
1

Data-intensive Computing
Systems

Failure Recovery

Shivnath Babu

2

Key problem Unfinished transaction

Example Constraint: A=B
 T1: A ← A × 2
 B ← B × 2

3

Examples:
•  Power goes off
•  Software bugs
•  Disk data is lost
•  Memory lost without CPU halt
•  CPU misbehaves (overheating)

Unexpected Events:

4

Storage hierarchy

Memory Disk

x x

5

Operations:

•  Input (x): block containing x → memory
•  Output (x): block containing x → disk

•  Read (x,t): do input(x) if necessary
 t ← value of x in block

•  Write (x,t): do input(x) if necessary
 value of x in block ← t

6

Key problem Unfinished transaction

Example Constraint: A=B
 T1: A ← A × 2
 B ← B × 2

7

T1: Read (A,t); t ← t×2
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

8

•  Need atomicity: execute all actions of
 a transaction or

none at all

9

One solution: undo logging (immediate
 modification)

due to: Hansel and Gretel, 782 AD

10

T1: Read (A,t); t ← t×2 A=B
 Write (A,t);
 Read (B,t); t ← t×2
 Write (B,t);
 Output (A);
 Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

11

One “complication”

•  Log is first written in memory
•  Not written to disk on every action
 memory
 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

1

12

One “complication”

•  Log is first written in memory
•  Not written to disk on every action
 memory
 DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

2

<T1, B, 8>
<T1, commit>

..
.

13

Undo logging rules

(1) For every action generate undo log
 record (containing old value)

(2) Before x is modified on disk, log
 records pertaining to x must be

 on disk (write ahead logging: WAL)
(3) Before commit is flushed to log, all

 writes of transaction must be
 reflected on disk

14

Recovery rules for Undo logging

•  For every Ti with <Ti, start> in log:
 - Either: Ti completed è

 <Ti,commit> or <Ti,abort> in log
 - Or: Ti is incomplete

Undo incomplete transactions

15

Recovery rules for Undo Logging
(contd.)

(1) Let S = set of transactions with
 <Ti, start> in log, but no

 <Ti, commit> or <Ti, abort> record in log
(2) For each <Ti, X, v> in log,

 in reverse order (latest → earliest) do:

 - if Ti ∈ S then - write (X, v)
 - output (X)

(3) For each Ti ∈ S do
 - write <Ti, abort> to log

16

What if failure during recovery?

 No problem: Undo is idempotent

17

To discuss:

•  Redo logging
•  Undo/redo logging, why both?
•  Real world actions
•  Checkpoints
•  Media failures

18

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);
 Read(B,t); t t×2; write (B,t);
 Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16

19

Redo logging rules

(1) For every action, generate redo log
 record (containing new value)

(2) Before X is modified on disk (DB),
 all log records for transaction that
 modified X (including commit) must

 be on disk
(3) Flush log at commit

20

•  For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:
 Write(X, v)
 Output(X)

Recovery rules: Redo logging

➽IS THIS CORRECT??

21

(1) Let S = set of transactions with
 <Ti, commit> in log

(2) For each <Ti, X, v> in log, in forward
 order (earliest → latest) do:
 - if Ti ∈ S then Write(X, v)
 Output(X) optional

Recovery rules: Redo logging

22

Key drawbacks:

•  Undo logging: cannot bring backup DB
 copies up to

date
•  Redo logging: need to keep all modified

 blocks in memory
 until commit

23

Solution: undo/redo logging!

Update ⇒ <Ti, Xid, New X val, Old X val>
page X

24

Rules

•  Page X can be flushed before or
 after Ti commit

•  Log record flushed before
corresponding updated page (WAL)

25

Recovery Rules

•  Identify transactions that committed
•  Undo uncommitted transactions
•  Redo committed transactions

26

Recovery is very, very SLOW !

Redo log:

First T1 wrote A,B Last
Record Committed a year ago Record
(1 year ago) --> STILL, Need to redo after crash!!

...

