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Memory Management Units (MMUS) are traditionally

used by operating systems to implement disk-paged vir-

tual memory. !30me operating systems allow user pro-

grams to specify the protection level (inaccessible, read-

only. read-write ) of pages, and allow user programs

to handle protection violations. but these mechanisms

are not, always robust, efficient,, or well-matched to the

needs of applications,.

We survey several user-level algorithms that make use

of page-protection techniques, and analyze their com-

mon characteristics. in an attempt to answer the ques-

tion, “M7hat virtual-memory primitives should the op-

erating system provide to user processes, and how well

do today’s operating systems provide them?’

1 Introduction

The ‘“traditional>” purpose of virtual memory is to in-

crease the size of the address space visible to user pro-

grams, by allowing only the frequently-accessed subset

of the address space to be resident in physical menl-

ory. But. virtual memory has been used for many

other purposes. Operating systems can share pages be-

tween processes, make instruction-spaces read-only (and

thus guaranteed re-entrant ), make portions of memory

zeroed-on-demand or copy-on-write, and so on [18]. In

fact. there is a. large class of “tricks” that, operating sys-

tems can perform using the page protection hardware.

Modern operating systems allow user programs to

perform such tricks too, by allowing user programs

to provide “handlers’> for protection violations. Unix,

for example, allows a user process to specify that a

particular subroutine is to be executed whenever a

segmentation-fault signal is generated. When a pro-

gram accesses memory beyond its legal virtual address

range, a user-friendly error message can be produced by

the user-provided signal handler, instead of the ominous

“segmentation fault: core dumped.”
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This simple example of a user-mode fault handler is

“dangerous;” because it may lead the operating-system

and hardware designers to believe that user-mode fa.ult-

handlers need not. be entered efficiently (which is cer-

tainly the case for the “graceful error shutdown” ex-

ample ). But there are much more interesting applicat-

ions of user-mode fault handlers. These applications

exercise the page-protection and fault-handling mecha-

nisms quite strenuously, and should be understood by

operating+yst em implementors.

This paper describes several algorithms that make use

of page-protection techniques. In many cases, the algo-

rithms can substitute the use of “conventional’” paging

hardware for the “special” microcode that, has some-

times been used. On shared-memory multiprocessors,

the algorithms use page-protection hardware to achieve

medium-grained synchronization with low overhead, in

order to avoid synchronization instruction sequences

that have noticable overhead.

We have benchmarked a. number of systems to analyze

how well today’s operating systems support user-level

page-protection techniques. Finally, from these algo-
rithms we draw lessons about page-protection costs. the

utility of memory-mapping mechanisms. translation-

buffer shootdowns, page sizes and other aspects of op-

erating system implementation.

2 Virtual memory primitives

Each of the algorithm we will describe require some of

the following virtual-memory services from the operat-

inr svstern:
“v

TRAP :

PROT1:

PROT~:

UNPROT:

DIRTY:

MAP~:

handle page-fault traps in user nlode;

decrease the accessibility of a page;

decrease the accessibility of N pages;

increase the accessibility of a page;

return a list of dirtied pages since the

previous call.

map the same physical page at two diffe-

rent virtual addresses, at different levels

of protection, in the same address space.

Finally, some algorithms may be more efficient with a

smaller PAGESIZE than is normally used with disk pag-

ing.
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We distinguish between “decreasing the accessibility

of a page” and ‘(decreasing the accessibilit~- of a batch

of pages” for a specific reason. The cost of changing the

protection of several pages simultaneously may be not

much more than the cost of changing the protection of

one page. Several of the algorithms we describe protect

pages (make them less accessible) only in large batches,

Thus, if an operating system implementation could not

efficiently decrease the accessibility of one page, but

could decrease the accessibility of a large batch at a

small cost-per-page, this would suffice for some algo-

rithms.

We do not, make such a distinction for unprotesting

single vs. multiple pages because none of the algorithms

we describe ever unprotect many pages simult,aneousiy,

Some multi-thread algorithms require that, one thread

have access to a particular page of memory while others

fault on the page. There are many solutions to such

a problem (as will be described later), but one simple

and efficient solution is to map the page into more than

one virtual address: at one address the page is access-

ible and at the other address it faults. For efficiency

reasons. the two different virtual addresses should be in

the same page table, so that expensive page-table con-

text switching is not required between threads.

The user program can keep track of dirty pages using

PROThT, TRAP, and UNPROT; we list DIRTY as a sepa-

rate primitive because it may be more efficient for the

operating system to provide this service directly.

3 Virtual memory applications

M’e present in this section a sample of applications which

use virtual-memory prinlitives in place of software tests,

special hardware. or microcode. The page protection

hardware can efficiently test simple predicates on ad-

dresses that might, otherwise require one or two extra

instructions on every fetch and/or store; this is a sub-

stantial saxings. since fetches and stores are very com-

mon operations indeed. We sur~-ey several algorithms so

that, we may attempt to draw general conclusions about

what, user programs require from the operating system

and hardware,

concurrent garbage collection

A concurrent. real-time, copying garbage collection al-

gorithm can use the page fault mechanism to achieve

medium-grain synchronization between collector and
rnutator threads [4]. The paging mechanism provides

synchronization that is coarse enough to be efficient and

yet fine enough to make the latency 10VC.The algorithm

is based on the Baker’s sequential, real-time copying

collector algorithm [6].

Baker’s algorithm divides the memory heap into two

regions, from-space and to-space. At the beginning of

a collection, all objects are in from-space, and to-space

is empty. Starting with the registers and other global

roots, the collector traces out the graph of objects reach-

able from the roots, copying each reachable object into

to-space. A pointer to an object from-space is forwarded

by making it point to the to-space copy of the old object.

