Scalable, Distributed Data Structures
for Internet Service Construction

Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler
The Unwversity of California at Berkeley
{gribble,brewer, jmh,culler}@cs.berkeley.edu

Abstract

This paper presents a new persistent data manage-
ment layer designed to simplify cluster-based Internet
service construction. This self-managing layer, called
a distributed data structure (DDS), presents a conven-
tional single-site data structure interface to service au-
thors, but partitions and replicates the data across a clus-
ter. We have designed and implemented a distributed
hash table DDS that has properties necessary for Inter-
net services (incremental scaling of throughput and data
capacity, fault tolerance and high availability, high con-
currency, consistency, and durability). The hash table
uses two-phase commits to present a coherent view of
its data across aoll cluster nodes, allowing any node to
service any task. We show that the distributed hash
table simplifies Internet service construction by decou-
pling service-specific logic from the complexities of per-
sistent, consistent state management, and by allowing
services to inherit the necessary service properties from
the DDS rather than having to implement the proper-
ties themselves. We have scaled the hash table to a 128
node cluster, 1 terabyte of storage, and an in-core read
throughput of 61,432 operations/s and write throughput
of 18,582 operations/s.

1 Introduction

Internet services are successfully bringing infras-
tructural computing to the masses. Millions of peo-
ple depend on Internet services for applications like
searching, instant messaging, directories, and maps,
and also to safeguard and provide access to their per-
sonal data (such as email and calendar entries). As
a direct consequence of this increasing user depen-
dence, today’s Internet services must possess many
of the same properties as the telephony and power
infrastructures. These service properties include the
ability to scale to large, rapidly growing user popula-
tions, high availability in the face of partial failures,
strictly maintaining the consistency of users’ data,
and operational manageability.

It is challenging for a service to achieve all of
these properties, especially when it must manage
large amounts of persistent state, as this state must

remain available and consistent even if individual
disks, processes, or processors crash. Unfortunately,
the consequences of failing to achieve the proper-
ties are harsh, including lost data, angry users, and
perhaps financial liability. Even worse, there appear
to be few reusable Internet service construction plat-
forms (or data management platforms) that success-
fully provide all of the properties.

Many projects and products propose using soft-
ware platforms on clusters to address these chal-
lenges and to simplify Internet service construction
[1, 2, 6, 15]. These platforms typically rely on com-
mercial databases or distributed file systems for per-
sistent data management, or they do not address
data management at all, forcing service authors to
implement their own service-specific data manage-
ment layer. We argue that databases and file sys-
tems have not been designed with Internet service
workloads, the service properties, and cluster envi-
ronments specifically in mind, and as a result, they
fail to provide the right scaling, consistency, or avail-
ability guarantees that services require.

In this paper, we bring scalable, available, and
consistent data management capabilities to cluster
platforms by designing and implementing a reusable,
cluster-based storage layer, called a distributed data
structure (DDS), specifically designed for the needs
of Internet services. A DDS presents a conven-
tional single site in-memory data structure interface
to applications, and durably manages the data be-
hind this interface by distributing and replicating
it across the cluster. Services inherit the aforemen-
tioned service properties by using a DDS to store
and manage all persistent service state, shielding
service authors from the complexities of scalable,
available, persistent data storage, thus simplifying
the process of implementing new Internet services.

We believe that given a small set of DDS types
(such as a hash table, a tree, and an administra-
tive log), authors will be able to build a large class
of interesting and sophisticated servers. This pa-
per describes the design, architecture, and imple-
mentation of one such distributed data structure (a
distributed hash table built in Java). We evaluate



its performance, scalability and availability, and its
ability to simplify service construction.

1.1 Clusters of Workstations

In [15], it is argued that clusters of workstations
(commodity PC’s with a high-performance network)
are a natural platform for Internet services. Each
cluster node is an independent failure boundary,
which means that replicating computation and data
can provide fault tolerance. A cluster permits in-
cremental scalability: if a service runs out of ca-
pacity, a good software architecture allows nodes to
be added to the cluster, linearly increasing the ser-
vice’s capacity. A cluster has natural parallelism:
if appropriately balanced, all CPUs, disks, and net-
work links can be used simultaneously, increasing
the throughput of the service as the cluster grows.
Clusters have high throughput, low latency redun-
dant system area networks (SAN) that can achieve
1 Gb/s throughput with 10 to 100 us latency.

1.2 Internet Service Workloads

Popular Internet services process hundreds of
millions of tasks per day. A task is usually “small”,
causing a small amount of data to be transferred
and computation to be performed. For example,
according to press releases, Yahoo (http://www.
yahoo.com) serves 625 million page views per day.
Randomly sampled pages from the Yahoo directory
average TKB of HTML data and 10KB of image
data. Similarly, AOL’s web proxy cache (http:
//www.aol.com)handles 5.2 billion web requests per
day, with an average response size of 5.5 KB. Ser-
vices often take hundreds of milliseconds to process
a given task, and their responses can take many sec-
onds to flow back to clients over what are predom-
inantly low bandwidth last-hop network links [19].
Given this high task throughput and non-negligible
latency, a service may handle thousands of tasks si-
multaneously. Human users are typically the ulti-
mate source of tasks; because users usually generate
a small number of concurrent tasks (e.g., 4 parallel
HTTP GET requests are typically spawned when
a user requests a web page), the large set of tasks
being handled by a service are largely independent.

2 Distributed Data Structures

A distributed data structure (DDS) is a self-
managing storage layer designed to run on a clus-
ter of workstations [2] and to handle Internet ser-
vice workloads. A DDS has all of the previously
mentioned service properties: high throughput, high
concurrency, availability, incrementally scalability,
and strict consistency of its data. Service authors
see the interface to a DDS as a conventional data

cluster

Figure 1: High-level view of a DDS: a DDS is a
self-managing, cluster-based data repository. All service
instances (S) in the cluster see the same consistent im-
age of the DDS; as a result, any WAN client (C) can
communicate with any service instance.

structure, such as a hash table, a tree, or a log.
Behind this interface, the DDS platform hides all
of the mechanisms used to access, partition, repli-
cate, scale, and recover data. Because these com-
plex mechanisms are hidden behind the simple DDS
interface, authors only need to worry about service-
specific logic when implementing a new service. The
difficult issues of managing persistent state are han-
dled by the DDS platform.

Figure 1 shows a high-level illustration of a
DDS. All cluster nodes have access to the DDS and
see the same consistent image of the DDS. As long
as services keep all persistent state in the DDS, any
service instance in the cluster can handle requests
from any client, although we expect clients will have
affinity to particular service instances to allow ses-
sion state to accumulate.

The idea of having a storage layer to manage
durable state is not new, of course; databases and
file systems have done this for many decades. The
novel aspects of a DDS are the level of abstraction
that it presents to service authors, the consistency
model it supports, the access behavior (concurrency
and throughput demands) that it presupposes, and
its many design and implementation choices that are
made based on its expected runtime environment
and the types of failures that it should withstand.
A direct comparison between databases, distributed
file systems, and DDS’s helps to show this.