Crash

27

Solution: Checkpoint (simple version)

Periodically:
(1) Do not accept new transactions
(2) Wait until all transactions finish
(3) Flush all log records to disk (log)
(4) Flush all buffers to disk (DB) (do not discard buffers)
(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

28

Example: what to do at recovery?

Redo log (disk):

<
T1

,A
,1

6>

 <
T1

,c
om

m
it>

 Ch

ec
kp

oi
nt

<
T2

,B
,1

7>

 <
T2

,c
om

m
it>

 <

T3
,C

,2
1>

Crash
...

System stops accepting new transactions

29

Non-quiescent checkpoint for Undo/
Redo logging

L
O
G

 for

 undo dirty buffer
 pool pages
 flushed

Start-ckpt
active TR:
T1,T2,...

end
ckpt

...

..
.

30

Example: Undo/Redo + Non Quiescent Chkpt.

 <start T1>
<T1,A,4,5>
<start T2>
<commit T1>
<T2,B,9,10>
<start chkpt(T2)>
<T2,C,14,15>
<start T3>
<T3,D,19,20>
<end checkpt>
<commit T2>
<commit T3>

1. Flush log
2. Flush all dirty buffers. May start
 new transactions
3. Write <end checkpt>. Flush log

31

Examples what to do at recovery time?

 no T1 commit
L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b ...

➽ Undo T1 (undo a,b)

32

Example

L
O
G

... T1
a T1

b T1
c ... T1

cmt ... ckpt-
end

ckpt-s
T1

➽ Redo T1: (redo b,c)

33

Recovery process:
•  Backwards pass (end of log ➜ latest checkpoint start)

–  construct set S of committed transactions
–  undo actions of transactions not in S

•  Undo pending transactions
–  follow undo chains for transactions in

 (checkpoint active list) - S

•  Forward pass (latest checkpoint start ➜ end of log)
–  redo actions of S transactions

backward pass

forward pass
start

check-
point

34

Example: Redo + Non Quiescent Chkpt.
 <start T1>

<T1,A,5>
<start T2>
<commit T1>
<T2,B,10>
<start chkpt(T2)>
<T2,C,15>
<start T3>
<T3,D,20>
<end chkpt>
<commit T2>
<commit T3>

1. Flush log
2. Flush data elements written
 by transactions that committed
 before <start chkpt>.
 May start new transactions.
3. Write <end chkpt>. Flush log

35

Example: Undo + Non Quiescent Chkpt.
 <start T1>

<T1,A,5>
<start T2>
<T2,B,10>
<start chkpt(T1,T2)>
<T2,C,15>
<start T3>
<T1,D,20>
<commit T1>
<T3,E,25>
<commit T2>
<end checkpt>
<T3,F,30>

1. Flush log
2. Wait for active transactions
 to complete. New transactions
 may start
3. Write <end checkpt>. Flush log

36

Real world actions

E.g., dispense cash at ATM
 Ti = a1 a2 …... aj …... an

$

37

Solution

(1) execute real-world actions after commit
(2) try to make idempotent

38

Media failure (loss of non-volatile
 storage)

A: 16

Solution: Make copies of data!

39

Example 1 Triple modular redundancy

•  Keep 3 copies on separate disks
•  Output(X) --> three outputs
•  Input(X) --> three inputs + vote

X1 X2 X3

40

Example #2 Redundant writes,
 Single reads

•  Keep N copies on separate disks
•  Output(X) --> N outputs
•  Input(X) --> Input one copy

 - if ok,
done

 - else try another one
➳ Assumes bad data can be detected

41

Example #3: DB Dump + Log

backup
database

active
database

log

•  If active database is lost,
–  restore active database from backup
–  bring up-to-date using redo entries in log

42

Non-quiescent Archiving

•  Log may look like:
<start dump>
<start checkpt(T1,T2)>
<T1,A,1,3>
<T2,C,3,6>
<commit T2>
<end checkpt>
Dump completes
<end dump>

43

When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery

not needed for undo
after system failure

not needed for
redo after system failure

log

time

44

Summary

•  Consistency of data
•  One source of problems: failures

 - Logging
 - Redundancy

•  Another source of problems:
 Data Sharing..... next

