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Lecture 24
Lecturer: Debmalya Panigrahi Scribe: Xi He

1 Overview

In the past, we learned how to solve the minimum cut problem, but the maximum cut problem is also
interesting and important. This first part of the lecture covered the maximum cut problem, and then the
second part introduced metric embedding with its application on group steiner tree problem.

2 The Maximum Cut Problem

Definition 1. C = (S,5) is a partition of V of a graph G = (V,E) into two disjoint subsets S and S. The
cut-set of a cut C = (S,5) is the set {(u,v) € Elu € S,v € S} of edges that have one endpoint in S and the
other endpoint in S.

In this note, the cut C is referred as the cut-set and the size of the cut |C| as the size of the cut-set. For
a graph, a maximum cut is a cut whose size is at least the size of any other cut. The problem of finding
a maximum cut in a graph is known as the maximum cut problem. The problem is NP-hard. Simple 0.5-
approximation algorithms existed long time ago, but no improvement was made till 1990s by Goemans and
Williamson [GW95] using semidefinite programming and randomized rounding that achieves an approxi-
mation ratio 0.878. We describe one 0.5-approximation algorithm in Section 2.1 and then Goemans and
Williamson’s method in Section 2.2.

2.1 Simple Approximation Algorithm

In this section, we present a simple deterministic polynomial-time 0.5-approximation algorithm based on
local optimum solution described below.

Definition 2. Given G = (V,E), for all v € V, a cut is local optimum for the maximum cut problem, if for
all v € V, the number of neighbors on the side of v is less or equal to the number of neighbors on the other
side of the cut.

We first start with an arbitrary partition of the vertices of the given graph G = (V,E). A search of local
optimum is carried out by finding a vertex which has more neighbors on its side than the other side of the
cut. If such vertex exists, move this vertex to the other side of the cut, which will improve the size of the
current cut. This search continues till no such vertex can be found.

Theorem 1. Given G = (V,E), the approximation factor of a local optimum solution for the maximum cut
problem is %
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Proof. The size of the local optimum cut is bounded by half of the total number of edges as shown below.

1
# of edges in the cut = 3 Z d!, where d,, = # of edges in the cut incident to v
veV
1 1 1 1
> = ~dy = — dv:7|E‘
2 v;; 2 4 vez", 2
As the total number of edges is the upper bound for the maximum cut, the approximation factor is % 0

2.2 Improved Approximation Algorithm

The maximum cut problem can be written as a linear program in the following way: Given a graph G =
(V,E), where V = {1,...,n}, let x;; be the indicator variable for each edge (i, j) € E to be chosen in the cut.

Maximize Y(i,j)eE Xij
subject to YeerXxe <2 Vtriangle T 1)
xij < xig +xj ¥V triangle (i, j, k) ()

0<x;;<1 V(i,j)€E

The objective function is to maximize the cut, i.e. the sum of indicator variables. Equation (1) and (2)
are a set of constraints based triangles K3. A triangle has three edges and at most 2 edges can appear in
the cut, which gives Equation (1). In addition, if two edges of a triangle do not exist in the cut, the third
edge should not appear in the cut as well. This observation is part of the triangle inequality constraints, as
summarized in Equation (2). It is not clear how to solve this linear program, but Goemans and Williamson
[GWO5] first formulated the problem into a quadratic problem, and then converted the quadratic problem
into a semi-definite problem. The quadratic problem is described as follows. Given a graph G = (V,E),
where V = {1,...,n}, let x; be an variable associated to each vertex i € V, the solution to the maximum cut
problem is given by the following integer quadratic program:

1—x;x;

Maximize LiijjeE 3
subjectto x; € {—1,+1} VieV 3)
The solution of the above program gives a set S = {i|x; = +1} and § = {i|x; = —1}, which corresponds to a

. 1—xix;
cut of size }.(; jek ;’x-’

Solving this integer quadratic program is NP-complete, Goemans and Williamson relax the problem to
higher dimension. Equation (3) restricts the variable x; to be a 1-dimensional vector of unit norm. The
relaxations is defined by allowing x; to be a multidimensional vector v; of unit Euclidean norm. Since the
linear space spanned by the vectors v; has dimension at most n, we can assume that these vectors belong to
n-dimensional unit sphere S,,. The resulting relaxation gives this semidefinite program:

Maximize L(ij)eE 17;”/1.
subjectto ||vi||=vi-vi=1 Vi€V, 4)

where v; - v; represents the inner product of v; and v;.
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This semidefinite program is no longer NP hard, but can be solved to arbitrary precision in polynomial
time. First, setting v; - v; = d;; gives an linear objective function:
Maximize Y. ek 1%1’7
subjectto d; =1 VieV
D=VTy, )

where V = (vy,...,v,). Though Equation (5) is not linear constraint, D is a positive semi-definite matrix
and hence x” Dx > 0, for all x. Therefore, Equation (5) is equivalent to a set of infinite number of linear
constraints. We have seen in the previous lectures, regardless of exponential or infinite number of linear
constraints, as long as we can find a separate oracle, we can solve this linear program in polynomial time.

