COMPSCI 590: Graph Algorithms March 22, 2015

Lecture 18
Lecturer: Debmalya Panigrahi Scribe: Nat Kell

1 Introduction

In this lecture, we examine the Steiner tree and forest problems in the online setting, i.e., terminals are
revealed to algorithm in an unknown sequence and connectivity must be maintained after each terminal
arrival. We will examine two algorithms: the first is the natural greedy algorithm (connect each terminal
using cheapest extension of the current solution), which we show achieves competitive ratios O(logk) and
0(10g2 k) for the Steiner tree and forest cases, respectively, where k is the number of terminals. We will then
show how to slightly modify this greedy algorithm to improve this bound to O(logk) for the Steiner forrest
case (which is optimal up to constants).

2 Online Steiner Tree

2.1 Online algorithms

In all the problems we have previously examined this semester, we assumed the entire input for the problem
is available at the outset of the algorithm. However this assumption can be unrealistic; many time in practice,
the input for a problem arrives over time and decisions must be made before seeing the entire input. This
motivates examining problems under the online model. In the online paradigm, each piece of input is
revealed to the algorithm in an unknown sequence and the algorithm must make irrevocable assignment(s)
for the current piece of input before receiving the rest of the sequence.

Since the algorithm must make decisions before seeing the entire input, some of its assignment are likely
to be suboptimal. However, much like the analysis we have done for approximation algorithms for NP-hard
problems, we would like to be able bound this suboptimality and claim that the algorithm’s solution is
never too far from the best possible offline solution. Therefore, we define the competitive ratio of an online
algorithm to be the worst case ratio, over all input sequences /, between the cost the online algorithm on /
to the cost of the optimal solution for /. Note that this is exactly the same definition as the approximation
ratio for offline problems; the only difference is that here, the algorithm’s suboptimal performance is due to
a lack of future information (whereas in the offline setting, suboptimality is forced by restricting the amount
of time we have for solving the problem).

2.2 Online Steiner tree definition

In the online setting, the Steiner tree problem is defined as follows. At the outset, the algorithm is given
an entire graph G = (V, E) with non-negative edge weights. Terminal vertices (f1,...,%) =T C V are then
revealed to the algorithm one at a time in an unknown sequence. When a terminal ¢ arrives, the algorithm
is required buy additional edges (i.e. add these edges to its current solution) so that for each previously
revealed terminal ¢;, there is some path from 7; to #; in the algorithm’s solution. Like in the offline problem,
the goal is to minimize the total cost of the edges bought by the algorithm.

18-1

2.3 The Greedy Algorithm

One can show the following lower bound for the online Steiner tree (although we will not cover its proof in
this lecture):

Theorem 1. The competitive ratio of any online algorithm for Steiner Tree is Q(logk), where k is the number
of terminals.

The most natural algorithm to try first is the following greedy approach: For each terminal arrival #,
we buy the cheapest set of unpurchased edges that connects #; to the algorrthm’s current solution, i.e., the
shortest shortest path between #; and all previous terminals #; where j < i. For the Steiner tree problem, this
turns out to be optimal (however, later on we will need a knew approach in order to solve the Steiner forest
problem optimally). For the rest of the section, it will be our goal to show the following:

Theorem 2. The greedy algorithm for Steiner tree has competitive ratio O(logk), where k is the number of
terminals.

Therefore this result, along with Theorem [T} shows that the greedy algorithm is optimal for online Steiner
tree.

2.4 Greedy algorithm analysis via dual fitting

To show Theorem 2] we will use a technique known as dual fitting. The overall approach will be to relate the
cost of the algorithm’s (primal) solution to a feasible set of dual solutions. By weak duality, we know that
the cost of any feasible dual solution is a lower bound on the optimal primal cost; therefore, if we bound the
cost between the primal and these dual solutions, then we establish competitiveness. Note that in this case,
the online algorithm does not know about or work with these dual solutions in any way—the dual structure
is only being exploited for our analysis in hindsight.

