# Illumination Models

## Z-buffer methods:

- $\bigstar$  Compute only direct lighting.
- $\star$  Ignore secondary light sources.

## **Ray-tracing methods:**

- $\star$  Model specular reflection and refraction well.
- $\star$  Still uses directionless ambient lighting.
- $\bigstar$  Not good for global lighting.

### **Radiosity methods:**

- $\star$  Introduced in 1984 by
  - (Goral, Torrance, Greenberg, & Battaile).
- ★ Use thermal radiation models to calculate global lighting.
- $\star$  Good for ideal *diffuse* environments.
- $\bigstar Assumes conservation of light energy in a closed environment.$
- ★ Determines all light interactions in a viewindependent way.





RADIOSITY

# - Radiosity

- ★  $S_1, \ldots, S_n$ : Set of surface patches.
- $\bigstar$   $A_i$ : Area of  $S_i$ .
- $\star \rho_i$ : Reflectance of  $S_i$ .
- $\star$   $B_i$ : Radiosity of  $S_i$ .
- $\star E_i: \text{ Rate at which } S_i \text{ emits power.}$ (Energy per unit time per unit area.)
- $B_{i}A_{i} = E_{i}A_{i} + \rho_{i} \cdot \text{total power incident to } S_{i}$   $= E_{i}A_{i} + \rho_{i} \sum_{j=1}^{n} \text{Incident power from } S_{j}$   $= E_{i}A_{i} + \rho_{i} \sum_{j=1}^{n} B_{j}A_{j}F_{ji}$

 $F_{ji}$ : Fraction of light leaving  $S_j$  that reaches  $S_i$ .

$$B_i = E_i + \rho_i \sum_{j=1}^n B_j F_{ji} \frac{A_j}{A_i}.$$

CPS124, 296: COMPUTER GRAPHICS

RADIOSITY

# Form Factors

- ★  $F_{ji}$ : Fraction of light leaving  $S_j$  that arrives at  $S_i$ 
  - Depends on shape, orientation, & occlusion.
  - $F_{ii} \neq 0$  (e.g., concave surfaces).



- $\star$  MA<sub>i</sub>: Number of lines through S<sub>i</sub>.
- $\star MA_j$ : Number of lines through  $S_j$ .
- $\star MA_jF_{ji}$ : # lines leaving  $S_j$  & reaching  $S_i$ .
- $\star MA_iF_{ij}$ : # lines leaving  $S_i$  & reaching  $S_j$ .

 $A_i F_{ij} = A_j F_{ji}$ 

$$F_{ij} = \frac{A_j}{A_i} F_{ji}.$$

CPS124, 296: Computer Graphics



RADIOSITY



- $\star$  No closed form for the radiosity equation.
- $\bigstar$  Use numerical methods.
- ★ Compute form factors  $F_{ij}$ ,  $1 \leq i, j, \leq n$ .
- $\star$  Set up initial conditions
  - $E_i > 0$  for light sources.
  - $E_i = 0$  for other surfaces.
  - Guess initial values of  $B_i$ ,  $1 \le i \le n$ .

RADIOSITY

- $\star$  Iterate the system until convergence.
- ★ Computes a better approximation of  $B_i$  at each step.

$$\mathbf{M} \cdot \mathbf{B} = \mathbf{E} \qquad \mathbf{M} = \begin{bmatrix} M_{ij} \end{bmatrix} \quad M_{ii} > 0$$

$$\sum_{i=1}^{n} M_{ii} \qquad E_{ii}$$

$$B_i = -\sum_{\substack{j=1\\j\neq i}} \frac{M_{ij}}{M_{ii}} B_j + \frac{E_i}{M_{ii}}$$

Use any of the relaxation methods to compute the new value of  $B_i$ .

 $\star$  Jacobian relaxation

 $\star$  Gauss-Seidel relaxation

CPS124, 296: Computer Graphics

RADIOSITY

## Iterative Methods

How do we compute  $B_i^{(m)}$ , value of  $B_i$  in the *m*-th iteration?

#### Jacobian relaxation:

Use values from the previous iteration for all  $B_i$ .

$$B_i^{(m)} = -\sum_{\substack{j=1\\j\neq i}}^n \frac{M_{ij}}{M_{ii}} B_j^{(m-1)} + \frac{E_i}{M_{ii}}$$

#### Gauss-Seidel relaxation:

Use values from the previous iteration for j < iand from the current iteration for j > i.

$$B_i^{(m)} = -\sum_{j=1}^{i-1} \frac{M_{ij}}{M_{ii}} B_j^{(m)} - \sum_{j=i+1}^n \frac{M_{ij}}{M_{ii}} B_j^{(m-1)} + \frac{E_i}{M_{ii}}$$

★ In-place update of  $B_i$ 's.

 $\star$  Convergence rate is better.

 $\star$  Strictly diagonal dominant matrices converge.

CPS124, 296: Computer Graphics

# - Continuous Shading

Decompose each surface into smaller pacthes Radiosity within each patch is the same.

## **Interpolated Shading:**

- ★ Convert patch radiosity to vertex radiosity.
- $\bigstar$  Interpolate patch radiosity.



### Vertex radiosity:

★ Interior vertex v: Average of radiosity over adjacent patches

 $B_e = (B_1 + B_2 + B_3 + B_4)/4$ 

Boundary vertex  $v_b$ : More complex procedure.

- Find a nearest interior vertex  $v_I$ .
- $f_1, \ldots, f_k$ : faces adjacent to  $v_b$ .

• 
$$(B_b + B_I)/2 = \sum_{i=1}^n B_i/k.$$

• 
$$(B_b + B_e)/2 = (B_1 + B_2)/2 \Rightarrow$$
  
 $B_b = (3B_1 + 3B_2 - B_3 - B_4)/4$ 

CPS124, 296: COMPUTER GRAPHICS



 $F_{ij}$ : What is the average number of lines leaving a point from  $S_i$  and reaching  $S_j$ ? Example:

- ★ Small patch  $dS_i$  with area  $dA_i$ .
- ★ Parallel disk of radius r at distance h.
- ★  $F_{ij}$ : Solid angle from a point in  $dS_i$  to  $S_j$ .

$$\bigstar \ F_{ij} = \frac{r^2}{h^2 + r^2}$$

h h

CPS124, 296: Computer Graphics



$$F_{di,j} = \int_{A_j} \frac{\cos \theta_i \cos \theta_j}{\pi r^2} H_{ij} dA_j$$
  
$$F_{i,j} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos \theta_i \cos \theta_j}{\pi r^2} H_{ij} dA_j dA_i$$

RADIOSITY

