_j}{\pi r^2} H_{ij} dA_j
$$

$$
F_{i,j} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos \theta_i \cos \theta_j}{\pi r^2} H_{ij} dA_j dA_i
$$