More formally, suppose that for any run of the algorithm, we can construct 3 feasible dual solutions
(i.e., each dual solution is a complete and independent assignment of the variables in the dual LP) such that
the final primal cost is at most 7y times the total cost of all B dual objectives. Since each dual is feasible, the
average dual solution D’ must be feasible, as well; therefore, the algorithm’s cost is at most - 8 times the
cost of D', which by weak duality (as discussed above) implies that the algorithm is (yf3)-competitive. For
our analysis in this section, we set Yy = O(1) and B = logk, which implies the desired O(logk) competitive-
ratio bound.

For completeness, recall the primal LP for Steiner tree (relaxation):

min Z CeXe
ecE

st.VSeT Z xe > 1
e3(S)

X, >0,

where c, is the weight of edge ¢ in G, T is the set of cuts on G that separate at least one pair of terminals,
and 8(S) is the set of all edges crossing cut S. The dual of this LP is given as follows:

18-2

max Z ys
SeT

st.Ve€eE Z ys < ¢,
S:ecé(S)

ys > 0.

By scaling we will assume the cost of the optimal Steiner tree is k. Therefore, we will also assume that
all shortest paths picked by the algorithm have length at least 1. This is a safe assumption since the total cost
of paths with length less than 1 is at most &, and therefore the cost added from these paths can be charged to
the optimal solution without affecting our bound asymptotically.

With these assumptions, we partition the terminals into logk classes Ci,...,Ciogx based on the lengths
of the shortest paths chosen to connect them to the current Steiner tree. Namely, we place terminal #; with
shortest-path length /; in class C; if 2/=1 < ¢, < 2J. We will associate a dual LP D ; with each class Cj, i.e.,
we will add cost to dual D; for all terminals in class C;. Similar to the analysis we used for offline Steiner
tree, we will think of a dual update for terminal #; as placing a ball centered at vertex ¢;. Here we will choose
the radius of this ball to be 2/72 if ¢; is in class j (i.e., we will grow a ball of radius 2/2 starting at set the
{t;}; see the lectures notes for offline Steiner tree for more explicit details on how exactly this ball growing
process is implemented in terms of setting dual variables).

Since the primal increase for a terminal in class C; is at most 2/ and the added cost to D; is 2/72, the
primal increase is within a constant factor of the corresponding dual increase (i.e. we can set y =4 = O(1)).
Thus, it remains to be shown that each dual is feasible after we run this process. Namely, we will show that
we do not place any “overlapping” balls in a given dual D; (which is enough to show dual feasibility). For
sake of contradiction, assume that at least two balls do in fact overlap in dual D;. Since the balls in dual D;
have radius 2/72, this implies there exists two terminals #; and #; that are at most 2/~2 4 2/=2 = 2/~ distance
from one another where i < i’. However, we placed terminal #; in class C; because its distance to the closest
previous terminal was greater than 2/~!, which is a contradiction since terminal #; is at most distance 2/~
from #;.

Therefore, each dual D; we construct is feasible. By our earlier discussion, this implies Theorem @, ie.,
the greedy algorithm is O(logk) competitive for online Steiner tree.

3 Online Steiner Forest

We will now examine the Steiner forest problem in the online setting. Recall that in the Steiner forest
problem, we are again given an undirected edge weighted graph G, but instead of a sequence of terminals,
we are given a sequence of terminal pairs (sy,#1), (s2,%2),. .., (S, %). Now the goal is to find a subgraph F of
minimum cost such that there exists a path between terminals s; and #; in F' for all terminal pairs (s;,#;). In
the online setting, pairs are revealed in a sequence, and connectivity must be established between an arriving
pair before observing future terminal pairs.

3.1 Greedy algorithm for Steiner forest

Since the greedy algorithm proved to be competitively optimal in the Steiner tree case, it seems like it should
be a first good attempt at an algorithm for Steiner forest. In order to make the approach viable, we will use
a slightly alternate definition of greediness. When a terminal pair (s;,#;), we will connect them using the

18-3

shortest path between them in the current graph; however now, we will then contract all the edges along this
path into a single node before continuing (another way of defining the algorithm is that to say that we are
picking the shortest path such that we only pay for the edges we have not selected yet).

In the Section[3.2], we will show the following theorem.

Theorem 3. The greedy algorithm for Steiner tree has competitive ratio 0(10g2 k), where k is the number
of terminals.

