
Performance of Firefly RPC

MICHAEL D. SCHROEDER and MICHAEL BURROWS

Digital Equipment Corporation

In this paper we report on the performance of the remote procedure call (RPC) implementation for

the Firefly multiprocessor and analyze the implementation to account precisely for all measured

latency. From the analysis and measurements, we estimate how much faster RPC could be if certain

improvements were made. The elapsed time for an intermachine call to a remote procedure that

accepts no arguments and produces no results is 2.66 ms. The elapsed time for an RPC that has a

single 1440-byte result (the maximum result that will fit in a single packet) is 6.35 ms. Maximum

intermachine throughput of application program data using RPC is 4.65 Mbits/s, achieved with four

threads making parallel RPCs that return the maximum-size result that fits in a single RPC result

packet. CPU utilization at maximum throughput is about 1.2 CPU seconds per second on the calling

machine and a little less on the server. These measurements are for RPCs from user space on one

machine to user space on another, using the installed system and a 10 Mbit/s Ethernet. The RPC

packet exchange protocol is built on IP/UDP, and the times include calculating and verifying UDP

checksums. The Fireflies used in the tests had 5 MicroVAX II processors and a DEQNA Ethernet

controller.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems--network operating systems; C.4 [Computer Systems Organization]: Performance of

Systems-performance attributes; D.4.4 [Operating Systems]: Communications Management-

network communication; D.4.8 [Operating Systems]: Performance-measurements

General Terms: Measurement, Performance

Additional Key Words and Phrases: Lightweight threads, RPC

1. INTRODUCTION

Remote procedure call (RPC) is now a widely accepted method for encapsulating
communication in a distributed system. With RPC, programmers of distributed
applications need not concern themselves with the details of managing commu-
nications with another address space or another machine, or with the detailed
representation of operations and data items on the communication channel in
use. RPC makes the communication with a remote environment look like a local
procedure call (but with slightly different semantics).

This paper was nominated for publication in TOCS by the Program Committee for the ACM SIGOPS

Symposium on Operating Systems Principles, December 1989.

Authors’ address: Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue,

Palo Alto, CA 94301.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

0 1990 ACM 0734-2071/90/0200-0001 $01.50

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990, Pages l-17

2 l M. Schroeder and M. Burrows

In building a new software system for the Firefly multiprocessor [8], we decided
to make RPC the primary communication paradigm, to be used by all future
programs needing to communicate with another address space, whether on the
same machine or a different one. Remote file transfers as well as calls to local
operating systems entry points are handled via RPC. For RPC to succeed in this
primary role, it must be fast enough that programmers are not tempted to design
their own special-purpose communication protocols. Because of the primary role
of RPC, however, we were able to structure the system software to expedite the
handling of RPCs and to pay special attention to each instruction on the RPC
“fast path.”

This paper reports measurements of Firefly RPC performance for intermachine
calls. It also details the steps of the fast path and assigns an elapsed time to each
step. Correspondence of the sum of these step times with the measured overall
performance indicates that we have an accurate model of where the time is spent
for RPC. In addition, this detailed understanding allows estimates to be made
for the performance improvements that would result from certain changes to
hardware and software.

Good intermachine RPC performance is important for good performance of
distributed applications. When RPC is also used for obtaining services from
other programs running on the same machine (including the local operating
system), good same-machine performance is also important. For the system
measured here, the performance of same-machine RPC is adequate; the minimal
same-machine RPC takes 937 PLS of elapsed time, about 60 times the latency of a
local procedure call. We have paid some attention to same-machine performance.
For example, a special path through the scheduler is used to minimize the cost

of the two context switches. But same-machine RPC in our system has not been
as thoroughly worked over as intermachine RPC. Much better performance for
same-machine RPC is possible, as demonstrated by Bershad et al. [l], who
achieve 20 times the latency of a local procedure call. Fortunately, their scheme
for fast same-machine RPC and our scheme for fast intermachine RPC fit
together well in the same system.

1 .l Hardware and System Characteristics

The Firefly multiprocessor allows multiple VAX processors access to a shared
memory system via coherent caches. The Firefly version measured here had 16
Mbytes of memory and 5 MicroVAX II CPUs [8], each of which provides about
1 MIPS of processor p0wer.l One of these processors is also attached to a QBus
I/O bus [4]. Network access is via a DEQNA device controller [5] connecting the
QBus to a 10 Mbit/s Ethernet. In the Firefly, the DEQNA has access to about
16 Mbits/s of QBus bandwidth.

