
Data-Intensive Computing
Systems

Introduction to

Query Processing
Shivnath Babu

Query Processing

Declarative SQL Query → Query Plan

Focus: Relational System (i.e., data is
organized as tables, or relations)

NOTE: You will not be tested on how well you know
SQL. Understanding the SQL introduced in class will be
sufficient (a primer follows). SQL is described in Chapter
6, GMUW.

SQL Primer

Select <attribute list>
From <relation list>
Where <condition list>
Example Filter Query over R(A,B,C):
Select B
From R
Where R.A = “c” ∧ R.C > 10

We will focus on SPJ, or Select-Project-Join Queries

SQL Primer (contd.)

Select <attribute list>
From <relation list>
Where <condition list>
Example Join Query over R(A,B,C) and S(C,D,E):
Select B, D
From R, S
Where R.A = “c” ∧ S.E = 2 ∧ R.C = S.C

We will focus on SPJ, or Select-Project-Join-Queries

 R A B C S C D E

 a 1 10 10 x 2

 b 1 20 20 y 2

 c 2 10 30 z 2

 d 2 35 40 x 1

 e 3 45 50 y 3

Answer B D
 2 x

 Select B,D
 From R,S

 Where R.A = “c” ∧
S.E = 2 ∧ R.C=S.C

•  How do we execute this query?

 - Do Cartesian product
 - Select tuples
 - Do projection

One idea

 Select B,D
 From R,S
 Where R.A = “c” ∧ S.E = 2 ∧
R.C=S.C

R X S R.A R.B R.C S.C S.D S.E

 a 1 10 10 x 2

 a 1 10 20 y 2
 .
 .

 c 2 10 10 x 2
 .
 .

Bingo!

Got one...

 Select B,D
 From R,S

 Where R.A = “c”
∧ S.E = 2 ∧
R.C=S.C

Relational Algebra - can be used to
 describe plans Ex: Plan I

 ΠB,D

 σR.A=“c”∧ S.E=2 ∧ R.C=S.C	

	

	

 	

 	

 	

 X
 R S

Relational Algebra Primer
(Chapter 5, GMUW)

Select: σR.A=“c”∧ R.C=10
Project: ΠB,D

Cartesian Product: R X S
Natural Join: R S

Relational Algebra - can be used to
 describe plans Ex: Plan I

 ΠB,D

 σR.A=“c”∧ S.E=2 ∧ R.C=S.C	

	

	

 	

 	

 	

 X
 R S

 OR: ΠB,D [σR.A=“c”∧ S.E=2 ∧ R.C = S.C (RXS)]	

Another idea:

 ΠB,D

 σR.A = “c” σS.E = 2

 R(A,B,C) S(C,D,E)

Plan II

 natural join

 Select B,D
 From R,S

 Where R.A = “c” ∧
S.E = 2 ∧ R.C=S.C

 R S

A B C σ (R) σ(S) C D E

a 1 10 A B C C D E 10 x 2

b 1 20 c 2 10 10 x 2 20 y 2

c 2 10 20 y 2 30 z 2

d 2 35 30 z 2 40 x 1

e 3 45 50 y 3

 	

 Select B,D
 From R,S

 Where R.A = “c” ∧
S.E = 2 ∧ R.C=S.C

Plan III
 Use R.A and S.C Indexes

 (1) Use R.A index to select R tuples
 with R.A = “c”

 (2) For each R.C value found, use S.C
 index to find matching tuples

 (3) Eliminate S tuples S.E ≠ 2
 (4) Join matching R,S tuples, project
 B,D attributes, and place in result

 R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

c 7 15 	

A C
I1 I2

=“c”

<c,2,10> <10,x,2>

check=2?