Given the solution of this semidefinite program (vy,...,v,), a simple randomized algorithm is used for
the rounding step in the maximum cut problem: choose a random hyperplane through the origin (let r be
a vector uniformly distributed on the unit sphere S,), and partition the vertices into those vectors that lie
‘above’ the plane (S = {i|[v;-r > 0}) and those that lie ‘below’ it (§ = {i|v;- r < 0}).

Let W denote the size of the cut produced in this way, and E[W| be the expected size of the cut which is
characterized in the theorem below.

Theorem 2.

E[W]|= Z arccos(v; - v;).
(i,j)€E

Proof. Given a vector r drawn uniformly from the unit sphere S,, we get by the linearity of expectation that

EW] = Z Prisgn(vi-r) # sgn(v;j-r)]
(i.j)€EE
-y arccos(v; - v;)
(i.J)eE T
1
= — arccos(v; - vj),
T (i f)eE
where sgn(x) = 1 if x > 0, and —1 otherwise. O
Theorem 3. Given the solution of the semidefinite program is (vi,...,v,) with its cut size Y.(; j)cg 1_;"v-’,

the ratio between E[W| and this size is greater than 0.878.

Proof. By Theorem 2, the ratio can be written as

1 1—v;v;
T Z(:}j)eE arccos(v;-v;)/ Z(zy J)EE T3
2. arccos(v;-v;)
= 7 NG HEE Ty
= 2min; jep —l—, where 6;; = arccos(v;,v;)
- T (lm/)eE 1700S9,'j’ 1y »rJ
2 - 6
= 7 MIMN0<O<7 T=cos59
> 0.878

The last inequality can be obtained using simple calculus, one can see that the ratio achieves its value for
0 = 2.331122, which is the nonzero root of cos@ + 0sinf = 1. O
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Though the discussion here is on unweighted graphs, the weighted problem can be approached in the
same way. Similarly, semidefinite program can be useful to solve other NP-hard problems, one example is
sparse cut problem, where the size of the smaller side of the cut is minimized.

3 Metric Embedding

In this section, we introduce metric embedding concept to map vertices in one metric space to anther metric
space, with minimum distortion, and then solve group steiner tree problem with this metric embedding
techniques. First, a-probabilistically approximate metric space of a metric space M defined in [GKO0O0] is
described below.

Definition 3. A set of metric spaces S over V is said to a-probabilistically approximate a metric space M
overV, if (1) forall x,y €V and S € ., ds(x,y) > dy(x,y), and (2) there exists a probability distribution
D over metric spaces in . such that for all x,y € V, Eldp(x,y)] < ady(x,y).

Here we just consider one metric space M, over V to o.-approximate V in the metric space M, such that

o - dp, (u,v) > dy, (u,v) > dp, (u,v),Vu,v € V.

Example 1. If embedding a complete graph K, into a line graph L,,, the approximation factor « is the n, i.e.

n-dg,(u,v) >dp, (u,v) > dg, (u,v),Yu,v € V.

Example 2. If embedding a general graph G = (V,E) into a tree, the approximation factor ¢ is O(logn),
by Bartal [Bar96]. This technique is useful to solve the group steiner tree problem [GKOO]. This problem
can be stated formally as follows: we are given a graph G = (V, E) with the cost function ¢ : E — R™ and
subsets of vertices g1,...gx C V. We call gy,..., g, groups. Given a root r € V, the objective is to find the
minimum cost subtree T of G that connects r to each of the set g;. The following linear programming is the
relaxation of the group steiner tree problem:

Minimize Yeck CeXe
subject to  Y,c(s5% > 1,VS Ji, s.t. g C S, re S
x>0

For a general graph G, rounding for this linear programming is not clear, but for a tree graph 7" = (V, E)
is possible. Let the optimal solution for 7" to the linear program be 7’. The rounding step starts from edges
incident on root r. For each edge e, if its parent edge of e, denoted by f is included, then include e with
probability ;—;; and with probability 0 otherwise. If e is incident on r, include it with probability x.. The
expected cost of the tree T picked by this random experiments is equal to the cost of the optimal solution
T’ to the linear program. A general graph can be embedded into a tree space with distortion of O(logn) and
solve the group steiner tree problem in the tree space. The next lecture will continue this topic.

4 Summary

This lecture covered the maximum cut problem which can be solved with semi-definite programming and
group steiner tree with metric embedding technique.
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