The Firefly system kernel, called the Nub, implements a scheduler, a virtual
memory manager, and device drivers. The Nub executes in VAX kernel mode.
The virtual memory manager provides multiple user address spaces for applica-
tion programs, one of which contains the rest of the operating system. The

’ Since the measurements reported here were made, Fireflies have been upgraded with faster CVAX

processors and more memory.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Performance of Firefly RPC l 3

scheduler provides multiple threads per address space, so that the Nub, operating
system, and application programs can be written as true concurrent programs
that execute simultaneously on multiple processors. The system is structured to
operate best with multiple processors.

1.2 Overview of RPC Structure

The Firefly RPC implementation follows the standard practice of using stub
procedures [2]. The caller stub, automatically generated from a Modula2+ [7]
interface definition, is included in the calling program to provide local surrogates
for the actual remote procedures. When a procedure in this stub is called, it
allocates and prepares a call packet into which are marshaled the interface and
procedure identifications, and the arguments. The stub calls the appropriate
transport mechanism to send the call packet to the remote server machine and
then blocks, waiting for a corresponding result packet. (Other threads in the
caller address space are still able to execute.) When the result packet arrives, the
stub unmarshals any results, frees the packet, and returns control to the calling
program, as though the call had taken place within the same address space.

Similar machinery operates on the server. A server stub is included in the
server program. This stub receives calls from the transport mechanism on
the server machine when a suitable call packet arrives. The stub unmarshals the
arguments and calls the identified procedure. After completing its task, the server
procedure returns to the stub, which marshals the results and then calls the
appropriate transport mechanism to send the result packet back to the caller
machine.

A more detailed description of the structure of Firefly RPC appears in Sec-
tion 3.

2. MEASUREMENTS

In this section we report the overall performance of Firefly RPC. All measure-
ments in this paper were made on the installed service system, software that was
used by more than 50 researchers. Except where noted, all tests used automati-
cally generated stubs for a remote “Test” interface that exports three procedures:

PROCEDURE: Null();
PROCEDURE: MaxResult(VAR OUT buf: ARRAY OF CHAR);
PROCEDURE: MaxArg(VAR IN buf: ARRAY OF CHAR);

MaxArg and MaxResult were called with the following variable as the “buf”
argument:

VAR b: ARRAY[O . .1439] OF CHAR;

Calls to Null() measure the base latency of the RPC mechanism. The Ethernet
packets generated for the call and return of this procedure, which accepts no
argument and produces no result, consist entirely of Ethernet, IP, UDP, and
RPC headers and are the 74-byte minimum size generated for Ethernet RPC.

Calls to MaxResult measure the server-to-caller throughput of RPC. The
single 1440-byte VAR OUT argument produces the minimal 74-byte call packet
and a result packet with 1514 bytes, the maximum packet size allowed on an

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

4 l M. Schroeder and M. Burrows

Ethernet.’ The VAR OUT designation tells the RPC implementation that the
argument value need only be transferred in the result packet. MaxArg(b) moves
data from caller to server in the same way. The VAR IN designation means that
the argument value need only be transferred in the call packet.

2.1 Latency and Throughput

As an overall assessment of RPC performance on the Firefly, we measured the
elapsed time required to make a total of 10,000 RPCs using various numbers of
caller threads. The caller threads ran in a user address space on one Firefly, and
the multithreaded server ran in a user address space on another. Timings were
done with the two Fireflies attached to a private Ethernet to eliminate variance
due to other network traffic.

From Table I we see that the base latency of the Firefly RPC mechanism is
about 2.66 ms and that seven threads can do about 740 calls of Null() per second.
Latency for a call to MaxResult is about 6.35 ms, and four threads can achieve
a server-to-caller throughput of 4.65 Mbits/s using this procedure. This charac-
terizes the rate at which a multithreaded calling program can transfer data from
a multithreaded server program using RPC. In our system, RPC is used for most
bulk data transfer, including file transfer. We observed about 1.2 CPU seconds
per second being used on the caller machine, slightly less on the server machine,
to achieve this maximum throughput. The CPU utilization included the standard
system background threads using about 0.15 CPU seconds per second on each
Firefly.