Relational database management systems
(RDBMS): an RDBMS offers extremely strong
durability and consistency guarantees, namely
ACID properties derived from the use of transac-
tions [18], but these ACID properties can come at
high cost in terms of complexity and overhead. As a
result, Internet services that rely on RDBMS back-
ends typically go to great lengths to reduce the work-
load presented to the RDBMS, using techniques
such as query caching in front ends [15, 21, 32].
RDBMS’s offer a high degree of data independence,
which is a powerful abstraction that adds addi-



tional complexity and performance overhead. The
many layers of most RDBMS’s (such as SQL pars-
ing, query optimization, access path selection, etc.)
permit users to decouple the logical structure of
their data from its physical layout. This decou-
pling allows users to dynamically construct and issue
queries over the data that are limited only by what
can be expressed in the SQL language, but data in-
dependence can make parallelization (and therefore
scaling) hard in the general case. From the per-
spective of the service properties, an RDBMS al-
ways chooses consistency over availability: if there
are media or processor failures, an RDBMS can be-
come unavailable until the failure is resolved, which
is unacceptable for Internet services.

Distributed file systems: file systems have
less strictly defined consistency models. Some (e.g.,
NFS [31]) have weak consistency guarantees, while
others (e.g., Frangipani [33] or AFS [12]) guarantee
a coherent filesystem image across all clients, with
locking typically done at the granularity of files. The
scalability of distributed file systems similarly varies;
some use centralized file servers, and thus do not
scale. Others such as xFS [3] are completely server-
less, and in theory can scale to arbitrarily large ca-
pacities. File systems expose a relatively low level
interface with little data independence; a file sys-
tem is organized as a hierarchical directory of files,
and files are variable-length arrays of bytes. These
elements (directories and files) are directly exposed
to file system clients; clients are responsible for log-
ically structuring their application data in terms of
directories, files, and bytes inside those files.

Distributed data structures (DDS): a DDS
has a strictly defined consistency model: all opera-
tions on its elements are atomic, in that any oper-
ation completes entirely, or not at all. DDS’s have
one-copy equivalence, so although data elements in a
DDS are replicated, clients see a single, logical data
item. Two-phase commits are used to keep replicas
coherent, and thus all clients see the same image of
a DDS through its interface. Transactions across
multiple elements or operations are not currently
supported: as we will show later, many of our cur-
rent protocol design decisions and implementation
choices exploit the lack of transactional support for
greater efficiency and simplicity. There are Inter-
net services that require transactions (e.g. for e-
commerce); we can imagine building a transactional
DDS, but it is beyond the scope of this paper, and we
believe that the atomic single-element updates and
coherence provided by our current DDS are strong
enough to support interesting services.

A DDS’s interface is more structured and at a
higher level than that of a file system. The granu-
larity of an operation is a complete data structure

element rather than an arbitrary byte range. The
set, of operations over the data in a DDS is fixed by
a small set of methods exposed by the DDS API, un-
like an RDBMS in which operations are defined by
the set of expressible declarations in SQL. The query
parsing and optimization stages of an RDBMS are
completely obviated in a DDS, but the DDS inter-
face is less flexible and offers less data independence.

In summary, by choosing a level of abstraction
somewhere in between that of an RDBMS and a file
system, and by choosing a well-defined and simple
consistency model, we have been able to design and
implement a DDS with all of the service properties.
It has been our experience that the DDS interfaces,
although not as general as SQL, are rich enough to
successfully build sophisticated services.

3 Assumptions and Design Principles

In this section of the paper, we present the de-
sign principles that guided us while building our dis-
tributed hash table DDS. We also state a number of
key assumptions we made regarding our cluster en-
vironment, failure modes that the DDS can handle,
and the workloads it will receive.

Separation of concerns: the clean separation
of service code from storage management simplifies
system architecture by decoupling the complexities
of state management from those of service construc-
tion. Because persistent service state is kept in the
DDS, service instances can crash (or be gracefully
shut down) and restart without a complex recovery
process. This greatly simplifies service construction,
as authors need only worry about service-specific
logic, and not the complexities of data partitioning,
replication, and recovery.

Appeal to properties of clusters: in addi-
tion to the properties listed in section 1.1, we re-
quire that our cluster is physically secure and well-
administered. Given all of these properties, a clus-
ter represents a carefully controlled environment in
which we have the greatest chance of being able to
provide all of the service properties. For example, its
low latency SAN (10-100 us instead of 10-100 ms for
the wide-area Internet) means that two-phase com-
mits are not prohibitively expensive. The SAN’s
high redundancy means that the probability of a
network partition can be made arbitrarily small, and
thus we need not consider partitions in our proto-
cols. An uninterruptible power supply (UPS) and
good system administration help to ensure that the
probability of system-wide simultaneous hardware
failure is extremely low; we can thus rely on data
being available in more than one failure boundary
(i-e., the physical memory or disk of more than one



node) while designing our recovery protocols.!

Design for high throughput and high con-
currency: given the workloads presented in section
1.2, the control structure used to effect concurrency
is critical. Techniques often used by web servers,
such as process-per-task or thread-per-task, do not
scale to our needed degree of concurrency. Instead,
we use asynchronous, event-driven style of control
flow in our DDS, similar to that espoused by modern
high performance servers [5, 20] such as the Harvest
web cache [8] and Flash web server [28]. A conve-
nient side-effect of this style is that layering is inex-
pensive and flexible, as layers can be constructed by
chaining together event handlers. Such chaining also
facilitates interposition: a “middleman” event han-
dler can be easily and dynamically patched between
two existing handlers. In addition, if a server ex-
periences a burst of traffic, the burst is absorbed in
event queues, providing graceful degradation by pre-
serving the throughput of the server but temporar-
ily increasing latency. By contrast, thread-per-task
systems degrade in both throughput and latency if
bursts are absorbed by additional threads.

3.1 Assumptions

If one DDS node cannot communicate with an-
other, we assume it is because this other node has
stopped executing (due to a planned shutdown or a
crash); we assume that network partitions do not
occur inside our cluster, and that DDS software
components are fail-stop. The need for no network
partitions is addressed by the high redundancy of
our network, as previously mentioned. We have at-
tempted to induce fail-stop behavior in our software
by having it terminate its own execution if it en-
counters an unexpected condition, rather than at-
tempting to gracefully recover from such a condi-
tion. These strong assumptions have been valid in
practice; we have never experienced an unplanned
network partition in our cluster, and our software
has always behaved in a fail-stop manner. We fur-
ther assume that software failures in the cluster are
independent. We replicate all durable data at more
than one place in the cluster, but we assume that
at least one replica is active (has not failed) at all
times. We also assume some degree of synchrony,
in that processes take a bounded amount of time
to execute tasks, and that messages take a bounded
amount of time to be delivered.

We make several assumptions about the work-
load presented to our distributed hash tables. A
table’s key space is the set of 64-bit integers; we

!We do have a checkpoint mechanism (discussed later)
that permits us to recover in the case that any of these cluster
properties fail, however all state changes that happen after
the last checkpoint will be lost should this occur.

assume that the population density over this space
is even (i.e. the probability that a given key exists
in the table is a function of the number of values
in the table, but not of the particular key). We
don’t assume that all keys are accessed equiproba-
bly, but rather that the “working set” of hot keys is
larger than the number of nodes in our cluster. We
then assume that a partitioning strategy that maps
fractions of the keyspace to cluster nodes based on
the nodes’ relative processing speed will induce a
balanced workload. Our current DDS design does
not gracefully handle a small number of extreme
hotspots (i.e., if a handful of keys receive most of
the workload). If there are many such hotspots,
however, then our partitioning strategy will proba-
bilistically balance them across the cluster. Failure
of these workload assumptions can result in load im-
balances across the cluster, leading to a reduction in
throughput.

Finally, we assume that tables are large and long
lived. Hash table creations and destructions are rel-
atively rare events: the common case is for hash
tables to serve read, write, and remove operations.