output: <2,x>

next tuple:
<c,7,15>

parse

Query rewriting

Physical plan generation

execute

 result

SQL query

parse tree

logical query plan statistics

physical query plan

Query
Optimization

Query
Execution

Overview of
Query

Processing

Example Query

 Select B,D
 From R,S
 Where R.A = “c” ∧ R.C=S.C

Example: Parse Tree
<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Cond>

<Attribute> <SelList> <RelName> <FromList> <Cond> AND <Cond>

B <Attribute> R <RelName>

S
<Attr> <Op> <Const>

<Attr> <Op> <Attr>

R.A = “c”

R.C S.C =

D

Select B,D
From R,S
Where R.A = “c” ∧ R.C=S.C

Along with Parsing …

•  Semantic checks
– Do the projected attributes exist in the

relations in the From clause?
– Ambiguous attributes?
– Type checking, ex: R.A > 17.5

•  Expand views

parse

Query rewriting

Physical plan generation

execute

 result

SQL query

parse tree

logical query plan statistics

physical query plan

Initial logical plan

“Best” logical plan

Logical plan

Rewrite rules

Initial Logical Plan

Relational Algebra: ΠB,D [σR.A=“c”∧ R.C = S.C (RXS)]	

Select B,D
From R,S
Where R.A = “c” ∧
R.C=S.C

πB,D

σR.A = “c” Λ R.C = S.C

X
R S

Apply Rewrite Rule (1)

ΠB,D [σR.C=S.C [σR.A=“c”(R X S)]]	

πB,D

σR.A = “c” Λ R.C = S.C

X
R S

πB,D

σR.A = “c”

X
R S

σR.C = S.C

Apply Rewrite Rule (2)

ΠB,D [σR.C=S.C [σR.A=“c”(R)] X S]	

πB,D

σR.A = “c”

X

R

S

σR.C = S.C

πB,D

σR.A = “c”

X
R S

σR.C = S.C

Apply Rewrite Rule (3)

ΠB,D [[σR.A=“c”(R)] S]	

πB,D

σR.A = “c”

R

S

πB,D

σR.A = “c”

X

R

S

σR.C = S.C
Natural join

Some Query Rewrite Rules

•  Transform one logical plan into another
– Do not use statistics

•  Equivalences in relational algebra
•  Push-down predicates
•  Do projects early
•  Avoid cross-products if possible

Equivalences in Relational Algebra

R S = S R Commutativity
(R S) T = R (S T) Associativity

Also holds for: Cross Products, Union, Intersection
R x S = S x R
(R x S) x T = R x (S x T)
R U S = S U R
R U (S U T) = (R U S) U T

Apply Rewrite Rule (1)

ΠB,D [σR.C=S.C [σR.A=“c”(R X S)]]	

πB,D

σR.A = “c” Λ R.C = S.C

X
R S

πB,D

σR.A = “c”

X
R S

σR.C = S.C

Rules: Project

Let: X = set of attributes
 Y = set of attributes
 XY = X U Y

πxy (R) =

πx [πy (R)]

Let p = predicate with only R attribs
 q = predicate with only S attribs
 m = predicate with only R,S attribs

σp (R S) =

σq (R S) =

Rules: σ + combined

 [σp (R)] S

 R [σq (S)]

Rules: σ + combined (continued)

σp∧q (R S) = [σp (R)] [σq (S)]

σp∧q∧m (R S) =

 σm [(σp R) (σq S)]

σpvq (R S) =

 [(σp R) S] U [R (σq S)]

σp1∧p2 (R) → σp1 [σp2 (R)]

σp (R S) → [σp (R)] S
R S → S R

πx [σp (R)] → πx {σp [πxz (R)]}

Which are “good” transformations?

Conventional wisdom: do projects early

Example: R(A,B,C,D,E)
 P: (A=3) ∧ (B=“cat”)

πE {σp (R)} vs. πE {σp{πABE(R)}}

 But: What if we have A, B indexes?