Of course, some from-space objects are never copied into

to-space, because no pointer to them is ever forwarded;

these objects are garbage.

As soon as the registers are forwarded, the mutator

thread can resume execution. Reachable objects are

copied incrementally from from-space while the mutator

allocates new objects at new. Every time the mutator

allocates a new object, it invokes the collector to copy

a few more objects from from-space. Baker’s algorithm

maintains the following invariant:
● The rout, at, or sees only t,o-space pointers in its reg-

isters.

. Objects in t,he new area contain to-space pOlllt6’M

only (because new objects are initialized from the

registers ).

. Objects in the scanned area contain to-space point-

ers onl]’.

. Objects in the unscanned area contain both from-

space and t,o-space pointers.

To satisfy the invariant, that the mutator sees only to-

space pointers in its registers, every pointer fetched from

an object must be checked to see if it. points to from-

space. If it does, the from-space object is copied to to-

space and the pointer updated: only then is the pointer

returned to the mutator. This checking requires hard-

ware support to be implemented etliciently ~2.5], since

otherwise a few extra. instructions must be performed on

e~~ery fet, cll. Furt,llerlnore, tile lllut,at,or and tile collector

must alternate: they cannot operate truly concurrently

because they might, simultaneously try to copy the same

ol>ject to different places.

Instead of checking e~ery pointer fetched from mem-

ory, the concurrent collector [4] uses virtual-memory

page protections to detect from-space memory refer-

ences and to synchronize the collector and mutator

t hrea.ds. To synchronize mutators and collectors, the

algorithm sets the virtual-memory protection of the un-

scanned area’s pages to be “no access.” M’henever the

mutator tries to access an unscanned object, it will get a.

page-access trap. The collector fields the trap and scans

the objects on that page, copying from-space objects

and forwarding pointers as necessary. Then it, unpro-

t ect.s the page and remme~ the mutator at the faulting

instruction. To the mutator, that page appears to have

contained only to-space pointers all along, and thus the

mutator will fetch only to-space pointers to its registers.

The collector also executes concurrently with the mu-

tator, scanning pages in the unscanned area and un-

protesting them a.s each is scanned. The more pages
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scaunecl concurrently. the fewer page-access traps talieu

by the nnrtator. Because the nlutator doesn”t do anj--

thing extra to s~mchronize w-itll the collector, compilers

neecln ‘t he reworked. MultJiple processors and muta.t or

t breads are acconmlodatecl with alnlost no extra effort.

This algorithnl requires TRAP. PROT~, CTNPROT, and

MAP?. Traps are required to detect fetches fronl the

unscanned area; protection of nlultiple pages is required

to lllarli the entire to-space inaccessible when the flip is

done: C’NPROT is required as each page is scanned. In

acldition, since the tinle for the user-n: ode handler to

process the page is proportional to page size. it may be

appropriate to use a snla.11 PA GESIZE to r’educe ]a.tency.

We need ltlultlil~le-lllapl>illg of the same page so that

the garbage collector can scan a page while it is still

inaccwsible to the nnttators. ~lt ernat ives t o multiple-

n~apping are discussed in section 5,

Snared virtual memory

The access protect ion paging mechanism has been used

to inlplenlent shared ]irtual nlenlory on a network of

conlputers. on a nmlticonlpu ter wit bout shared nlem~o-

ries [!1]. and on a n]ultiprocessor based on interconnec-

tion networks [14]. The essential idea of shared virtual

nlenlory is to use the paging nlecllauisnl to control and

nlaintain single-writer and nlultiple-reader coherence at

the page IPlel.

Figure 1 shows the systenl architecture of an ~l~hl

syst enl. On a nmltli comput er, each node in the systenl

consists of a processor and its nlenlory. The nodes are

connected by a fast nlessage-passing network,

c1Mapping
rnauager

t
+

[

hlapping
manaser

I f$llarecl virtual nlenlorj I
Figure 1: Shared \irtual Inelnorj

T1-Ie S1’M system presents all processors with a large

coherent shared n~enlorj address space. .4nJ. processor

can access an] nlenlorj location at anj. tinle. The shared

lnenlorj’ address space can he as large as the nlemory

address space provided hy the NIMI-” of the processor,

‘Ike address space is coherent at all times. that is. the

va~ue returned by a read operation is always the same

as t,lle I.alue written bj the nlost recent, write operation

to the same address.

The SJ:M adclress space is partitioned into pages.

Pages that are nlarlied ‘.read-onl~” can have copies re-

siding in the physical nlenlories of nlan! processors at

the sanle tinle. But a page curreutlj being written can

reside in onlj. one processor’s physical nwnlorj. If a pro-

cessor wants to write a page that is currentlj’ residing

on other processors. it nmst get an up-to-date copy of

the page and t,hen tell the other processors to in~alidate

their copies. TIIe nlenlory mapping nlanager views its

local nlenlorj as a hig cache of the SI’NI aclclress space

for its associated processors, Lilie the traditional \ir-

tual nlenlorj [15], the shared nlenlor~ itself exists only

rtrtllally. 14 nlenlory reference nla~” cause a page fault

when tile page containing the nlenlory location is not in

a processor’s current physical nlenlor!. ~\ ’13en this hap-

pens, the nlenlorj nlapping nlanager retrieves the page

from either diSli or the nlenlorj of another processor.

This algoritlm uses TRAP. PROT1. and C?NPR,OT: the

trap-h an cller needs access to nlenlorj” that is still prm-

tectecl from the client threads (MAP?). and a snlall PA-

GESIZE nlaj’ be appropriate.

