

Ray Tracing

Hidden surface removal

- ★ For each pixel π , shoot a ray ρ from the view point to the center of π .
- ★ If ρ does not intersect any object, color π with the background color.
- ★ Otherwise, compute the first object O intersected by ρ and the first intersection point σ .
- ★ Compute the color at σ using the reflection model.
- ★ Draw π with the computed color.
- \bigstar Each pixel is colored only once.
- \bigstar Computing σ is expensive!

CPS124, 296: Computer Graphics

RAYTRACING

RAYTRACING

RAYTRACING

RAYTRACING

- Recursive Ray Tracing

- ★ Extend the standard ray tracing to handle shadows, reflection, and refraction.
- \star Shoot secondary rays recursively to calculate shadows, reflection, and refraction.

For each pixel π on the screen, do the following:

- ★ Primary ray (ρ_P) : Ray emanating from the viewer to the center of π .
- ★ If ρ_P doesn't hit any object, render π with the background color.
- ★ Suppose the first intersect point of ρ and an object is p.

CPS124, 296: Computer Graphics

RAYTRACING

RAYTRACING

Pros and Cons

- \star Better illumination model.
- \star Prone to numerical instability.
- \star Very expensive.

Efficiency Issues:

- ★ Ray object intersection: Use object hierarchy, spatial decomposition techniques (oct trees, BSP's).
- \star Adaptive tree depth
- \star Reflection maps
- \star Light buffer

CPS124, 296: Computer Graphics

RAYTRACING

Distributed Ray Tracing

- \star Handles antialiasing.
- \star Divide pixel into subpixels.
- ★ Choose pixels at random (under some given distribution).
- ★ Divide each pixel into a grid; *jitter* the centers of the grid randomly within the grid cell.

- ★ Instead of uniform sampling, use weighted sampling, e.g., distribution of subpixel depends on light intensity.
- \star Shoot different rays at slightly different times.

CPS124, 296: Computer Graphics