Data-Intensive Computing
Systems

Concurrency Control (ll)

Shivnath Babu

How to enforce serializable schedules?

Option 1: run system, recording P(S);
at end of day, check for P(S)
cycles and declare if execution
was good

How to enforce serializable schedules?

Option 2: prevent P(S) cycles from

occurring
T1 T2 Tn
N\ o
Scheduler

A locking protocol

Two new actions:
lock (exclusive): i (A)

unlock:

ui (A)
Tll lTZ
scheduler

]

lock
table

Rule #1: Well-formed transactions

Ti: ... li(A) ... pi(A) ... Ui(A) ...

Rule #2 Legal scheduler

S=.... i(A) e, Ui(A)

Exercise:

e What schedules are legal?
What transactions are well-formed?

S1 = [1(A)l1(B)ri(A)wi(B)l2(B)ui(A)ui(B)
r2(B)w2(B)u2(B)I3(B)r3(B)u3(B)

S2 = l1(A)ri(A)wi(B)ui(A)ui(B)
12(B)r2(B)w2(B)I3(B)r3(B)us(B)

S3 = l1(A)ri(A)ui(A)l1(B)wi(B)ui(B)
12(B)r2(B)w2(B)u2(B)I3(B)r3(B)u3(B)

Exercise:

e What schedules are legal?
What transactions are well-formed?

S1 = i(A)(B)r1(A)w1(BI(B)ui(A)us(B)

r2(B)w2(B)u2(B)I3(B)r3(B)u3(B)

S2 = li(A)ri(A)yi(B)us(A)ui(B)

l2(B)r2(B)w2(B)I3(B)r3(B)us(B)

S3 = l1(A)ri(A)ui(A)l1(B)wi(B)ui(B)
12(B)r2(B)w2(B)u2(B)I3(B)r3(B)u3(B)

Schedule F

T1 T2

l1(A);Read(A)

A+ A+100;Write(A);u1(A)
12(A);Read(A)
A<+~Ax2;Write(A);u2(A)
12(B);Read(B)
B+ Bx2;Write(B);u2(B)

11(B);Read(B)
B—B+100;Write(B);u1(B)

Schedule F

T1 T2

11(A);Read(A)

A+ A+100;Write(A);u1(A)
12(A);Read(A)
A<+Ax2;Write(A);u2(A)
12(B);Read(B)
B+ Bx2;Write(B);u2(B)

11(B);Read(B)
B+--B+100;Write(B);u1(B)

A

25

25

125

250

50

150

250

150

10

Rule #3 Two phase locking (2PL)

for transactions

Ti= ... i(A) .., . Ui(A)

no unlocks no locks

11

locks
held by
Ti

Time

. Growing __ Shrinking
Phase Phase

12

Schedule G

T1 12
11(A);Read(A) f
A« A+100;Write(A) |
11(B); u1(A) ’

; I
lo(A)Read(A) T

A AX2;Write(A): (/)

13

Schedule G

™

T1

I1(A);Read(A) |

A«A+100;Write(A) |

11(B); u1(A) :
 b(A)Read(n) T
 AAX2;Write(A); (¢)

Read(B);B* B+100 :
Write(B); u1(B) '

14

Schedule G

11

Rv)

11(A);Read(A) :
A-—A+100;Write(A) |
11(B); u1(A) ’

 b(A);Read(n) 4

Read(B);B* B+100
Write(B); ui(B) '

- A—Ax2;Write(A); (=

 12(B); u2(A);Read(B)
B < Bx2;Write(B);u2(B);

15

Schedule H (T2 reversed)

T1 ™

l1(A); Read(A) ~ I2(B);Read(B)
A+ A+100;Write(A) . B+ Bx2;Write(B)

~
~

 \delayed "7 “delayed

16

e Assume deadlocked transactions are
rolled back

— They have no effect
— They do not appear in schedule

E.g., Schedule H =

N o
This space intentionally
left blank!

17

Next step:

Show that rules #1,2,3 = conflict-
serializable
schedules

18

Conflict rules for i(A), ui(A):

e li(A), li(A) conflict
e li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), ri(A)>,...

19

Theorem Rules #1,2,3 = conflict
(2PL) serializable
schedule

To help in proof:
Definition Shrink(Ti) = SH(Ti) =
first unlock

action of Ti

20

Lemma
Ti — Tjin S = SH(Ti) <¢ SH(Tj)
Proof of lemma:

Ti — Tj means that
S=..pi(A).. qgA) ..., p,qconflict

By rules 1,2:
S =..pi(A) .. ulA) .. Li(A) ... gA) ...
By rule 3: SH(TI) SH(Tj)

S0, SH(Ti) <¢ SH(Tj)

21

Theorem Rules #1,2,3 — conflict
(2PL) serializable
schedule

Proof:

(1) Assume P(S) has cycle
Ti—-T2—-.Th=T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic

(4) = S is conflict serializable

22

e Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency....

— Shared locks

— Multiple granularity

— Inserts, deletes, and phantoms
— Other types of C.C. mechanisms

23