Concurrent clleckpointing

The access protection page fault nlechanisnl has been

used successful! in lllaliillg checlipointing concurrent

and real-tinle ~22]. This algorithm for share d-nlen]ory

nulltiprocessors runs concurrently with the target pro-

gram, interrupts tile target program for snlall. fixed

anlounts of t inle and is transparent to the cl) eclipoint,ed

progranl and its conlpiler, The a.lgorithnl achieves its

efficiency hj” wsing the paging nlechanism to allow the

most tillle-collslllllillg opera,tiolls of tile Checlipoint to

be o~-erlappecl with the running of the progranl being

checlipoiuted.

First, all threads in the program being checlipointecl

are stopped, Next. the writ able main nlenlor~ space for

the progranl is sa~ed (including the heap. glohals. and

the stacli~ for the individual thread s.) .41s0. enough

state in fornlation is saved for each thread so that it can

he restarted, Fiuallj. the threads are restarted.

Inst eacl of saving the writ ahl~ main mQnKJry q>aee

to disk all at once. the algorithm avoids this long wait

bj using tl)e access protection page fault nlechanisnl,

First. the accessihilit~- of entire address space is set to

““read onlj.’” .At this point, the threads of the clleck-

pointed prograul are restarted and a copying thread se-

quentially. scans the address space. copjing ~he pages to

a separate virtual address space as it goes. Mien the

cop~ing t,hrea.d finishes copying a page, it sets its access

rights to “reacl/write.”

If’hen the user t breads can nla.ke read nlenlor~ refer-

ences to the read-only pages. they run as fast as with

no checlipoiuting. If a thread of the program writes a
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page before it has been copied, a write memory access

fault will occur. At this point, the copying thread imme-

diately copies the page and sets the access for the page

to ‘read/write,” and restarts the faulting thread.

Several benchmark programs have been used to mea-

sure the performance of this algorithmon theDEC Fire-

fly multiprocessors [33]. The measurements show that

about 909?0 of the checkpoint work is executed concur-

rently with the target program while no thread is ever

interrupted for more than .1 second at a time.

This method also applies to taking incremental checli-

point,s; saving the pages that have been changed since

the last checkpoint. Instead of protecting all the pages

with “read-only.” the algorithm can protect only “dirti-

ed” pages since the previous checkpoint,. Feldman and

Brown [l~]inlplelllellteda l~dn~ea.suredas equential~er-

sion for a. debugging system by using reversible execu-

tions, They proposed alldilnl>lelllellted the system call

DIRTY.

This algorithm uses TRAP, PROT1, PROT~, UNPROT,

and DIRTY ; a medium PAGESIZE may be appropriate.

Generational garbage collection

An important, application of memory protection is in

generational garbage collection ~23]. a very efficient al-

gorithm that, depends on two properties of dynamically

allocated records in LISP and other programming lan-

guages:

1. younger records are much more likely to die soon

than older records. If a record hzw already survived

for a. long time, it’s likely to survive well into the

future: a new record is likely to be part of a tem-

porary, intermediate value of a calculation.

2. ~ounger records tend to point to older records,

since in LISP and functional programming lan-

guages the act of allocating a. record also initializes

it to point to already-existing records.

Property 1 indicates that much of the garbage collec-

tor’s effort should be concentrated on younger records,

and property 2 provides a way to achieve this. Allocated

records will be kept in several distinct areas Gi of mem-

ory, called generations. Records in the same generation

are of similar age, and all the records in generation Gi

are older t ban the records in generation Gi+ 1. By ob-

servation 2 above, for i < j, there should be very few or

no pointers from Gi into Gj. The collector will usually

collect in the youngest generation, which has the highest

proportion of garbage. TO perform a collection in a gen-

eration, the collector needs to know about all pointers

into the generation; these pointers can be in machine

registers, in global variables, and on the stack. How-

ever, there very few such pointers in older generations

because of property 2 above.

The only way that an older generation can point, to a

younger one is by an assignment to an already-existing

record. To detect such assignments, each modification

of a heap object must be examined to see whether it

violates property 2. This checking can be done by spe-

cial hardware [25,35], or by compilers [34]. In the latter

case, two or more instructions are required. Fortunately,

non-initializing assignments are rare in Lisp, !$malltalk,

and similar languages ~25,35 ,30,3] but the overhead of

the instruction sequence for checking (without, special

hardware) is still on the order of 5–10% of total execu-

tion time.

Virtual memory hardware can detect assignments to

old objects. If DIRTY is available, the collector can ex-

amine dirtied pages to derive pointers from older gener-

ations to younger generations and process them. In the

absence of such a. service, the collector can use the page

protection mechanism [30]: the older generations can be

write-protected so that, any store into them will cause

a trap. The user trap-handler can save the address of

the trapping page on a list for the garbage collector:

then the page must be unprotected to allow the store

instruction to proceed. At garbage-collection time the

collector will need to scan the pages on the trap-list for

possible pointers into the youngest generation. T~ari-

ants of this algorithm have exhibited quite good per-

formance [30, 11]: as heaps and memories get larger the

this scheme begins to dominate other techniques [37].

This technique uses the TRAP, PROThT, and UNPROT

features. or just DIRTY. In addition, since the time for

the user-mode handler to process the page is indepen-

dent of page size, and the eventual time for the garbage

collector to scan the page is proportional to the page

size, it may be appropriate to use a Slnall PAGESIZE.

Persistent stores

A persisfenf store [5] is a dynamic allocation heap that

persists from one program-invocation to the next,. An

execution of a program may traverse data structures in

the persistent store just as it would in its own (in-core)

heap. It may modify objects in the persistent, store,

even to make them point, to newly-allocated objects of

its own; it, may then commit these modifications to the

persistent store. or it may abort, in which case there

is no net effect on the persistent store. Between (and

during) executions, the persistent store is kept on a sta-

ble storage device such as a disk so that the “database”

does not disappear.

