Data-Intensive Computing
Systems

Query Execution (Sort and
Join operators)
Shivnath Babu

Roadmap

A simple operator: Nested Loop Join

Preliminaries

— Cost model

— Clustering

— Operator classes

Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

Nested Loop Join (NLJ)

=1 | B C C D
a 10 10 cat
a 20 | P 40 | dog
b 10 15 bat
d 30 20 rat

* NLJ (conceptually)
foreachr &€ R1 do
for each s € R2 do
if r.C = s.C then output r,s pair

Nested Loop Join (contd.)

* Tuple-based
* Block-based
 Asymmetric

Implementing Operators

- Basic algorithm
- Scan-based (e.g., NLJ)
- Sort-based
- Using existing indexes
- Hash-based (building an index on the fly)

- Memory management
- Tradeoff between memory and #lOs

- Parallel processing

Roadmap

A simple operator: Nested Loop Join

Preliminaries <:

— Cost model
— Clustering
— Operator classes

Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

Operator Cost Model

« Simplest: Count # of disk blocks read and
written during operator execution

« Extends to query plans
— Cost of query plan = Sum of operator costs

« Caution: Ignoring CPU costs

Assumptions

* Single-processor-single-disk machine
— Will consider parallelism later
* Ignore cost of writing out result

— Qutput size is independent of operator
Implementation

* Ignore # accesses to index blocks

Parameters used in Cost Model

B(R) = # blocks storing R tuples

T(R) =#tuplesin R

V(R,A) = # distinct values of attr Ain R
M =# memory blocks available

Roadmap

A simple operator: Nested Loop Join

Preliminaries

— Cost model

— Clustering

— Operator classes

Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

Notions of clustering

» Clustered file organization

R1 R2 51 S2

R3 R4 S3 54

* Clustered relation

R1 R2 R3 R4

* Clustering index

R5 R5 R7 R8

Clustering Index

Tuples with a given value of the search
key packed in as few blocks as possible

10
10

|35
' c'?ex 19
N

I T

19

19
42
37

Examples

T(R) =10,000

B(R) =200

If R is clustered, then # R tuples per block =
10,000/200 = 50

Let V(R,A) =40

=>1f | is a clustering index on R.A, then # |Os to
access Og 5 - «»(R) =250/50 = 5

=> If | is a non-clustering index on R.A, then #
|Os to access Og 4 - «»(R) =250 (> B(R))

Operator Classes

Tuple-at-a-time | Full-relation
Unary Select Sort
Binary Difference

Roadmap

A simple operator: Nested Loop Join

Preliminaries

— Cost model

— Clustering

— Operator classes

Operator implementation (with examples from joins)
— Scan-based <

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

Implementing Tuple-at-a-time
Operators

* One pass algorithm:
— Scan
— Process tuples one by one
— Write output

« Cost = B(R)

— Remember: Cost = # 10s, and we ignore the
cost to write output

Implementing a Full-Relation
Operator, Ex: Sort

Suppose T(R) x tupleSize(R) <= M x |B(R)|
Read R completely into memory
Sort

Write output
Cost = B(R)

Implementing a Full-Relation
Operator, Ex: Sort

Suppose R won’ t fit within M blocks

Consider a two-pass algorithm for Sort;
generalizes to a multi-pass algorithm

Read R into memory in M-sized chunks

Sort each chunk in memory and write out
to disk as a sorted sublist

Merge all sorted sublists
Write output

Two-phase Sort: Phase 1

OB OIN] -

999

1000

96

1

97

Suppose B(R) = 1000, R is clustered, and M = 100

100

98

101

200

99

201

100

300

Memory

Sorted Sublists

801

900

901

1000

Two-phase Sort: Phase 2

100 | suuns 1
200 | sunns 101 |———— 2 2
300 | ®="="" 2001 | — 3 \\\\\ 3
4 |~ 4
5) 5
Sorted Sublists 6 / :
7
8 "
900 | swsuss 801 |—— | 9 999
10 1000
1000 | ===="= 901 ///,//”///*

Memory Sorted R

Analysis of Two-Phase Sort

» Cost = 3xB(R) if R is clustered,
= B(R) + 2B(R’) otherwise
« Memory requirement M >= B(R)"?

Duplicate Elimination

Suppose B(R) <= M and R is clustered
Use an in-memory index structure

Cost = B(R)

Can we do with less memory?