B = “cat” A=3

 Intersect pointers to get
 pointers to matching tuples

Bottom line:

•  No transformation is always good
•  Some are usually good:

– Push selections down
– Avoid cross-products if possible
– Subqueries à Joins

Avoid Cross Products (if possible)

•  Which join trees avoid cross-products?
•  If you can't avoid cross products, perform

them as late as possible

Select B,D
From R,S,T,U
Where R.A = S.B ∧
R.C=T.C ∧ R.D = U.D

More Query Rewrite Rules

•  Transform one logical plan into another
– Do not use statistics

•  Equivalences in relational algebra
•  Push-down predicates
•  Do projects early
•  Avoid cross-products if possible
•  Use left-deep trees
•  Subqueries à Joins
•  Use of constraints, e.g., uniqueness

parse

Query rewriting

Physical plan generation

execute

 result

SQL query

parse tree

Best logical query plan statistics

Best physical query plan

Physical Plan Generation

πB,D

σR.A = “c”

R

S

Natural join

Best logical plan
R S

Index scan Table scan

Hash join

Project

parse

Query rewriting

Physical plan generation

execute

 result

SQL query

parse tree

Best logical query plan statistics

Best physical query plan

Enumerate possible
physical plans

Find the cost of
each plan

Pick plan with
minimum cost

Physical Plan Generation

 Logical Query Plan

 P1 P2 …. Pn

 C1 C2 …. Cn

 Pick minimum cost one

Physical
plans

Costs

πB,D

σR.A = “c”

R

S

Operator Plumbing

•  Materialization: output of one operator written to
disk, next operator reads from the disk

•  Pipelining: output of one operator directly fed to
next operator

πB,D

σR.A = “c”

R

S

Materialization

Materialized here

πB,D

σR.A = “c”

R

S

Iterators: Pipelining

è Each operator supports:
•  Open()
•  GetNext()
•  Close()

Iterator for Table Scan (R)
Open() {
 /** initialize variables */
 b = first block of R;
 t = first tuple in block b;
}

GetNext() {
 IF (t is past last tuple in block b) {
 set b to next block;
 IF (there is no next block)
 /** no more tuples */
 RETURN EOT;
 ELSE t = first tuple in b;
 }
 /** return current tuple */
 oldt = t;
 set t to next tuple in block b;
 RETURN oldt;
}

Close() {
 /** nothing to be done */
}

Iterator for Select

Open() {
 /** initialize child */
 Child.Open();
}

GetNext() {
 LOOP:
 t = Child.GetNext();
 IF (t == EOT) {
 /** no more tuples */
 RETURN EOT;
 }
 ELSE IF (t.A == “c”)
 RETURN t;
 ENDLOOP:
}

Close() {
 /** inform child */
 Child.Close();
}

σR.A = “c”

Iterator for Sort

Open() {
 /** Bulk of the work is here */
 Child.Open();
 Read all tuples from Child
 and sort them
}

GetNext() {
 IF (more tuples)
 RETURN next tuple in order;
 ELSE RETURN EOT;
}

Close() {
 /** inform child */
 Child.Close();
}

τR.A

•  TNLJ (conceptually)
 for each r ∈ Lexp do
 for each s ∈ Rexp do
 if Lexp.C = Rexp.C, output r,s

Iterator for Tuple Nested Loop Join

Lexp Rexp

Example 1: Left-Deep Plan

R1(A,B)

TableScan

R2(B,C)

TableScan
R3(C,D)

TableScan

TNLJ

TNLJ

Question: What is the sequence of getNext() calls?

Example 2: Right-Deep Plan

R3(C,D)

TableScan

TNLJ

R1(A,B)

TableScan

R2(B,C)

TableScan

TNLJ

Question: What is the sequence of getNext() calls?

Cost Measure for a Physical Plan

•  There are many cost measures
– Time to completion
– Number of I/Os (we will see a lot of this)
– Number of getNext() calls

•  Tradeoff: Simplicity of estimation Vs.
Accurate estimation of performance as
seen by user