It is important that traversals of pointers in the per-

sistent store be just as fast, as fetches and stores in main

memory; ideally, data structures in the persistent store

should not, be distinguishable by the compiled code of

a program from data structures in core. This can be

accomplished through the use of virtual memory: the

persistent store is a memory-mapped disk file; pointer

traversal through the persistent store is just the same as

pointer traversal in core, with page faults if new parts

99



of the store are examined.

However, when an object in the persistent, store is

modified, the permanent image must not be altered until

the CO?J? m if. The in-core image is modified, and only at

the commit are the ‘-dirty-” pages (possibly including

some newl)’-creat,ed pages) written back to disk. To

reduce the number of new pages, it is appropriate to do

a garbage collection at commit, time.

A database is a storage management system that may

provide, among other things. locking of objects, trans-

actions with abort/comnlit., checkpointing and recov-

ery. The integration of virtual memory techniques into

database implementations has long been studied ~24.31].

Compiled programs can traverse the data in their

heaps very quickly and easily, since each access op-

eration is just a compiled fetch instruction, Travers-

al of data in a conventional database is much slower,

since each operation is done by procedure call; the ac-

cess procedures ensure synchronization and aborta,bil-

ity of transactions. Persistent stores can be augmented

to cleanly handle concurrency and locking: such sys-

tems (sometimes called objecf-orienf ed data bases) can

be quickly traversed with fefcl~ instructions but also can

pro~’ide synchronization and locking: efficiency of access

can be improved by using a garbage collector to group

related objects on the same page, treat small objects

differently than large objects, and so 011[13].

These schemes requires the use of TRAP and UNPROT

as well as file-mapping with cop~--on-writ,e (which, if not

otherwise available, can be simulated using PROT N7, UN-

PROT, and MAP2.

Extending addressability

A persistent store might grow so large that it contains

more than (for example ) 23C objects. so that it cannot,

be addressed b~ 32-bit pointers. hlodern disk drives

(especiall~ optical disks) can certainly hold such large

databases, but conventional processors use 32-bit, ad-

dresses. However, in any one run of a program against

the persistent store. it is likely that fewer than 23Z ob-

jects will be accessed.

One solution to this problem is to modify the persis-

tent, store mechanism so that objects in core use 32-bit

addresses and objects on disk use 64-bit addresses. Each

disk page is exactlj- twice as long as a core page. When a

page is brought from disk to core, its 64-bit disk pointers

are translated to 32-bit core pointers using a translation

table. When one of these 32-bit core pointers is derefer-

enced for the first time, a page fault may occur; the fault

handler brings in another page from disk, translating it

to short pointers.

The translation table has entries only for those ob-

jects accessed in a single execution: that is whj 32-bit

pointers will suffice. Point ers in core may point to not-

yet-accessed pages; SUCII a page is not allocated in core,

but there is an entry in the translation table showing

what (M-bit, pointer ) disk page holds its untranslated

contents.

The idea of having short, pointers in core and long

pointers on disk, with a translation table for onl}- that

subset of objects used in one session, originated in the

LOOM system of Snlalltalk-80 ~20]. The use of a page-

fault mechanism to implement it is more recent [19].

This algorithm uses TRAP, UNPROT, PROT1 or PROTiV,

and (in a multi-threaded environment ) NIAP 2, and might.

work well with a Smaller PAGE SIZE.

Data-conlpression paging

In a typical linked data structure. many words point to

nearby objects: many words are nil. Those words that

contain integers instead of pointers often contain small

integers or zero. In short, i the information-theoretic

entropy of the average word is small: furthermore, a

garbage collector can be made to put objects that point

to each other in nearby locations. thus reducing the en-

trop~ per word to as little as ‘i bits[9].

By the use of a data-compression algorithm, then, a

page of 32-bit words might be compressible to about

one-quarter of a page. Instead of paging less-recently-

used pages directl!. to the disk, they could be com-

pressed instead and put back into main memory. [36]

Then. when those virtual pages are again needed, it

might take much less time to un compress them than it

would to fetch from the disk. Of course. compressed

pages could be sent out to disk after a long period of

disuse.

Of course. data-compression paging might be done

imide the operating system transparentl~. to the user

process [28]. But since a garbage collector can move

objects to minimize their entropy. much better results

might be obtained if the user process can have some

control over how and when compression is done,

This algorithm requires TRAP, PROT1 (or perhaps

PROT h- with careful buffering), TRAP, and [JNPROT. It

is necessary to determine when pages are not recently

used: this can be done b}- occasionally protecting pages

to see if they are referenced. or with help from the op-

erating system and hardware.

Heap overflow detection

The stack of a process or thread requires protections

against, overflow accesses. A well-known and practical

technique used in most systems is to mark the pages

above the top of the stack invalid or no-access. Any

memory access to these pages will cause a page fault.

The operating, system can catch such a fault and inform
the user program of a stack overflow. In most, imPle-

rnentations of llnix, stack pages are not allocated until

first used; the operating-system’s response to a page
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fault is to allocate physical pages. mark them accessi-

ble, and resume execution without, notifying the user

process (unless aresource limitisexceeded).

This technique requires TRAP, PROTbJ and UNPROT.

But since the faults are quite rare (most processes don’t

use much stack space ), efficiency is not, a concern.

The same technique can be used to detect heap over-

flow in a garbage-collected system~2]. Ordinarily, heap

overflow in such a system is detect by a compare and

conditional-branch performed on each memor~- alloca-

tion. By having the user process allocate new records

in a region of memory terminated by a guard page,

the compare and conditional-branch can be eliminated.

M’hen the end of the allocatable memory is reached, a.

page-fault trap in~okes the garbage collector. It can of-

ten be arranged that, no re-arra.ugement of memory pro-

tection is required, since after the collection the same

allocation area can be re-used. Thus, this technique

requires PROT1 and TRAP.