~B(d(R)) <= M

— Aggregation is similar to duplicate elimination

Duplicate Elimination Based on
Sorting

« Sort, then eliminate duplicates
* Cost = Cost of sorting + B(R)

« Can we reduce cost?
— Eliminate duplicates during the merge phase

Back to Nested Loop Join (NLJ)

B C C D

a 10 10 cat
a 20 | P 40 | dog
b 10 15 bat
d 30 20 rat

 NLJ (conceptually)
foreachr&e R do
foreachs & S do

if r.C = s.C then output r,s pair

S

Analysis of Tuple-based NLJ

* Cost with R as outer = T(R) + T(R) x T(S)
« Cost with S as outer = T(S) + T(R) x T(S)
c M>=2

Block-based NLJ

* Suppose R is outer
— Loop: Get the next M-1 R blocks into memory
— Join these with each block of S

* B(R) + (B(R)/M-1) x B(S)
« What if S is outer?
— B(S) + (B(S)/M-1) x B(R)

Let us work out an NLJ Example

* Relations are not c
« T(R1)=10,000 1

ustered

"(R2) = 5,000

10 tuples/block for
M = 101 blocks

R1: and for R2

Tuple-based NLJ Cost: for each R1 tuple:

[Read tuple

+ Read R2]

Total =10,000 [1+5006] 50,010,000 IO0s

Can we do better when R,S are
not clustered?
Use our memory
(1) Read 100 blocks worth of R1 tuples
(2) Read all of R2 (1 block at a time) + join
(3) Repeat until done

Cost: for each R1 chunk:
Read chunk: 1000 I0s
Read R2: 5000 IOs
Total/chunk = 6000

Total = 10,000 x 6000 = 60,000 IOs
1,000 Vs. 50,010,000

« Can we do better?

@+ Reverse join order: R2 ><]R1

Total = 5000 x (1000 + 10,000) =
1000

5x 11,000 = 55,000 IOs
[Vs. 60,000]

Example contd. NLJ R2 <1 R1

 Now suppose relations are clustered

Cost
For each R2 chunk:
Read chunk: 100 IOs
Read R1: 1000 IOs
Total/chunk = 1,100

Total= 5 chunks x 1,100 = 5,500 IOs
[Vs. 55,000]

Joins with Sorting

» Sort-Merge Join (conceptually)
(1) if R1 and R2 not sorted, sort them
(2)i<=1;j<1,
While (i< T(R1)) A (j = T(R2)) do
if R1{1}.C = R2{j}.C then OutputTuples
else if R1{1}.C > R2{)}.C thenj < j+1
else if R1{1}.C <R2{j}.Ctheni < i+1

Procedure Output-Tuples
While (R1{i}.C = R2{j}.C) A (i = T(R1)) do
) <= 1J;
while (R1{i}.C = R2{jj }.C) A (jj = T(R2)) do
[output pair R1{ i}, R2{] };
< Jj+1]

| <— i+1]

Example

| R1{i).C R2{j}.C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5
50 6
V4

52

Block-based Sort-Merge Join

* Block-based sort
* Block-based merge

Two-phase Sort: Phase 1

OB OIN] -

999

1000

Suppose B(R) = 1000 and M = 100

96

97

98

101

99

201

100

Memory

100

200

300

Sorted Sublists

801

901

900

1000

Two-phase Sort: Phase 2

100 | suuns 1
200 | sunns 101 |———— 2 2
300 | ®="="" 2001 | — 3 \\\\\ 3
4 |~ 4
5) 5
Sorted Sublists 6 / :
7
8 "
900 | swsuss 801 |—— | 9 999
10 1000
1000 | ===="= 901 ///,//”///*

Memory Sorted R

Sort-Merge Join

P
R1 — 3 ///////////} Sorted R1
0 { | Apply our
- merge
R> \; I >~50rted - / algorithm

%

sorted sublists

Analysis of Sort-Merge Join

 Cost =5 x (B(R) + B(S))
 Memory requirement:
M >= (max(B(R), B(S)))"?

Continuing with our Example

R1,R2 clustered, but unordered

Total cost = sort cost + join cost
= 6,000 + 1,500 =7,500 I0s

But: NLJ cost = 5,500
So merge join does not pay off!

However ...