4 Distributed Hash Tables:
tecture and Implementation

Archi-

In this section, we present the architecture and
implementation of a distributed hash table DDS.
Figure 2 illustrates our hash table’s architecture,
which consists of the following components:

Client: a client consists of service-specific soft-
ware running on a client machine that communi-
cates across the wide area with one of many service
instances running in the cluster. The mechanism by
which the client selects a service instance is beyond
the scope of this work, but it typically involves DNS
round robin [7], a service-specific protocol, or level 4
or level 7 load-balancing switches on the edge of the
cluster. An example of a client is a web browser, in
which case the service would be a web server. Note
that clients are completely unaware of DDS’s: no
part of the DDS system runs on a client.

Service: a service is a set of cooperating soft-
ware processes, each of which we call a service in-
stance. Service instances communicate with wide-
area clients and perform some application-level func-
tion. Services may have soft state (state which may
be lost and recomputed if necessary), but they rely
on the hash table to manage all persistent state.

Hash table API: the hash table API is the
boundary between a service instance and its “DDS
library”. The API provides services with put(),
get (), remove(), create(), and destroy() opera-
tions on hash tables. Each operation is atomic, and
all services see the same coherent image of all exist-



‘clienf‘ ‘clien’r‘ ‘cliem“ ‘clien'r‘ ‘clien'r‘

WAN
service service service hash table
. . | API
DDS lib DDS lib DDS lib

™~

redundant, low
SAN +«——— latency, high

/) throughput
/ ‘ \ network
storage storage storage | | k=
“brick" “brick" “brick" | singTé-node,
7 I AN durable hash
storage storage storage table
“brick" “brick" “brick"
........ Ciisien

Figure 2: Distributed hash table architecture:
each box in the diagram represents a software process. In
the simplest case, each process runs on its own physical
machine, however there is nothing preventing processes
from sharing machines.

ing hash tables through this API. Hash table names
are strings, hash table keys are 64 bit integers, and
hash table values are opaque byte arrays; operations
affect hash table values in their entirety.

DDS library: the DDS library is a Java class
library that presents the hash table API to services.
The library accepts hash table operations, and co-
operates with the “bricks” to realize those opera-
tions. The library contains only soft state, includ-
ing metadata about the cluster’s current configura-
tion and the partitioning of data in the distributed
hash tables across the “bricks”. The DDS library
acts as the two-phase commit coordinator for state-
changing operations on the distributed hash tables.

Brick: bricks are the only system components
that manage durable data. Each brick manages a
set of network-accessible single node hash tables. A
brick consists of a buffer cache, a lock manager, a
persistent chained hash table implementation, and
network stubs and skeletons for remote communica-
tion. Typically, we run one brick per CPU in the
cluster, and thus a 4-way SMP will house 4 bricks.
Bricks may run on dedicated nodes, or they may
share nodes with other components.

4.1 Partitioning, Replication, and
Replica Consistency

A distributed hash table provides incremental
scalability of throughput and data capacity as more
nodes are added to the cluster. To achieve this,
we horizontally partition tables to spread operations
and data across bricks. Each brick thus stores some
number of partitions of each table in the system, and
when new nodes are added to the cluster, this parti-

tioning is altered so that data is spread onto the new
node. Because of our workload assumptions (section
3.1), this horizontal partitioning evenly spreads both
load and data across the cluster.

Given that the data in the hash table is spread
across multiple nodes, if any of those nodes fail, then
a portion of the hash table will become unavailable.
For this reason, each partition in the hash table is
replicated on more than one cluster node. The set
of replicas for a partition form a replica group; all
replicas in the group are kept strictly coherent with
each other. Any replica can be used to service a
get (), but all replicas must be updated during a
put () or remove (). If a node fails, the data from its
partitions is available on the surviving members of
the partitions’ replica groups. Replica group mem-
bership is thus dynamic; when a node fails, all of
its replicas are removed from their replica groups.
When a node joins the cluster, it may be added to
the replica groups of some partitions (such as in the
case of recovery, described later).

To maintain consistency when state changing
operations (put () and remove()) are issued against
a partition, all replicas of that partition must be
synchronously updated. We use an optimistic two-
phase commit protocol to achieve consistency, with
the DDS library serving as the commit coordinator
and the replicas serving as the participants. If the
DDS library crashes after prepare messages are sent,
but before any commit messages are sent, the repli-
cas will time out and abort the operation.

However, if the DDS library crashes after send-
ing out any commits, then all replicas must com-
mit. For the sake of availability, we do not rely on
the DDS library to recover after a crash and issuing
pending commits. Instead, replicas store short in-
memory logs of recent state changing operations and
their outcomes. If a replica times out while waiting
for a commit, that replica communicates with all of
its peers to find out if any have received a commit
for that operation, and if so, the replica commits as
well; if not, the replica aborts. Because all peers
in the replica group that time out while waiting for
a commit communicate with all other peers, if any
receives a commit, then all will commit.

Any replica may abort during the first phase
of the two-phase commit (e.g., if the replica cannot
obtain a write lock on a key). If the DDS library
receives any abort messages at the end of the first
phase, it sends aborts to all replicas in the second
phase. Replicas do not commit side-effects unless
they receive a commit message in the second phase.

If a replica crashes during a two-phase commit,
the DDS library simply removes it from its replica
group and continues onward. Thus, all replica
groups shrink over time; we rely on a recovery mech-



key: 11010011
*..

RGname | RG membership list
000 ddsl.cs, dds2.cs
100 dds3.cs, dds4.cs

10 dds5. cs
01 dds3.cs, dds4.cs

011 111 011 dds5. cs, dds6.cs
111 dds7.cs

Step 1: lookup key in
DP map to find RGname

000 100

Step 2: lookup RGname in
RG map to find list of replicas

Figure 3: Distributed hash table metadata maps:
this illustration highlights the steps taken to discover the
set of replica groups which serve as the backing store for
a specific hash table key. The key is used to traverse the
DP map trie and retrieve the name of the key’s replica
group. The replica group name is then used looked up
in the RG map to find the group’s current membership.

anism (described later) for crashed replicas to rejoin
the replica group. We made the significant optimiza-
tion that the image of each replica must only be con-
sistent through its brick’s cache, rather than having
a consistent on-disk image. This allows us to have
a purely conflict-driven cache eviction policy, rather
than having to force cache elements out to ensure
on-disk consistency. An implication of this is that if
all members of a replica group crash, that partition
is lost. We assume nodes are independent failure
boundaries (section 3.1); there must be no system-
atic software failure across nodes, and the cluster’s
power supply must be uninterruptible.

Our two-phase commit mechanism gives atomic
updates to the hash table. It does not, however, give
transactional updates. If a service wishes to update
more than one element atomically, our DDS does
not provide any help. Adding transactional support
to our DDS infrastructure is a topic of future work,
but this would require significant additional com-
plexity such as distributed deadlock detection and
undo/redo logs for recovery.

We do have a checkpoint mechanism in our dis-
tributed hash table that allows us to force the on-
disk image of all partitions to be consistent; the disk
images can then be backed up for disaster recov-
ery. This checkpoint mechanism is extremely heavy-
weight, however; during the checkpointing of a hash
table, no state-changing operations are allowed. We
currently rely on system administrators to decide
when to initiate checkpoints.

4.2 Metadata maps

To find the partition that manages a particular
hash table key, and to determine the list of replicas
in partitions’ replica groups, the DDS libraries con-

sult two metadata maps that are replicated on each
node of the cluster. Each hash table in the cluster
has its own pair of metadata maps.