Observe that we will have to lose an extra log k factor in order for our analysis to work. Later we will outline
how to refine the greedy algorithm in order to bring the bound back down to O(logk). Note that there are
no known lower bounds showing that greedy algorithm is @(logk) competitive; however as of now, our best
analysis gives a O(log? k) competitive ratio.

3.2 Greedy algorithm analysis via dual fitting and girth theorems

We will run into issues if we try to directly employ our dual fitting analysis from the Steiner tree case.
Naively, if the shortest path between s; and #; is length 2/, we would just place balls of radius 2/~3 around
both s; and #; in D; (using the same dual/class structure we used before). Recall that the way we arrived a
contradiction in the Steiner tree analysis is that within a given dual D; if we had overlapping dual balls for
two terminals # and ¢, it implied that #; was not assigned greedily since connecting to #; was an available
choice and such an overlap for implies #; and ¢y are too close to be placed in dual D;. But in the Steiner
forest case, we may not be required to connect ¢y to ¢;, and thus overlapping dual balls do not necessarily
contradict the greediness of the algorithm.

We will fix this issue by still trying our best to stick to original analysis, while essentially “skipping”
ball placements that will create an overlap. We will then use a separate charging argument to establish that
the cost that we do not account from these skips can be bounded by the cost that we charge to actual ball
placements. We will also lower our expectations a bit by reducing the radii of the balls by a logk factor.

More explicitly, we will place attempt to place dual balls around both s; and #; of size 2/~3 /logk in dual
D; (where the shortest path between s; and #; is between 2/=1 and 2/). If either ball can be placed without
overlapping any previously placed dual balls, then we go ahead and do the placement. Otherwise, there
exists previous terminals @ and b such that the balls around s; and #; overlap with the balls around a and
b, respectively. Since we are not placing a ball around s; nor ¢;, we will instead add a meta edge between
terminals a and b. We will call the resulting graph formed by meta edges in dual D; the meta graph M.

Our first step in this new charging scheme is to show the following lemma.

Lemma 4. If for all j =1,...,logk, meta graph M; = (V;,E;) has O(k;) edges where |V;| = kj, then the
greedy algorithm is O(log? k) competitive.

Proof. Based on the construction, each vertex in M; is a terminal that we successfully placed around in dual
D;. Each edge we place in M; corresponds to two dual balls that we could not place in D;; however since
there are O(k;) edges in M;, it follows that the total cost from these skipped ball placements must be within
a constant factor of the to cost of the balls we do place since each ball in D; is of equal size.

Therefore, the total cost of our dual solution is O(logk) times the total primal cost, since the balls we are
placing are scaled down by a logk factor. Since there are log k dual solutions, it follows that the algorithm is
O(log? k) competitive (we are setting ¥ = 8 = logk; see the dual fitting parameters we discussed earlier in
Section[2.3). O

18-4

Figure 1: Illustration of the argument in Lemma Since both the balls around #; and s overlap with u;’s
ball, there must be a path from ¢; to s; of length at most 2/=1/logk (the first dotted path). Since s and
ty must be connected in the algorithm’s solution, the second dotted path can be used for free (given our
modified notion of greediness).

Therefore in order to establish Theorem we are left with showing that meta graph M; has O(k;) edges.
To do this, define the girth of a graph to be the length of its shortest cycle (in terms of the number of edges).
We will utilize the following well-known theorem in extremal graph theory [[1]:

Theorem 5. For any graph G = (V, E) with girth g and |V | = n, we have |E| = O(n'*¢/8) for some universal
constant c.

This gives us the following corollary.
Corollary 6. If the girth of a graph g = O(logn), then |E| = O(n).

Thus, it is sufficient to establish that there cannot be a cycle shorter than length logk; in M.
Lemma 7. For j=1,...,logkj, all cycles in M; have more than logk; edges.

Proof. For sake of contradiction, assume that at some point during the algorithm, the arrival of terminal pair
(si,2;) makes us place a meta edge between previous terminals a and b such that edge (a,b) now completes a
cycle of length ¢ < logk; in meta graph M;. Let C = (a = u1,...uy;| = b) denote the sequence of terminals
in this cycle. For each edge (u,up41) in C, we know that there is some terminal ¢; that overlapped with u;,’s
ball and another terminal pair (s;/,#;) where s ;s ball overlapped with u;,’s ball and #;’s ball overlapped with
up+1’s ball. Observe that since (s;/,¢;/) arrived before (s;,;) in the online sequence and we contract paths that
are already connected in the algorithm’s solution, this gives us a path of cost at most 2/~! /logk from ¢ jtotj.
This is true since the overlapping balls between ;,u;, and s imply that taking the shortest path from ¢; to
up, and then taking the shortest path from uy to ¢ has cost at most 2/ 73 /logk+2-2/72 /logk+2/7% /logk =
2/=1/logk (which then allows us to take the connected path from s to t; for free; see Figure 1).