Here, efficiency of TRAP is a. concern. Some language

illlplelllelltatfiolls allocate a new cell as frequently as ev-

ery 50 instructions. In a. generational garbage collector,

the size of the allocation region may be quite small in

order to make the youngest generation fit entirely in

the data cache; a. 64 Kbyte allocation region could hold

16k &l@e list cells, for example. In a very-frequently-

allocating system (e.g. one that, keeps activation records

on the heap), such a tiny proportion of the data will be

live timt the garbage-collection time itself will be small.

Thus. we have:

Instructions executed before heap overflow:

(64k/8) X 50= 400k.

Instructions of overhead. using compare and branch:

(64k/8) X 2 = 16k.

If a trap takes 1200 cycles to handle (as is typical-

see section 4), then this technique reduces the overhead

from 4% to 0.3%, a worthwhile savings. If a trap were

to take much longer, this technique would not be as

efficient.

Since there are other good techniques for reducing

heap-limit-check overhead, such as combining the limit

checks for several consecutive allocations in an unrolled

loop, this application of virtual memory is perhaps the

least interesting of those discussed in this paper.

4 VM primitive performance

Almost all the algorithms we described in this paper

fall into one of the two categories. The first category

of algorithms protect pages in large batches. then upon

each page-fault trap thej- unprotect one page. The sec-

ond category of algorithms protect a page and unprotect

a page individually. Since PROTiN or PROT, TRAP, and

tJNPROT are alwa~.s used together, an operating system

in which one of the operations is extremely efficient, hut

others are very slow will not be very competive.

lye performed two measurements for overall user-

mode virtual-memory performance. The first is the sum

of PROT1. TRAP, and UNPROT, as measured by 100 repe-

titions of the following benchmark program:

● access a, random protected page, and

● in the fault-handler, protect some other page and

unprot$ect the faulting page.

This process is repeated 100 times to obtain more accu-

rate timing.

The second measurement is the sum of PROTFJ, TRAP,

and UNPROT. The benchmark program measures:

● protect 100 pages,

● access each page in a random sequence, and

● in the fault-handler, unprot,ect the faulting page.

Before beginning the timing, both programs write each

page to eliminate transient effects of filling the cache

and TLB.

fVe compared the performance of ITltrix. Sun OS. and

Mach on several platforms in the execution of these

benchmarks. For calibration. we also show the time

for a single instruction (ADD), measured using a 20-

instruction loop containing 18 adds, a compare. and a

branch. M’here we have the data, we also show the

time for a trap-handler that, does not change any nlenl-

ory protections; this would be useful for 1~eap-overjiow’

defect ion. The results are shown in Table 1. ilote

that this benchmark is not, an “overall operating sys-

tem throughput,” benchmark ~27] and should not, be in-

fluenced by disk speeds; it is measuring the performance

of CPV-handled virtual memory services for user-level

programs.

lVe also tried mapping a physical page at two different

virtual addresses in the same process. using the shared

memory operations ( slMnop) on SunOS and Ultrix, and

on Mach using vm-rnap. SunOS and Mach permit this,

but, Ultrix would not permit us to attach ( sllmat ) the

same shared-memory object at two different addresses

in the same process.

Clearly, there are wide variations between the per-

formance of these operating systems even on the same

hardware. This indicates that there may be consider-

able room for improvement in some or all of these sys-

tems. Furthermore, several versions of operating sys-

tems do not correctly flush their translation buffer after

an mprotect call. indicating that many operating SYS-
tems implementors don’t take this feature seriously.

It is important that these operating system services
be made efficient. The argument here is much more

specific than a vacuous “Efficiency is good.” For disk-

paging, a. page fault usually implies a 20-millisecond

wait for the disk to spin around to the right sector:
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TRAP TRAP

Macl~ine 0s *
PROT1

+
PROT~

ADD TRAP tTNPRoT UNPROT MAP~ PAGESIZE

sun 3/60 Sunos 4.0 0.12 760 1238 1016 yes ~lg~

Sun 3/60 Sunos 4.1 0.12 2080 1800 yes ~lcj~

Sun 3/60 Mach 2..5(xp) 0.12 3300 2540 yes 8192

Sun 3/60 Mach 2 .5(exc ) 0.12 3380 2880 yes ,3192

SparcStn 1 Sullos 4.O.3C 0.05 *gig *839 yes 4096

SparcStn 1 Sunos 4.1 0.05 ~230 1008 909 yes 4096

SparcStn 1 Mach 2.5(xp) 0.05 1550 1230 yes 4096

SparcStn 1 Mach 2.5(exc) 0.05 1770 1470 yes 4096

DEC 3100 ~llt,ri~ 4,1 0.062 210 393 344 no 4096

DE(2 3100 Mach 2.5 (xp) 0.062 937 766 no 4096

DEC 3100 Mach 2.5 (exe) 0.062 1203 1063 no 4096

pl~ax 3 (Tltr& ~.3 0.21 314 612 486 no 1024

i386 on iPSC/2 Nx/2 0.15 172 30’2
252

yes 4096

Table 1: Benchmark data.

Elapsed time in microseconds is given for each operation. For Mach we measured both the exception-port

mechanism ( ‘Lexc” ) and the external-pager interface ( “xp” ). Time for TRAP is the operating system

overhead, plus the user-mode part of trap-handler as provided in standard library. For the PROT1 and

PRO TN- benchmarks, the we show the time per page. MAP 2 is whether the system supports mapping the

same page at different addresses; see section 4. PAGE SIZE is as reported by the operating system.