The first map is called the data partitioning
(DP) map. Given a hash table key, the DP map
returns the name of the key’s partition. The DP
map thus controls the horizontal partitioning of data
across the bricks. As shown in figure 3, the DP map
is a trie over hash table keys; to find a key’s parti-
tion, key bits are used to walk down the trie, starting
from the least significant key bit until a leaf node is
found. As the cluster grows, the DP trie subdivides
in a “split” operation. For example, partition 10
in the DP trie of figure 3 could split into partitions
010 and 110; when this happens, the keys in the old
partition are shuffled across the two new partitions.
The opposite of a split is a “merge”; if the cluster is
shrunk, two partitions with a common parent in the
trie can be merged into their parent. For example,
partitions 000 and 100 in figure 3 could be merged
into a single partition 00.

The second map is called the replica group (RG)
membership map. Given a partition name, the RG
map returns a list of bricks that are currently serv-
ing as replicas in the partition’s replica group. The
RG maps are dynamic: if a brick fails, it is removed
from all RG maps that contain it. A brick joins
a replica group after finishing recovery. An invari-
ant that must be preserved is that the replica group
membership maps for all partitions in the hash table
must have at least one member.

The maps are replicated on each cluster node,
in both the DDS libraries and the bricks. The maps
must be kept consistent, otherwise operations may
be applied to the wrong bricks. Instead of enforcing
consistency synchronously, we allow the libraries’
maps to drift out of date, but lazily update them
when they are used to perform operations. The
DDS library piggybacks hashes of the maps? on op-
erations sent to bricks; if a brick detects that either
map used is out of date, the brick fails the operation
and returns a “repair” to the library. Thus, all maps
become eventually consistent as they are used. Be-
cause of this mechanism, libraries can be restarted
with out of date maps, and as the library gets used
its maps become consistent.

To put() a key and value into a hash table,
the DDS library servicing the operation consults its
DP map to determine the correct partition for the
key. It then looks up that partition name in its RG
map to find the current set of bricks serving as repli-
cas, and finally performs a two-phase commit across
these replicas. To do a get() of a key, a similar
process is used, except that the DDS library can

2Tt is important to use large enough of a hash to make the
probability of collision negligible; we currently use 32 bits.



select any of the replicas listed in the RG map to
service the read. We use the locality-aware request
distribution (LARD) technique [14] to select a read
replica—LARD further partitions keys across repli-
cas, in effect aggregating their physical caches.

4.3 Recovery

If a brick fails, all replicas on it become un-
available. Rather than making these partitions un-
available, we remove the failed brick from all replica
groups and allow operations to continue on the sur-
viving replicas. When the failed brick recovers (or
an alternative brick is selected to replace it), it must
“catch up” to all of the operations it missed. In
many RDBMS’s and file systems, recovery is a com-
plex process that involves replaying logs, but in our
system we use properties of clusters and our DDS
design for vast simplifications.

Firstly, we allow our hash table to “say no”—
bricks may return a failure for an operation, such
as when a two-phase commit cannot obtain locks on
all bricks (e.g., if two puts() to the same key are
simultaneously issued), or when replica group mem-
berships change during an operation. The freedom
to say no greatly simplifies system logic, since we
don’t worry about correctly handling operations in
these rare situations. Instead, we rely on the DDS
library (or, ultimately, the service and perhaps even
the WAN client) to retry the operation. Secondly,
we don’t allow any operation to finish unless all par-
ticipating components agree on the metadata maps.
If any component has an out-of-date map, opera-
tions fail until the maps are reconciled.

We make our partitions relatively small
("100MB), which means that we can transfer an en-
tire partition over a fast system-area network (typ-
ically 100 Mb/s to 1 Gb/s) within 1 to 10 seconds.
Thus, during recovery, we can incrementally copy
entire partitions to the recovering node, obviating
the need for the undo and redo logs that are typi-
cally maintained by databases for recovery. When
a node initiates recovery, it grabs a write lease on
one replica group member from the partition that
it is joining; this write lease means that all state-
changing operations on that partition will start to
fail. Next, the recovering node copies the entire
replica over the network. Then, it sends updates
to the RG map to all other replicas in the group,
which means that DDS libraries will start to lazily
receive this update. Finally, it releases the write
lock, which means that the previously failed oper-
ations will succeed on retry. The recovery of the
partition is now complete, and the recovering node
can begin recovery of other partitions as necessary.

There is an interesting choice of the rate at
which partitions are transferred over the network

during recovery. If this rate is fast, then the involved
bricks will suffer a loss in read throughput during the
recovery. If this rate is slow, then the bricks won’t
lose throughput, but the partition’s mean time to re-
covery will increase. We chose to recover as quickly
as possible, since in a large cluster only a small frac-
tion of the total throughput of the cluster will be
affected by the recovery.

A similar technique is used for DP map split
and merge operations, except that all replicas must
be modified and both the RG and DP maps are up-
dated at the end of the operation.

4.3.1 Convergence of Recovery

A challenge for fault-tolerant systems is to re-
main consistent in the face of repeated failures; our
recovery scheme described above has this property.
In steady state operation, all replicas in a group
are kept perfectly consistent. During recovery, state
changing operations fail (but only on the recovering
partition), implying that surviving replicas remain
consistent and recovering nodes have a stable image
from which to recover. We also ensure that a recov-
ering node only joins the replica group after it has
successfully copied over the entire partition’s data
but before it release its write lease. A remaining
window of vulnerability in the system is if recov-
ery takes longer than the write lease; if this seems
imminent, the recovering node could aggressively re-
new its write lease, but we have not currently im-
plemented this behavior.

If a recovering node crashes during recovery, its
write lease will expire and the system will continue
as normal. If the replica on which the lease was
grabbed crashes, the recovering node must reiniti-
ate recovery with another surviving member of the
replica group. If all members of a replica group
crash, data will be lost, as mentioned in Section 3.1.

4.4 Asynchrony

All components of the distributed hash table
are built using an asynchronous, event-driven pro-
gramming style. Each hash table layer is designed
so that only a single thread ever executes in it at
a time. This greatly simplified implementation by
eliminating the need for data locks, and race condi-
tions due to threads. Hash table layers are separated
by FIFO queues, into which I/O completion events
and I/0O requests are placed. The FIFO discipline
of these queues ensures fairness across requests, and
the queues act as natural buffers that absorb bursts
that exceed the system’s throughput capacity.

All interfaces in the system (including the DDS
library APIs) are split-phase and asynchronous.
This means that a hash table get () doesn’t block,
but rather immediately returns with an identifier



100000

(128,61432)

(128,13582)
10000 {------

1000 {------

max throughput (ops/s)

100

1 10 100 1000
# of DDS bricks

Figure 4: Throughput scalability: this benchmark
shows the linear scaling of throughput as a function of
the number of bricks serving in a distributed hash table;
note that both axis have logarithmic scales. As we added
more bricks to the DDS, we increased the number of
clients using the DDS until throughput saturated.

that can be matched up with a completion event
that is delivered to a caller-specified upcall handler.
This upcall handler can be application code, or it
can be a queue that is polled or blocked upon.