Applying this argument for every meta edge in the cycle, we obtain a path of length £-2/~! /logk < 2/~!
since ¢ < logk; < logk; however, this is a contradiction since this implies that the shortest path between s;
and #; is at most 2/, and therefore we should not be placing a ball in dual D I O

18-5

Lemma [Corollary [6l and Lemma [7] collectively imply Theorem [3] i.e., the greedy algorithm is
O(log? k) competitive for the online Steiner forest problem.

3.3 Obtaining a O(logk) competitive algorithm: Augmented Greedy

To finish the section, we will outline how to improve the greedy algorithm from Section to obtain an
O(logk) competitive algorithm. The idea is that the algorithm will still run the greedy algorithm, but at the
same time maintain state regarding the dual fitting analysis and when we must place meta edges. We will we
will now place balls of radius 2773, i.e., we will not scale our ball radii down by a logk factor as we did for
the vanilla greedy algorithm; however, anytime we add a meta edge between two terminals a and b because
the dual balls of arriving terminals s; and #; intersected a and b’s balls, respectively, we will then add both
the shortest paths from a to s; and from b to #; to our solution (in addition to the greedy path between s; and
t).

Observe that since the shortest path between s; and #; is at most 2/ and intersections between s; and a’s
balls and #; and b’s balls imply both pairs are at most 2/~2 distance from one another, these “augmented”
paths will increase the algorithm’s cost by at most a constant factor. The inclusion of the augmented paths
will then allow us to claim that our meta graph is a tree, which we argue in the following lemma. This is
sufficient for the dual fitting analysis from the previous section to go through while setting y = O(1) and
B = logk, yielding the desired O(logk) competitive ratio bound.

Lemma 8. For j=1,...,logk;, meta graph M; is a tree for the augmented greedy algorithm.

Proof. We will use the same setup that we used in Lemma [/} Assume for sake of contradiction that the
arrival of terminal pair (s;,7;) results in the placement of edge (a,b) in meta graph M that completes a cycle
C = (a=uy,...,up =Db). As discussed above, since a and s;’s balls overlap, there exists a path between a
and s; of length at most 2/72; the same argument applies for b and t;.

Now, consider an edge (uj,up 1) in C where h # 1 and h+ 1 # £. Just as in the case of the vanilla
greedy algorithm, it follows that there is a terminal 7; whose ball intersects u;,’s ball and a terminal pair
(sj,ty) where s;’s ball intersects u;’s ball and #;’s ball intersects uy1’s ball. However, when terminal ¢;
caused the placement of a meta edge (namely, (e;_1,ep)), the algorithm added a path from ¢; to uy, to its
solution. The same can be said for s and uy; therefore, there exists a path in the algorithm’s solution from
tj to sjy. Clearly there is a path between s and ¢; in the algorithm’s solution, and therefore there is a path
from #; to ¢ that is of zero cost to the algorithm.

Applying this argument for every meta edge (uy,uy 1), it follows the there exists a path of cost 2/7!
from s; to ¢;; this path is composed of the initial and ending paths from s; to a and b to #;, along with a
free path from a to b via the free paths for each meta edge (whose existence we just argued). This again
gives us the desired contradiction, since the shortest path for any terminal pair in dual D; must be more than
271 O

References

[1] Béla Bollobas. Extremal Graph Theory. Academic Press, 1978.

18-6

	Introduction
	Online Steiner Tree
	Online algorithms
	Online Steiner tree definition
	The Greedy Algorithm
	Greedy algorithm analysis via dual fitting

	Online Steiner Forest
	Greedy algorithm for Steiner forest
	Greedy algorithm analysis via dual fitting and girth theorems
	Obtaining a O(logk) competitive algorithm: Augmented Greedy