*

t

The implementation of nlprotect (which changes memory protection) on SunOS 4.0 incorrectly fails

to flush the TLB.

estimated.

so a. 3- or 5-nlillisecond fault h a.ndling overhead would

be hardly noticed as a contributor to fault-handling la-

tency. But in the aJgorithnls surveyed in the paper,

the fault will be handled entirely within the CPU. For

example. we have implemented a garbage collector that

executes about 10 instructions per word of to-space. For

a pagesize of 4096 bytes ( 1024 words) on a 20 MIPS

machine, the computation time to handle a fault will be

approximately 10 * 0.05 * 1024 or about, 500 nlicrosec-

ends. If the operating system’s fault-handling and page-

protection overhead is 1200 microseconds (as is aver-

age ), then the operating system is clearly the bottle-

neck.

If the program exhibits good locality of reference,

then the garbage-collection faults will be few, and the

operating system overhead will matter less. But for real-

time programs, which must satisfy strict. constraints on

latency-, even an occasional ‘slow fault” will cause prob-

lems. For example, if the client, program must never be

interrupted for more than a millisecond, then a fault-

ha.ndier computation time of 500 microseconds doesn ‘t

leave room for an operating-system overhead of 1200

microseconds! (This issue gets more complicated when

we consider multiple consecutive faults; see [11] for an

analysis.)

In order to compare virtual memory primitives on dif-

ferent architectures, we have normalized the nleasure-

ments by processor speed. Figure 4 shows the number

Sun 3/60+ SunOS4.O

Sun 3/60+ SunOS4.l

Sun 3/60+ Mach2.5(xp)

Sun 3/60+ Mach2,5(exc)

SparcStnl+SunOS4 .O.3c

SparcStnl+SunOS4.1

SparcStnl+Mach2 .5(xp)

SparcStnl+Mach2 .5(exc)

DEC3100+Ultrix4.1

DEC3100+Mach2.5 (xp)

DEC3100+Mach2.5 (xp)

p17ax3+Ultrix4.1

i386+NX/2

I

1

❑
m
Ill
0 10,00020,000

Figure 2: Imtructions per PROT + TRAP + UNPROT,

The black bars show the results when pages

are protected in large batches ( PROT~), and

the white bars are the additional time taken

when pages are protected one at a. time

(PRoT1).
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of ADDS each processor could Ila\Fe done in the time it

takes to protect a page, fault, and unprot ect a page.

Our benchmark shows that, there is a wide range of

ellciency in implementing virtual memory primitives.

Intel 803 S6-based machine running N2i/2 operating sys-

tem ~29] (a simple operating system for the iPSC/2

hypercube nmlticomputer ) is the best in our bench-

nlarl{. Its nornlalizecl benchnlark performance is about

ten tinles better than the worst perfornler (Mach on

the Sparcstatlion ). Clearly, there is no inherent, reason

that these prin~itives must be slow. Hardware and oper-

ating system designers should treat rnen~ory-protection

perfornlance as one of the inlportant, tradeoffs in the

design process.

s System design issues

l$~e can learn some important lessons about hardware

and operating system design from our survey of virtual-

menlory applications. Most, of the applications use l~ir-

tual memory in similar ways: this makes it clear what,

\’hl support, is needed-and just as important, what, is

unnecessary.

TLB Consistency

Many of the algorithnls presented here make their n~en~-

ory less-a.ccess~ble in large batches. and nlake n]ernory

nlore-accessible one page at a tinle. This is true of con-

curmni garbage collection. gcn. tmtion al garbag~ coilm-

t~on. concurrent checkpointwg persistent stor(, and er-

i~ riding addressabiliiy.

This is a good thing especially on a multiprocessor,

because of the translation lookaside buffer (TLB ) consis-

tency problem. 11’hen a page is made more-accessible,

out dated information in TLBs is harmless. leading to

at most a spurious, easily patchable TLB miss or TLB

fault. 1 But when a page is made less-accessible. out-

dated information in TLBs can lead to illegal accesses

to the page. To prevent this. it is necessary to flush

the page from each TLB where it might reside. This

‘.shootdown” can be clone in software b~ interrupting

each of the other processors and requesting it to flush

the page from its TLB. or in hardware by various bus-

based schen~es[7.32].

Software shootdown can be very expensive if there are

nlany processors to iuterrupt. Our solution to the shoot-

down problenl is to batch the shootdowns: the cost of

10n some architect m-es. in which a TLB entry can be present
but provide m, access. it will be usefut for the operating s~,st.em’s
fault handler to flush the TLB line for the faulting page. 0 ther-
wise, the user-mode fault handler might make the page accessible,
but the stale TLB entry would cause a second fault. Flushing
the TLB entry of the faulting page should not add significantly
to fault-handling overhead. On archit ect.ures (e.g. MIPS) with
software handling of TLB misses. t his extra complicatic,n is not
present.

a (soft~vare ) shootdown covering nlanj. pages sinlult,a,ne-

ously is not, nluch greater than the cost of a single-page

shootdown: the cost per page becomes neglible when the

overhead (of interrupting the processes to notify thenl

about shootdowns) is an~ortized over nlany pages. The

a]gorithnm described in this paper that protect pages

in batches “illad\’ertal~tly” take advantage of batched

shootdown

Batching suggested itself to us because the of the

structure of the aigorithnls described here, but, it can

also solve the shootdown problenl for ‘-traditional’” disk

paging. Pages are nmde less-accessible in disk paging

(the) are “paged out” ) in order to free physical pages

for re-use by other virtual pages. If the operating systenl

can nlaint, ain a. large reserve of unused physical pages,

then it can do its paging-out in batches (to replenish

the reser~-e); this will anlort ize the shootdown cost over

the entire bat Cli.Q Thus. while it has been clainled that

software solutions work reasonably well but nlight need

to be supplanted with hardware assist [7]. with batching

it is likely that hardware would not be necessary.