5 Performance

In this section, we present performance bench-
marks of the distributed hash table implementation
that were gathered on a cluster of 28 2-way SMPs
and 38 4-way SMPs (a total of 208 500 MHz Pentium
CPUs). Each 2-way SMP has 500 MB of RAM, and
each 4-way SMP has 1 GB. All are connected with
either 100 Mb/s switched Ethernet (2-way SMPs)
or 1 Gb/s switched Ethernet (4-way SMPs). The
benchmarks are run using Sun’s JDK 1.1.7v3, using
the OpenJIT 1.1.7 JIT compiler and “green” (user-
level) threads on top of Linux v2.2.5.

When running our benchmarks, we evenly
spread hash table bricks amongst 4-way and 2-way
SMPs, running at most one brick node per CPU in
the cluster. Thus, 4-way SMPs would have at most 4
brick processes running on them, while 2-way SMPs
would have at most 2. We also made use of these
cluster nodes as load generators; because of this, we
were only able to gather performance numbers to
a maximum of a 128 brick distributed hash table,
as we needed the remaining 80 CPUs to generate
enough load to saturate such a large table.

5.1 In-Core Benchmarks

Our first set of benchmarks tested the in-core
performance of the distributed hash table. By lim-
iting the working set of keys that we requested to a
size that fits in the aggregate physical memory of the
bricks, this set of benchmarks investigates the over-
head and throughput of the distributed hash table
code independently of disk performance.

20000
——2 bricks

—a— 8 bricks
—>—16 bricks
—=—32 bricks

16000 -

12000 -

8000 -

4000 -

hash table throughput (reads/s)

— P . — . L .
———t — + + + —t

0 5 10 15 20 25 30
#service instances

Figure 5: Graceful degradation of reads: this
graph demonstrates that the read throughput from a
distributed hash table remains constant even if the of-
fered load exceeds the capacity of the hash table.

5.1.1 Throughput Scalability

This benchmark demonstrates that hash ta-
ble throughput scales linearly with the number of
bricks. The benchmark consists of several services
that each maintain a pipeline of 100 operations (ei-
ther gets() or puts()) to a single distributed hash
table. We varied the number of bricks in the hash
table; for each configuration, we slowly increased
the number of services and measured the comple-
tion throughput flowing from the bricks. All config-
urations had 2 replicas per replica group, and each
benchmark iteration consisted of reads or writes of
150-byte values. The benchmark was closed-loop: a
new operation was immediately issued with a ran-
dom key for each completed operation.

Figure 4 shows the maximum throughput sus-
tained by the distributed hash table as a function of
the number of bricks. Throughput scales linearly up
to 128 bricks; we didn’t have enough processors to
scale the benchmark further. The read throughput
achieved with 128 bricks is 61,432 reads per second
(5.3 billion per day), and the write throughput with
128 bricks is 13,582 writes per second (1.2 billion
per day); this performance is adequate to serve the
hit rates of most popular web sites on the Internet.

5.1.2 Graceful Degradation for Reads

Bursts of traffic are a common phenomenon for
all Internet services. If a traffic burst exceeds the
service’s capacity, the service should have the prop-
erty of “graceful degradation”: the throughput of
the service should remain constant, with the excess
traffic either being rejected or absorbed in buffers
and served with higher latency. Figure 5 shows the
throughput of a distributed hash table as a func-
tion of the number of simultaneous read requests
issued to it; each service instance has a closed-loop
pipeline of 100 operations. Each line on the graph
represents a different number of bricks serving the



120
- 100
- 80
-+ 60
- 40
- 20

T T 0
0 50000 100000 150000 200000

time (ms)

pause clients

throughput (writes/s)
CPU utilization (%)

throughput

Figure 6: Write imbalance leading to ungraceful
degradation: the bottom curve shows the throughput
of a two-brick partition under overload, and the top two
curves show the CPU utilization of those bricks. One
brick is saturated, the other becomes only 30% busy.

hash table. Each configuration is seen to eventually
reach a maximum throughput as its bricks saturate.
This maximum throughput is successfully sustained
even as additional traffic is offered. The overload
traffic is absorbed in the FIFO event queues of the
bricks; all tasks are processed, but they experience
higher latency as the queues drain from the burst.

5.1.3 Ungraceful Degradation for Writes

An unfortunate performance anomaly emerged
when benchmarking put () throughput. As the of-
fered load approached the maximum capacity of the
hash table bricks, the total write throughput sud-
denly began to drop. On closer examination, we
discovered that most of the bricks in the hash ta-
ble were unloaded, but one brick in the hash table
was completely saturated and had become the bot-
tleneck in the closed-loop benchmark.

Figure 6 illustrates this imbalance. To generate
it, we issued puts() to a hash table with a single
partition and two replicas in its replica group. Each
put () operation caused a two-phase commit across
both replicas, and thus each replica saw the same set
of network messages and performed the same com-
putation (but perhaps in slightly different orders).
We expected both replicas to perform identically,
but instead one replica became more and more idle,
and the throughput of the hash table dropped to
match the CPU utilization of this idle replica.

Investigation showed that the busy replica was
spending a significant amount of time in garbage
collection. As more live objects populated that
replica’s heap, more time needed to be spent garbage
collecting to reclaim a fixed amount of heap space, as
more objects would be examined before a free object
was discovered. Random fluctuations in arrival rates
and garbage collection caused one replica to spend
more time garbage collecting than the other. This
replica became the system bottleneck, and more
operations piled up in its queues, further amplify-
ing this imbalance. Write traffic particularly ex-

6000
5000 +
4000 -
3000 4
2000 +
1000 +

0 T T
10 100 1000 10000

max througput (reads/s)

hash table value size (bytes)

Figure 7: Throughput vs. read size the X axis shows
the size of values read from the hash table, and the Y
axis shows the maximum throughput sustained by an 8
brick hash table serving these values.

acerbated the situation, as objects created by the
“prepare” phase must wait for at least one network
round-trip time before a commit or abort command
in the second phase is received. The number of live
objects in each bricks’ heap is thus proportional to
the bandwidth-delay product of hash table put ()
operations. For read traffic, there is only one phase,
and thus objects can be garbage collected immedi-
ately after read requests are satisfied.

We experimented with many JDKs, but consis-
tently saw this effect. Some JDKs (such as JDK
1.2.2 on Linux 2.2.5) developed this imbalance for
read traffic as well as write traffic. This sort of per-
formance imbalance is fundamental to any system
that doesn’t perform admission control; if the task
arrival rate temporarily exceeds the system’s abil-
ity to handle them, then tasks will begin to pile
up in the system. Because systems have finite re-
sources, this inevitably causes performance degra-
dation (thrashing). In our system, this degradation
first materialized due to garbage collection. In other
systems, this might happen due to virtual memory
thrashing, to pick an example. We are currently ex-
ploring using admission control (at either the bricks
or the hash table libraries) or early discard from
bricks’ queues to keep the bricks within their oper-
ational range, ameliorating this imbalance.

5.1.4 Throughput Bottlenecks

In figure 7, we varied the size of elements that
we read out of an 8 brick hash table. Throughput
was flat from 50 bytes through 1000 bytes, but then
began to degrade. From this we deduced that per-
operation overhead (such as object creation, garbage
collection, and system call overhead) saturated the
bricks” CPUs for elements smaller than 1000 bytes,
and per-byte overhead (byte array copies, either in
the TCP stack or in the JVM) saturated the bricks’
CPUs for elements greater than 1000 bytes. At 8000
bytes, the throughput in and out of each 2-way SMP
(running 2 bricks) was 60 Mb/s. For larger sized



hash table values, the 100 Mb/s switched network
became the throughput bottleneck.