2.2 Marshaling Time

RPC stubs are automatically generated from a Modula2+ definition module. The
stubs are generated as Modula2+ source, which is compiled by the normal
compiler. The stubs can marshal most Modula2+ data structures, including
multilevel records and pointer-linked structures. For most argument and result
types, the stub contains direct assignment statements to copy the argument or
result to/from the call or result packet. Some complex types are marshaled by
calling library marshaling procedures.

In Table II we measure the times for passing various argument types with the
automatically generated stubs. The measurements reported are the incremental
elapsed time for calling a procedure with the indicated arguments over calling
Null(). The differences were measured for calls to another address space on the
same machine in order to factor out the Ethernet transmission time for different
sizes of call and result packets. Such same-machine RPC uses the same stubs as
intermachine RPC. Only the transport mechanism is different: shared memory
rather than IP/UDP and the Ethernet. Because the pool of packet buffers (the
same pool used for Ethernet transport) is mapped into each user address space,
the time for local transport is independent of packet size.

* The Firefly RPC implementation allows arguments and results larger than 1440 bytes, but such
calls are transmitted in multiple packets using a synchronous acknowledgment per packet. Thus, the
throughput of such calls is similar to the rate achieved by one thread calling MaxArg(b) or
MaxResult synchronously and is lower than several threads calling them in parallel.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Performance of Firefly RPC - 5

Table I. Time for 10.000 RPCs

Number
of caller
threads

Calls to Null()

S RPCs/s

Calls to
MaxResult

S Mbits/s

1 26.61 375 63.47 1.82
2 16.80 595 35.28 3.28
3 16.26 615 27.28 4.25
4 15.45 647 24.93 4.65
5 15.11 662 24.69 4.69
6 14.69 680 24.65 4.70
I 13.49 741 24.72 4.69
8 13.67 732 24.68 4.69

Table II. Four-Byte Integer Arguments,
Passed by Value

Marshaling time
Number of arguments hs)

1 8
2 16
4 32

Integer and other fixed-size arguments passed by value are copied from the
caller’s stack into the call packet by the caller stub, and then copied from the
packet to the server’s stack by the server stub. Such arguments are not included
in the result packet.

In Modula2+, VAR arguments are passed by address. The additional OUT or
IN designation tells the stub compiler that the argument is being passed in one
direction only. The stub can use this information to avoid transporting and
copying the argument twice. A VAR OUT argument is actually a result and is
transported only in the result packet; it is not copied into the call packet by the
caller stub. If this result fits in a single packet, then the server stub passes the
address of storage for the result in the result packet buffer to the server procedure,
from where the server procedure can directly write it, so no copy is performed at
the server. The single copy occurs upon return when the caller stub moves the
value in the result packet back into the caller’s argument variable. VAR IN
arguments work the same way, mutatis mutandis, to transfer data from caller to
server. VAR OUT and VAR IN arguments of the same type have the same
incremental marshaling costs. For single-packet calls and results, the marshaling
times for array arguments scale linearly with the values reported in Tables III
and IV.

Table V illustrates how much slower marshaling can be when storage allocation
is required and library procedures must be called. A Text.T is a text string that
is allocated in garbage collected storage and is immutable. The caller stub must
copy the string into the call packet. The server stub must allocate a new Text.T
from garbage collected storage at the server, copy the string into it, and then

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

6 l M. Schroeder and M. Burrows

Table III. Fixed-Length Array, Table IV. Variable-Length
Passed by VAR OUT Array, Passed by VAR OUT

Array size Marshaling time Array size Marshaling time
(bytes) (PCS) (bytes) w

4 20 1 115

400 140 1440 550

Table V. Text.T Argument

Array size Marshaling time
(bytes) (PS)

NIL 89
1 378

128 659

pass a reference to this new object to the server procedure. Stubs manipulate
Text.Ts by calling library procedures of the Text package.

3. ANALYSIS

In this section we account for the elapsed time measured in Section 2.1. We start
by describing in some detail the steps in doing an intermachine RPC. Then we
report the time each step takes and compare the total for the steps to the
measured performance.

3.1 Steps in an RPC

The description here corresponds to the fast path of RPC. The fast path usually
will be followed when other calls from a caller address space to the same remote
server address space have occurred recently, within a few seconds, so that server
threads are waiting for calls from this caller. Part of making RPC fast is arranging
that the machinery for retransmission, for having enough server threads waiting,
for multipacket calls or results, for acknowledgments, and for other features of
the complete RPC mechanism intrudes very little on the fast path. Consequently,
the description of the fast path can ignore these mechanisms. The fast path is
followed for more than 95 percent of RPCs that occur in the operational system.