Optimal page size

In nlany of the algorithms described here, page faults

are handled entirely in the CPU. and the fault-handling

time (exclusive of overhead) is a small constant, times

the page size,

Tyhen a page fault occurs for paging between physi-

cal memories and disks. there is a delay of tens of ntil-

liseconds while the disk rotates and the head moves.

A computational ol’erhead of a few milliseconds in the

page fault handler will harclly be noticed ( especiall~” if

there are no other processes ready to execute). For

this reason-and for many others, including the addressi-

ng characteristics of dynamic RAhfs—pages have trad-

itionally been quite large. and fault-handling overhead

has been high.

For user-handled faults that are processed entire]!” by

user algorithms in the CPU. however, there is no such

inherent latency. To halve the time of each fault. (exclu-

sive of trap time). it suffices to halve the page size. The

~:arious algorithms described here might perform best

at different, page sizes.

The effect of a varying page size can be accomplished

on hardware with a small page size. (In the \-MP

system, the translation buffer and the cache are the

same thing. with a 128-byte line size [8]: this archi-

tecture might be well-suited to many of the algorithms

described in this paper.) For PROT and UNPROT oper-

ations, the small pages would be used; for disk paging,

2This algorithm must be carefully implemented to handle the
case in which a page is referenced after it is put in the reserve
hut before it is shot down: in this case the page may be dirty in
some of the T LB’s and must be removed from the reserve by the
shout down procedm-e.
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contiguous multi-page blocks would be used (as is nom7

common on the J:ax).

When small pages are used, it is particularly impor-

tant to trap and change page protections quickly. since

this overhead is independent of page size while the ac-

tual computation (typically) takes time proportional to

page size.

Access to protected pages

Many algorithms, when run on a multiprocessor, need

a way for a user-mode service routine to access a. page

while client threads have no access. These algorithms

are con currenf garbo.gc collection, exiending address abd-

ity, shared virtual memory, and data-compression. pag-

ing.

There are several ways to achieve user-mode access to

protected pages (we use the co7~curren i garbage collec-

tion algorithm to illustrate):

Multiple mapping of the same page at different ad-

dresses (and at different levels of protection) in the

same address space. The garbage collector has ac-

cess to pages in to-space at a “nonstandard>’ ad-

dress, while the mut ators see to-space as protected.

A system call could be provided to copy memory

to and from a. protected area. The collector would

use this call t,llree times for each page: once when

copying records from from-space to to-space; once

prior to scanning the page of to-space: and once

just after scanning, before making the page acces-

sible to the rnutators. This solution is less desirable

because it “s not verl efficient to do all that copying.

In an operating system that permits shared pages

between processes, the collector can run in a differ-

ent heavyweight process from the mutator, with a

different page table. The problem with this tech-

nique is that it requires two expensiye heavyweight,

context switches on each garbage-collection page-

trap. However, on a multiprocessor it may suffice

to do an RPC to another processor t hat,’s already

in the right context. and this option might be much

more attractive.

The garbage collector can run inside the operating-

syst,em kernel. This is probably most efficient,

but perhaps that’s not, the appropriate place for

a garbage collector; it can lead to unreliable ker-

nels. and every programming language has a differ-

ent runtime data format that the garbage collector

must understand.

We advocate that for computer architectures with

physically addressed caches, the multiple virtual address

mapping in the same address space is a clean and effi-

cient solution. It does not require heavyweight context

switches, data structure copies, nor running things in

the kernel. There is the small disadvantage that each

physical page will require two different entries in the

page tables, increasing physical memory requirements

by up to 170, depending on the ratio of page-table-entry

size to page size.

With a virtually-addressed cache, the multiple virtual

address mapping approach lIZS a. potential for cache in-

consistency since updates at one mapping may reside

in the cache while the other mapping contains stale

data. This problem is easily solved in the context of

the concurrent, garbage-collection algorithm. Mlile the

garbage collector is scanning the page, the muta.tor has

no access to the page; and therefore at the mutator”s add-

ress for that, page, none of the cache lines will be filled.

After the collector has scanned the page, it should flush

its cache lines for that page (presumably using a cache-

flush system call). Thereafter, the collector will never

reference that page, so there is never an~. danger of in-

consistency.

Is this too lnucll to ask?

Some implementations of IJnix on some machines

have had a particularly clean and synchronous signal-

handling facility: an instruction that, causes a page-fault

invokes a signal handler without otherwise changing the

state of the processor; subsequent, instructions do not

execute, etc. The signal handler can access machine

registers completely synchronously, change the memory

map or machine registers, and then restart the faulting

instruct ion. Howe~-er, on a highly pipelined machine

there may be several outstanding page faults ~26], and

many instructions ajlc r the faulting one may have writ-

ten their results to registers even before the fault is no-

ticed; instructions can be resumed, but not, restarted.

M’hen user programs rel)- on synchronous behaviour. it

is difficult to get them to run on pipelined machines:

Modern lJA’I.A’ systems . . . let I[ser programs actively

patizcipute in memory man agemcnt functions by allow-

ing them to explicitly manipulate their memory nlap -

pings. This . . . serves as the courier of an engraved

invitation to Hel~26]

If the algorithms described are indeed incompatible

with fast, pipelined machines, it would be a serious

problem. Fortunately, all but one of the algorithms

we described are sufficiently asynchronous. Their be-

haviour is to fix the faulting page and resume execu-

tion, without, examining the CPU state at the time of

the fault. Other instructions that may have begun or

completed are, of course, independent of the cont,ent,s

of the faulting page. In fact, the behaviour of these

algorithms, from the machine-s point of view, is very

much like the behaviour of a traditional disk-pager: get

a fault, provide the physical page, make the page acces-

sible in the page table, and resume.