5.2 Out-of-core Benchmarks

Our next set of benchmarks tested performance
for workloads that do not fit in the aggregate phys-
ical memory of the bricks. These benchmarks stress
the single-node hash table’s disk interaction, as well
as the performance of the distributed hash table.

5.2.1 A Terabyte DDS

To test how well the distributed hash table
scales in terms of data capacity, we populated a hash
table with 1.28 terabytes of 8KB data elements. To
do this, we created a table with 512 partitions in its
DP map, but with only 1 replica per replica group
(i-e., the table would not withstand node failures).
We spread the 512 partitions across 128 brick nodes,
and ran 2 bricks per node in the cluster. Each brick
stored its data on a dedicated 12GB disk (all cluster
nodes have 2 of these disks). The bricks each used
10GB worth of disk capacity, resulting in 1.28TB of
data stored in the table.

To populate the 1.28 TB hash table, we designed
bulk loaders that generated writes to keys in an or-
der that was carefully chosen to result in sequential
disk writes. These bulk loaders understood the par-
titioning in the DP map and implementation details
about the single-node tables’ hash functions (which
map keys to disk blocks). Using these loaders, it
took 130 minutes to fill the table with 1.28 terabytes
of data, achieving a total write throughput of 22,015
operations/s, or 1.4 MB/s per disk.

Comparatively, the in-core throughput bench-
mark presented in Section 5.1.1 obtained 13,582 op-
erations/s for a 128 brick table, but that bench-
mark was configured with 2 replicas per replica
group. Eliminating this replication would double
the throughput of the in-core benchmark, result-
ing in a 27,164 operations/s. The bulk loading of
the 1.28TB hash table was therefore only marginally
slower in terms of the throughput sustained by each
replica than the in-core benchmarks, which means
that disk throughput was not the bottleneck.

5.2.2 Random Write and Read Throughput

However, we believe it is unrealistic and unde-
sirable for hash table clients to have knowledge of
the DP map and single-node tables’ hash functions.
We ran a second set of throughput benchmarks on
another 1.28TB hash table, but populated it with
random keys. With this workload, the table took
319 minutes to populate, resulting in a total write
throughput of 8,985 operations/s, or 0.57 MB/s per

disk. We similarly sustained a read throughput of
14,459 operations/s, or 0.93 MB/s per disk.?

This throughput is substantially lower than the
throughput obtained during the in-core benchmarks
because the random workload generated results in
random read and write traffic to each disk. In fact,
for this random workload, every read() issued to
the distributed hash table results in a request for a
random disk block from a disk. All disk traffic is
seek dominated, and disk seeks become the overall
bottleneck of the system.

We expect that there will be significant locality
in DDS requests generated by Internet services, and
given workloads with high locality, the DDS should
perform nearly as well as the in-core benchmark re-
sults. However, it might be possible to significantly
improve the write performance of traffic with lit-
tle locality by using disk layout techniques similar
to those of log-structured file systems [29]; we have
not explored this possibility as of yet.

5.3 Availability and Recovery

To demonstrate availability in the face of node
failures and the ability for the bricks to recover af-
ter a failure, we repeated the read benchmark with
a hash table of 150 byte elements. The table was
configured with a single 100MB partition and three
replicas in that partition’s replica group. Figure 8
shows the throughput of the hash table over time
as we induced a fault in one of the replica bricks
and later initiated its recovery. During recovery, the
rate at which the recovered partition is copied was
12 MB/s, which is maximum sequential write band-
width we could obtain from the bricks’ disks.

At point (1), all three bricks were operational
and the throughput sustained by the hash table was
450 operations per second. At point (2), one of the
three bricks was killed. Performance immediately
dropped to 300 operations per second, two-thirds
of the original capacity. Fault detection was imme-
diate: client libraries experienced broken transport
connections that could not be reestablished. The
performance overhead of the replica group map up-
dates could not be observed. At point (3), recov-
ery was initiated, and recovery completed at point
(4). Between points (3) and (4), there was no no-
ticeable performance overhead of recovery; this is
because there was ample excess bandwidth on the
network, and the CPU overhead of transferring the
partition during recovery was negligible. It should
be noted that between points (3) and (4), the recov-

3Write throughput is less than read throughput because a
hash bucket must be read before it can written, in case there
is already data stored in that bucket that must be preserved.
There is therefore an additional read for every write, nearly
halving the effective throughput for DDS writes.



600

300 = ) " } ®
200 R O) @ @@ - B

100

throughput (reads/s)

0 50000 100000 150000 200000 250000 300000

time (ms)

Figure 8: Availability and Recovery: this bench-
mark shows the read throughput of a 3-brick hash table
as a deliberate single-node fault is induced, and after-
wards as recovery is performed.

ering partition is not available for writes, because of
the write lease grabbed during recovery. This parti-
tion is available for reads, however.

After recovery completed, performance briefly
dropped at point (5). This degradation is due to the
buffer cache warming on the recovered node. Once
the cache became warm, performance resumed to
the original 450 operations/s at point (6). An inter-
esting anomaly at point (6) is the presence of notice-
able oscillations in throughput; these were traced to
garbage collection triggered by the “extra” activity
of recovery. When we repeated our measurements,
we would occasionally see this oscillation at other
times besides immediately post-recovery. This sort
of performance unpredictability due to garbage col-
lection seems to be a pervasive problem; a better
garbage collector or admission control might ame-
liorate this, but we haven’t yet explored this.

6 Example Services

We have implemented a number of interesting
services using our distributed hash table. The ser-
vices’ implementation was greatly simplified by us-
ing the DDS, and they trivially scaled by adding
more service instances. An aspect of scalability not
covered by using the hash table was the routing and
load balancing of WAN client requests across service
instances, but this is beyond the scope of this work.

Sanctio: Sanctio is an instant messaging gate-
way that provides protocol translation between pop-
ular instant messaging protocols (such as Mirabilis’
ICQ and AOL’s AIM), conventional email, and voice
messaging over cellular telephones. Sanctio is a mid-
dleman between these protocols, routing and trans-
lating messages between the networks. In addition
to protocol translation, Sanctio also can transform
the message content. We have built a “web scraper”
that allows us to compose AltaVista’s BabelFish
natural language translation service with Sanctio.
We can thus perform language translation (e.g., En-
glish to French) as well as protocol translation; a

Spanish speaking ICQ user can send a message to
an English speaking AIM user, with Sanctio provid-
ing both language and protocol translation.

A user may be reached on a number of different
addresses, one for each of the networks that Sanctio
can communicate with. The Sanctio service must
therefore keep a large table of bindings between
users and their current transport addresses on these
networks; we used the distributed hash table for this
purpose. The expected workload on the DDS in-
cludes significant write traffic generated when users
change networks or log in and out of a network. The
data in the table must be kept consistent, otherwise
messages will be routed to the wrong address.

Sanctio took 1 person-month to develop, most
which was spent authoring the protocol translation
code. The code that interacts with the distributed
hash table took less than a day to write.

Web server: we have implemented a scalable
web server using the distributed hash table. The
server speaks HTTP to web clients, hashes requested
URLs into 64 bit keys, and requests those keys from
the hash table. The server takes advantage of the
event-driven, queue-centric programming style to
introduce CGI-like behavior by interposing on the
URL resolution path. This web server was written
in 900 lines of Java, 750 of which deals with HTTP
parsing and URL resolution, and only 50 of which
deals with interacting with the hash table DDS.