* NLJ cost = B(R) + B(R)B(S)/M-1 =
O(B(R)B(S)) [Quadratic]

» Sort-merge join cost = 5 x (B(R) + B(S)) =
O(B(R) + B(S)) [Linear]

Can we Improve Sort-Merge Join?

R1

R2

sorted sublist

\

| Apply our

merge
algorithm

%

Do we need to create the sorted R1, R27?

A more “Efficient” Sort-Merge Join

R1

R2

\

A

%

mm—

-

\

s

%

-

Apply our
merge
algorithm

sorted sublists

Analysis of the “Efficient” Sort-
Merge Join
* Cost =3 x (B(R) + B(S))
[Vs. 5 x (B(R) + B(9))]
 Memory requirement:
M >= (B(R) + B(S))"?
[Vs. M >= (max(B(R), B(S)))"?

Another catch with the more “Efficient”
version: Higher chances of thrashing!

Cost of “Efficient” Sort-Merge join:

Cost = Read R1 + Write R1 into sublists

+ Read R2 + Write R2 into sublists
+ Read R1 and R2 sublists for Join

= 2000 + 1000 + 1500 = 4500
Vs. 7500]

Memory requirements in our Example

B(R1) = 1000 blocks, 10002 = 31.62
B(R2) = 500 blocks, 500'2 = 22.36
B(R1) + B(R2) = 1500, 150012 = 38.7

M > 32 buffers for simple sort-merge join
M > 39 buffers for efficient sort-merge join

Joins Using Existing Indexes

ICH RN
a 10 10 cat
a | 20 | < < 40 | dog
b 10 15 | bat
d 30 20 rat

* Indexed NLJ (conceptually)

foreachre R do
for each s € S that matches probe(l,r.C) do
output r,s pair

Continuing with our Running Example

 Assume R1.C index exists; 2 levels
« Assume R2 clustered, unordered

* Assume R1.C index fits in memory

Cost: R2 Reads: 500 IOs

for each R2 tuple:
- probe index - free
- if match, read R1 tuple

=># R1 Reads depends on:
- # matching tuples
- clustering index or not

What is expected # of matching tuples?

(a) say R1.C is key, R2.C is foreign key
then expected = 1 tuple

(b) say V(R1,C) = 5000, T(R1) = 10,000
with uniform assumption
expect = 10,000/5,000 =2

What is expected # of matching tuples?

(c) Say DOM(R1, C) = 1,000,000
T(R1) = 10,000

with assumption of uniform distribution
iIn domain

Expected = 10,000 = 1 tuples

1,000,000 100

Total cost with Index Join with a Non-
Clustering Index

(a) Total cost = 500+5000(1) = 5,500

(b) Total cost = 500+5000(2) = 10,500

(c) Total cost = 500+5000(1/100) = 550

Will any of these change if we have a
clustering index?

What if index does not fit in memory?

Example: say R1.C index is 201 blocks

« Keep root + 99 leaf nodes in memory
» Expected cost of each index access is

E=(0)29 +(1)101 ~0.5
200 200

Total cost (including Index Probes)

= 500+5000 [Probe + Get Records]
= 500+5000 [0.5+2]
= 500+12,500 = 13,000 (Case b)

For Case (c):
= 500+5000[0.5 x 1 + (1/100) x 1]
= 500+2500+50 = 3050 10s

Block-Based NLJ Vs. Indexed NLJ

* Wrt #joining records
* Wrt index clustering

Join Plot graphs for Block NLJ and Indexed NLJ
cost for clustering and non-clustering indexes

Join selectivity

>

Sort-Merge Join with Indexes

» Can avoid sorting
« Zig-zag join

So far

® [NLJR2><IR1 55,000 (best)

2 Merge Join

= Sort+ Merge Join

= R1.C Index

< . R2.C Index
'NLJR2><]R1 5500

D Merge join 1500

2 | Sort+Merge Join 7500 — 4500

= R1.C Index 5500, 3050, 550
. R2.C Index

Building Indexes on the fly for Joins

* Hash join (conceptual)
— Hash function h, range 1 — k
— Buckets for R1: G1, G2, ... Gk
— Buckets for R2: H1, H2, ... Hk

Algorithm
(1) Hash R1 tuples into G1--Gk
(2) Hash R2 tuples into H1--Hk
(3) Fori=1tokdo
Match tuples in Gi, Hi buckets

Example Continued: Hash Join

* R1, R2 contiguous
— Use 100 buckets
— Read R1, hash, + write buckets

R — I
R1 - | - : 100
10 blocks

«— —»