The exception to this generalization is heap overflotv

detection: a fault initiates a garbage collection that
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Methods TRAP PROT1 PROT~ ~INPRO~ MAPS DIRTY PA GESIZE

Concurrentfl (3C d d d d d
S\’M J d d d d

Concurrent checkpoint ~ d d
+
+ d

(generational ~C d d d
+

d

Persistent store d y d ; +

Extending addressability J *
d d

Data-compression paging ~
* *

d 4

Heap overflow d t

Table 2: Usages of virtual memory system services

* Ezten ding addressibiliiy and data-compression paging usePROTl only to remove inactive pages: the

hatching technique described in section 5 could be used instead.

~ virtual memory-based lieap-overflou) detection can be used even without, explicit memory-protection

primitives, as long as there is a. usable boundary between accessible and inaccessible memory (e.g.

the “brea~ in vanilla Unix).

$ Dirty-page bookkeeping can be simulated by using PROTN, TRAP, and UN PROT.

modifies registers (by forwarding them to point, at the

new locations of heap records), then resumes execu-

tion. The register containing the pointer to the next-

allocatable word is adjusted to point to the beginning

of the allocation space. The previously-faulting instruc-

tion is re-executed, but this time it won’t, fault because

it’s storing to a different location.

The behaviour is unacceptable on a highly-pipelined

machine (unless, as on the l’A~ 8800 [10], there is

hardware for “undoing” those subsequent, instructions

or addressing-mode side-effects that have already com-

pleted). In fact, even on the Motorola 68020 the use of

page faults to detect heap overflow is not reliable.

Thus, with the exception of heap overflow detection,

all of the algorithms wTe present pose no more problem

for the hardware than does ordinary disk paging, and

the invitation to Hell can be returned to sender: how-

ever, the operating system must make sure to provide

adequate support, for what, the hardware is capable of

semi-synchronous trap-handlers should resume faulting

operations correctly.

Other primitives

There are other virtual memory primitives that oper-

ating systems can provide. For a persistent store with

transactions, it might be useful to pin. a page[16] in core

so that it is not written back to the backing store until

the transaction is complete.

The Mach external-pager interface [1] provides at least

one facility which is lacking from the primitives we de-

scribe: the operating system can tell the client which

pages are least-recently-used and (therefore) about to

be paged out. The client might choose to destroy those

pages rather than have theln written to disk. This would

be particularly useful for data-compression paging, and

105

extending addressibility. Also, in a system with garbage

collection, the client, might, know that a certain region

contains only garbage and can safely be destroyed [12].

In general, the external-pager interface avoids the

problem in general of the operating-system pager (which

writes not-recently-used pages to disk) needlessly dupli-

cat ing the work that the user-mode fault handler is also

doing.

6 Conclusions

Where virtual memory was once just a tool for inlple-

menting large address spaces and protecting one user

process from another, it. has evolved into a user-level

component of a hardware- and operating-system interf-

ace. We have surveyed several algorithms that rely

on virtual memory primitives; such primitives have not

been paid enough attention in the past. In design-

ing and analyzing the performance of new machines

and new operating systems, page-protection and fault-

handling efficiency must be considered as one of the pa-

rameters of the design space; page size is another inl-

portant parameter. Conversely, for many algorithms the

configuration of TLB hardware (e.g. on a nmltiproces-

sor) may not be particularly important.

Table 2 shows the usages and requirements of these al-

gorithms. Some algorithms protect pages one at a time

(PROT1 ), while others protect pages in large batches

(PROTN ). which is easier to implement efficiently, Some

algorithms require access to protected pages when run

concurrently (hJAP~). Some algorithm use memory

protection only to keep track of modified pages (DIRTY),

a service that could perhaps be provided more efficiently

as a primitive. Some algorithms might run more effi-

ciently using a smaller page size than is commonly used



(PAGEsIZE).

Many algorithms that, make use of virtual memory

share several traits:

1.

2.

3.

4.

5.

6.

Memory is made less-accessible in large batches,

and made more-accessible one page at a time; this

has important implications for TLB consistency al-

gorithms.

The fault-handling is done almost entirely by the

CPU, and takestimepr oportionaltothe size of a

page (with a relatively small constant of propor-

tionality]; this has implications for preferred page

size.

Every pa.ge fault resultsin the faultingp age being

made more accessible.

The frequency of faults is inversely related to the

locality of reference of the client program: this will

keep these algorithms competitivei nthelongrun.

ITser-mode service routines need to access pages

that are protect,edf romuser-mode client, routines.

[Tser-nlode service routines don’t need to exalnine

the client’s CPU state.

All the algorithms described in the paper (except heap

overflow detection) share five or more of these charact-

eristics.

Most programs access only a small proportion of their

address space during a medium-size span of time. This

is what makes traditional disk paging eflicient; in dif-

ferentways. it makes thealgorithmsd escribedhereeffi-

cient a~ well. For example. the concurrent garbage col-

lection algorithm must scan and copy the same amount

of data. regardless of the muta.tor’s access pattern [4],

but the mutator’s locality of reference reduces the fault-

handling overhead. The “write barrier” in the gener-

ational collection algorithm, concurrent, checlipointing,

and persistent store algorithms takes advantage of locaL

ity if some small subset of objects accounts for most of

theupdates. Andthes haredvirtualme moryalgorithrns

take advantage of a special kind of partitioned locality

of reference, in which each processor hasa. differentlocal

reference pattern.

M~e believe that, because these algorithms depend so

much on locality of reference, they will scale well. As

memories get larger and computers get faster, programs

will tend to activeiy use an even smaller proportion of

their address space, and the overhead of these algo-

rithms will continue to decrease. It is important that

hardware and operating system designers make the vir-

tual memory mechanisms required by these algorithms

robust, and efficient.
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