Others: We have built many other services
as part of the Ninja project*. The “Parallelisms”
service recommends related sites to user-specified
URLs by looking up ontological entries in an inver-
sion of the Yahoo web directory. We built a collab-
orative filtering engine for a digital music jukebox
service [16]; this engine stores users’ music prefer-
ences in a distributed hash table. We have also im-
plemented a private key store and a composable user
preference service, both of which use the distributed
hash table for persistent state management.

7 Discussion

Our experience with the distributed hash table
implementation has taught us many lessons about
using it as a storage platform for scalable services.
The hash table was a resounding success in simpli-
fying the construction of interesting services, and
these services inherited the scalability, availability,
and data consistency of the hash table. Exploiting
properties of clusters also proved to be remarkably
useful. In our experience, most of the assumptions
that we made regarding properties of a clusters and
component failures (specifically the fail-stop behav-

4http://ninja.cs.berkeley.edu/



ior of our software and the probabilistic lack of net-
work partitions in the cluster) were valid in practice.

One of our assumptions was initially problem-
atic: we observed a case where there was a system-
atic failure of all replica group members inside a
single replica group. This failure was caused by a
software bug that enabled service instances to deter-
ministically crash remote bricks by inducing a null
pointer exception in the JVM. After fixing the as-
sociated bug in the brick, this situation never again
arose. However, it serves as a reminder that sys-
tematic software bugs can in practice bring down
the entire cluster at once. Careful software engi-
neering and a good quality assurance cycle can help
to ameliorate this failure mode, but we believe that
this issue is fundamental to all systems that promise
both availability and consistency.

As we scaled our distributed hash table, we
noticed scaling bottlenecks that weren’t associated
with our own software. At 128 bricks, we ap-
proached the point at which the 100 Mb/s Ether-
net switches would saturate; upgrading to 1 Gb/s
switches throughout the cluster would delay this sat-
uration. We also noticed that the combination of our
JVM’s user-level threads and the Linux kernel be-
gan to induced poor scaling behavior as each node
in the cluster opened up a reliable TCP connection
to all other nodes in the cluster. The brick processes
began to saturate due to a flood of signals from the
kernel to the user-level thread scheduler associated
with TCP connections with data waiting to be read.

7.1 Java as a Service Platform

We found that Java was an adequate platform
from which to build a scalable, high performance
subsystem. However, we ran into a number of seri-
ous issues with the Java language and runtime. The
garbage collector of all JVMs that we experimented
with inevitably became the performance bottleneck
of the bricks and also a source of throughput and
latency variation. Whenever the garbage collector
became active, it had a serious impact on all other
system activity, and unfortunately, current JVMs do
not provide adequate interfaces to allow systems to
control garbage collection behavior.

The type safety and array bounds checking fea-
tures of Java vastly accelerated our software engi-
neering process, and helped us to write stable, clean
code. However, these features got in the way of code
efficiency, especially when dealing with multiple lay-
ers of a system each of which wraps some array of
data with layer-specific metadata. We often found
ourselves performing copies of regions of byte arrays
in order to maintain clean interfaces to data regions,
whereas in a C implementation it would be more
natural to exploit pointers into malloc’ed memory

regions to the same effect without needing copies.
Java lacks asynchronous I/O primitives, which
necessitated the use of a thread pool at the lowest-
layer of the system. This is much more efficient
than a thread-per-task system, as the number of
threads in our system is equal to the number of
outstanding I/O requests rather than the number
of tasks. Nonetheless, it introduced performance
overhead and scaling problems, since the number
of TCP connections per brick increases with the
cluster size. We are working on introducing high-
throughput asynchronous I/O completion mecha-
nisms into the JVM using the JNI native interface.

7.2 Future Work

We plan on investigating more interesting data-
parallel operations on a DDS (such as an iterator,
or the Lisp maplist () operator). We also plan on
building other distributed data structures, includ-
ing a B-tree and an administrative log. In doing
so, we hope to reuse many of the components of
the hash table, such as the brick storage layer, the
RG map infrastructure, and the two-phase commit
code. We would like to explore caching in the DDS
libraries (we currently rely on services to build their
own application-level caches). We are also exploring
adding other single-element operations to the hash
table, such as testandset(), in order to provide
locks and leases to services that may have many ser-
vice instances competing to write to the same hash
table element.

8 Related Work

Litwin et al.’s scalable, distributed data struc-
tures (SDDS) such as RP* [22, 26] helped to mo-
tivate our own work. RP* focuses on algorithmic
properties, while we focused on the systems issues
of implementing an SDDS that satisfies the concur-
rency, availability, and incremental scalability needs
of Internet services.

Our work has a great deal in common with
database research. The problems of partitioning
and replicating data across shared-nothing multi-
computers has been studied extensively in the dis-
tributed and parallel database communities [10, 17,
25]. We use mechanisms such as horizontal parti-
tioning and two-phase commits, but we do not need
an SQL parser or a query optimization layer since
we have no general-purpose queries in our system.

We also have much in common with distributed
and parallel file systems [3, 23, 31, 33]. A DDS
presents a higher-level interface than a typical file
system, and DDS operations are data-structure spe-
cific and atomically affect entire elements. Our re-
search has focused on scalability, availability, and



consistency under high throughput, highly concur-
rent traffic, which is a different focus than file sys-
tems. Our work is most similar to Petal [24], in that
a Petal distributed virtual disk can be thought of as
a simple hash table with fixed sized elements. Our
hash tables have variable sized elements, an addi-
tional name space (the set of hash tables), and fo-
cus on Internet service workloads and properties as
opposed to file system workloads and properties.

The CMU network attached secure disk
(NASD) architecture [11] explores variable-sized ob-
ject interfaces as an abstraction to allow storage sub-
systems to optimize disk layout. This is similar to
our own data structure interface, which is deliber-
ately higher-level than the block or file interfaces of
Petal and parallel or distributed file systems.

Distributed object stores [13] attempt to trans-
parently adding persistence to distributed object
systems. The persistence of (typed) objects is typi-
cally determined by reachability through the transi-
tive closure of object references, and the removal of
objects is handled by garbage collection. A DDS has
no notion of pointers or object typing, and applica-
tions must explicitly use API operations to store and
retrieve elements from a DDS. Distributed object
stores are often built with the wide-area in mind,
and thus do not focus on the scalability, availability,
and high throughput requirements of cluster-based
Internet services.

Many projects have explored the use of clusters
of workstations as a general-purpose platform for
building Internet services [1, 4, 15]. To date, these
platforms rely on file systems or databases for per-
sistent state management; our DDS’s are meant to
augment such platforms with a state management
platform that is better suited to the needs of Inter-
net services. The Porcupine project [30] includes a
storage platform built specifically for the needs of
a cluster-based scalable mail server, but they are
attempting to generalize their storage platform for
arbitrary service construction.

There have been many projects that expolored
wide-area replicated, distributed services [9, 27].
Unlike clusters, wide-area systems must deal with
heterogeneity, network partitions, untrusted peers,
high latency and low throughput networks, and mul-
tiple administrative domains. Because of these dif-
ferences, wide-area distributed systems tend to have
relaxed consistency semantics and low update rates.
However, if designed correctly, they can scale up
enormously.

9 Conclusions

This paper presents a new persistent data man-
agement layer that enhances the ability of clusters to

support Internet services. This self-managing layer,
called a distributed data structure (DDS), fills in an
important gap in current cluster platforms by pro-
viding a data storage platform specifically tuned for
services’ workloads and for the cluster environment.