-> Same for R2

-> Read one R1 bucket; build memory hash table
R1 is called the build relation of the hash join]

-> Read corresponding R2 bucket + hash probe
R2 is called the probe relation of the hash join]

. | gy R2
R1 77 % ‘/
Y ¥
: Memory

Then repeat for all buckets

Cost:
“Bucketize:” Read R1 + write

Read R2 + write
Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500

Minimum Memory Requirements

Size of R1 bucket = (x/k)
K = number of buckets (k = M-1)
X = number of R1 blocks

So... (xk)<=k D k>=Vx 9 M>vVXx

Actually, M > vmin(B(R),B(S))
[Vs. M > VB(R)+B(S) for Sort-Merge Join]

Trick: keep some buckets in memory

E.g., k' =33 R1 buckets = 31 blocks
keep 2 in memory

memory Memory use:
Gl 31 buffers
G1 G2 31 buffers
- in 31 Output 33-2 buffers
7 G2 - R1 input 1
_ % T Total 94 buffers
2 139231 6 buffers to spare!!
7 i
A =

called Hybrid Hash-Join

Next: Bucketize R2
— R2 buckets =500/33= 16 blocks

— Two of the R2 buckets joined immediately
with G1,G2

memory
R2 buckets R1 buckets
N ot [12 \ /—3/1H

E 7 G2 T D T
7, L
Z P 33-2=31 . 33-2=31
7/ - '
% ' l '

Finally: Join remaining buckets

— for each bucket pair:
 read one of the buckets into memory
* join with second bucket

memaory
one full R2 R2 buckets
e out e ! R1 buckets
— | I Gi ! 16) /—3/b

%

one R1
buffer

Cost
 Bucketize R1 = 1000+31x31=1961

* To bucketize R2, only write 31 buckets:
so, cost = 500+31x16=996

* To compare join (2 buckets already done)
read 31x31+31x16=1457

Total cost = 1961+996+1457 = 4414

How many Buckets in Memory?

memory memory
rR1 | N | G R1 | N
> % D y/ G]_
>]| OR
Z 7

@ See Garcia-Molina, Ullman, Widom book
for an interesting answer ...

Another hash join trick:

* Only write into buckets
<val,ptr> pairs

* When we get a match in join phase,
must fetch tuples

* To illustrate cost computation, assume:
— 100 <val,ptr> pairs/block
— expected number of result tuples is 100

 Build hash table for R2 in memory
5000 tuples — 5000/100 = 50 blocks

« Read R1 and match
 Read ~ 100 R2 tuples

Total cost = Read R2: 500
Read R1: 1000
Get tuples: 100

1600

So far:

| NLJ 5500
Merge join 1500
Sort+merge joint 7500
R1.C index 5500 — 550

© | R2.Cindex
2 | Build R.C index
= | Build S.C index
Hash join 4500

with trick,R1 first 4414
with trick,R2 first
. Hash join, pointers 1600

Hash-based Vs. Sort-based Joins

Some similarities (see textbook), some
dissimilarities

Non-equi joins

Memory requirement

Sort order may be useful later

summary

« NLJ ok for “small” relations
(relative to memory size)

* For equi-join, where relations not
sorted and no indexes exist,
Hybrid Hash Join usually best

Summary (contd.)

» Sort-Merge Join good for
non-equi-join (e.g., R1.C > R2.C)

* If relations already sorted, use
Merge Join
* If index exists, it could be useful

— Depends on expected result size and index
clustering

 Join techniques apply to Union,
Intersection, Difference

Buffer Management

« DBMS Buffer Manager

Read/write

Buffer Manager

!

Block read/write

-

« May control memory directly (i.e., does not
allocate from virtual memory controlled by OS)

Buffer Replacement Policies

Least Recently Used (LRU)
Second-chance

Most Recently Used (MRU)
FIFO

Interaction between Operators and
Buffer Management

 Memory (our M parameter) may change
while an operator is running

* Some operators can take advantage of
specific buffer replacement policies

—E.g., Rocking for Block-based NLJ

Roadmap

A simple operator: Nested Loop Join

Preliminaries

— Cost model

— Clustering

— Operator classes

Operator implementation (with examples from joins)
— Scan-based

— Sort-based

— Using existing indexes

— Hash-based

Buffer Management

Parallel Processing