This paper focused on the design and implemen-
tation of a distributed hash table DDS, empirically
demonstrating that it has many properties necessary
for Internet services (incremental scaling of through-
put and data capacity, fault tolerance and high avail-
ability, high concurrency, and consistency and dura-
bility of data). These properties were achieved by
carefully designing the partitioning, replication, and
recovery techniques in the hash table implementa-
tion to exploit features of cluster environments (such
as a low-latency network with a lack of network par-
titions). By doing so, we have “right-sized” the DDS
to the problem of persistent data management for
Internet services.

The hash table DDS simplifies Internet ser-
vice construction by decoupling service-specific logic
from the complexities of persistent state manage-
ment, and by allowing services to inherit the nec-
essary service properties from the DDS rather than
having to implement the properties themselves.

Acknowledgements

We are very grateful to Eric Anderson, Rob
von Behren, Nikita Borisov, Mike Chen, Armando
Fox, Jim Gray, Ramki Gummadi, Drew Roselli, Ge-
off Voelker, the anonymous referees, and our shep-
herd Bill Weihl for their very helpful suggestions
that greatly improved the quality of this paper. We
would also like to thank Eric Fraser, Phil Buon-
adonna, and Brent Chun for their help in giving us
access to the Berkeley Millennium cluster for our
performance benchmarks.

References

[1] E. Amir, S. McCanne, and R. Katz. An Active Ser-
vice Framework and its Application to Real-Time
Multimedia Transcoding. In Proceedings of ACM
SIGCOMM ’98, pages 178-189, Oct 1998.

[2] T. E. Anderson, D. E. Culler, and D. Patterson. A
Case for NOW (Networks of Workstations). IEEE
Micro, 12(1):54-64, Feb 1995.

[3] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, and R. Y. Wang. Serverless
Network File Systems. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles,
Dec 1995.

[4] D. Andresen, T. Yang, O. Egecioglu, O. H. Ibarra,
and T. R. Smith. Scalability Issues for High Per-
formance Digital Libraries on the World Wide Web.
In Proceedings of IEEE ADL 96, Washington D.C.,
May 1996.



[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

G. Banga, J. C. Mogul, and P. Druschel. A Scalable
and Explicit Event Delivery Mechanism for UNIX.
In Proceedings of the USENIX 1999 Annual Tech-
nical Conference, Monterey, CA, Jun 1999.

BEA Systems. BEA WebLogic Application Servers.
http://www.bea.com/products/weblogic/.

T. Brisco. RFC 1764: DNS Support for Load Bal-
ancing, Apr 1995.

A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz, and K. J. Worrell. A Hierarchical
Internet Object Cache. In Proceedings of the 1996
Useniz Annual Technical Conference, Jan 1996.

A.D. Birrell et al. Grapevine: An Exercise in Dis-
tributed Computing. Communications of the ACM,
25(4):3-23, Feb 1984.

D. DeWitt et al. The Gamma Database Machine
Project. IEEE Transactions on Knowledge and
Data Engineering, 2(1), Mar 1990.

G. A. Gibson et al. A Cost-Effective, High-
Bandwidth Storage Architecture. In ASPLOS-VIII,
San Jose, California, 1998.

J. H. Howard et al. Scale and Performance in a Dis-
tributed File System. ACM Transactions on Com-
puter Systems, 6(1), Feb 1988.

P. Ferreira et al. PerDiS: Design, Implementation,
and Use of a PERsistent DIstributed Store. In Re-
cent Advances in Distributed Systems, volume 1752
of Lecture Notes in Computer Science, chapter 18,
pages 427-452. Springer-Verlag, Feb 2000.

V. S. Pai et al. Locality-Aware Request Dis-
tribution in Cluster-Based Network Servers. In
ASPLOS-VIII, San Jose, CA, Oct 1998.

A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-Based Scalable Network
Services. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, St.-Malo,
France, Oct 1997.

I. Goldberg, S. D. Gribble, D. Wagner, and E. A.
Brewer. The Ninja Jukebox. In The 2nd USENIX

Sympositum on Internet Technologies and Systems,
Boulder, CO, Oct 1999.

G. Graefe. Encapsulation of Parallelism in the Vol-
cano Query Processing System. In ACM SIGMOD
Conference on the Management of Data, Atlantic
City, NJ, May 1990.

Jim Gray. The Transaction Concept: Virtues and
Limitations. In Proceedings of VLDB, Cannes,
France, September 1981.

S. D. Gribble and E. A. Brewer. System Design
Issues for Internet Middleware Services: Deductions
from a Large Client Trace. In Proceedings of the
1997 USENIX Symposium on Internet Technologies
and Systems (USITS 97), Monterey, CA, Dec 1997.

J. C. Hu, 1. Pyarali, and D. C. Schmidt. Apply-
ing the Proactor Pattern to High-Performance Web
Servers. In Proceedings of the 10th International
Conference on Parallel and Distributed Computing
and Systems, Oct 1998.

21]

[22]

[23]

27]

28]

[30]

[32]

A. Iyengar, J. Challenger, D. Dias, and P. Dantzig.
High-Performance Web Site Design Techniques.
IEEE Internet Computing, 4(2), Mar 2000.

J. S. Karlsson, W. Litwin, and T. Risch. LH*LH:
A Scalable High Performance Data Structure for
Switched Multicomputers. In Proceedings of the 5th
International Conference on Extending Database
Technology, pages 573-591, Avignon, France, Mar
1996.

O. Krieger and M. Stumm. HFS: A Flexible File
System for Large-Scale Multiprocessors. In Pro-
ceedings of the 1993 DAGS/PC Symposium, pages
6-14, Hanover, NH, Jun 1993.

E. K. Lee and C. A. Thekkath. Petal: Distributed
Virtual Disks. In ASPLOS-VII, Cambridge, MA,
1996.

B. G. Lindsay. A Retrospective of R*: A Dis-
tributed Database Management System. Proceed-
ings of the IEEE, 75(5):668—673, May 1987.

W. Litwin, M. Neimat, and D. A. Schneider. RP*:
A Family of Order Preserving Scalable Distributed
Data Structures. In Proceedings of the Twentieth
International Conference on Very Large Databases,
pages 342-353, Santiago, Chile, 1994.

P. V. Mockapetris and K. J. Dunlap. Development
of the Domain Name System. In ACM SIGCOMM
Computer Communication Review, 1988.

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash:
An Efficient and Portable Web Server. In Proceed-
ings of the 1999 Annual Useniz Technical Confer-
ence, Jun 1999.

M. Rosenblum and J. K. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles, 1991.

Y. Saito, B. Bershad, and H. Levy. Manageabil-
ity, Availability and Performance in Porcupine: a
Highly Scalable, Cluster-based Mail Service. In
Proceedings of the 17th Symposium on Operating
System Principles, Kiawah Island, SC, Dec 1999.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon. Design and Implementation of the
Sun Network Filesystem. In Proceedings of the
USENIX 1985 Summer Conference, El Cerrito, CA,
Jun 1985.

J. Song, E. Levy, A. Iyengar, and D. Dias. Design
Alternatives for Scalable Web Server Accelerators.
In Proceedings of the 2000 IEEE International Sym-
posium on Performance Analysis of Systems and
Software (ISPASS-2000), Austin, TX, Apr 2000.

C. A. Thekkath, T. Mann, and E. K. Lee. Frangi-
pani: A Scalable Distributed File System. In Pro-
ceedings of the 16th ACM Symposium on Operating
Systems Principles, St.-Malo, France, Oct 1997.