Firefly RPC allows choosing from several different transport mechanisms at
RPC bind time. Our system currently supports transport to another machine by
a custom RPC packet exchange protocol layered on IP/UDP, transport to another
machine by DECNet byte streams, and transport to another address space on
the same machine by shared memory. The choice of transport mechanism is
embodied in the particular versions of the transport procedures named Starter,
Transporter, and Ender that are invoked by the caller stub. At the server, the
choice is represented by the Receiver procedure being used. In this paper we
measure and describe the first of these transport options, using Ethernet. This
custom RPC packet exchange protocol follows closely the design described by
Birrell and Nelson for Cedar RPC [2]. The protocol uses implicit acknowledg-
ments in the fast path cases.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Performance of Firefly RPC 7

3.1.1 Caller Stub. When a program calls a procedure in a remote interface,
control transfers to a caller stub module for that interface in the caller’s address
space. Assuming that binding to a suitable remote instance of the interface has
already occurred, the stub module completes the RPC in five steps:

(1) Call the Starter procedure to obtain a packet buffer for the call with a
partially filled-in header.

(2) Marshal the caller’s arguments by copying them into the call packet.
(3) Call the Tranporter procedure to transmit the call packet and wait for the

corresponding result packet.
(4) Unmarshal the result packet by copying packet data to the caller’s result

variables.
(5) Call the Ender procedure to return the result packet to the free pool.

When the stub returns control to the calling program, the results are available
as if the call had been to a local procedure.

3.1.2 Server Stub. The server stub has a similar job to do. When it receives a
call packet on an up call from the Receiver procedure on the server machine, it
performs three steps:

(1) Unmarshal the call’s arguments from the call packet. Depending on its type,
an argument may be copied into a local stack variable, copied into newly
allocated garbage collected storage, or left in the packet and its address
passed. The call packet is not freed.

(2) Call the server procedure.
(3) When the server procedure returns, marshal the results in the saved call

packet, which becomes the result packet.

When the server stub returns to the Receiver procedure, the result packet is
transmitted back to the caller. The server thread then waits for another call
packet to arrive.

3.1.3 Transport Mechanism. The Transporter procedure must fill in the RPC
header in the call packet. It then calls the Sender procedure to fill in the UDP,
IP, and Ethernet headers, including the UDP checksum on the packet contents.
To queue the call packet for transmission to the server machine, the Sender
invokes the Ethernet driver by trapping to the Nub in kernel mode.

Because the Firefly is a multiprocessor with only CPU 0 connected to the I/O
bus, the Ethernet driver must run on CPU 0 when notifying the Ethernet
controller hardware. Control gets to CPU 0 through an interprocessor interrupt;
the CPU 0 interrupt routine prods the controller into action.

Immediately after issuing the interprocessor interrupt, the caller thread returns
to the caller’s address space, where the Transporter registers the outstanding call
in an RPC call table, and then waits on a condition variable for the result packet
to arrive. The time for these steps is not part of the fast path latency, as the
steps are overlapped with the transmission of the call packet, the processing at
the server, and the transmission of the result packet. For the RPC fast path, the
calling thread gets the call registered before the result packet arrives.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

8 l M. Schroeder and M. Burrows

Once prodded, the Ethernet controller reads the packet from memory over the
&Bus and then transmits it to the controller on the server machine. After
receiving the entire packet, the server controller writes the packet to memory
over the server QBus and then issues a packet arrival interrupt.

The Ethernet interrupt routine validates the various headers in the received
packet, verifies the UDP checksum, and then attempts to hand the packet
directly to a waiting server thread. Such server threads are registered in the call
table of the server machine. If the interrupt routine can find a server thread
associated with this caller address space and called address space, it attaches the
buffer containing the call packet to the call table entry and awakens the server
thread directly.

The server thread awakens in the server’s Receiver procedure.3 The Receiver
inspects the RPC header and then calls the stub for the interface ID specified in
the call packet. The interface stub then calls the specific procedure stub for the
procedure ID specified in the call packet.

The transport of the result packet over the Ethernet is handled much the same
way. When the server stub returns to the Receiver, it calls the server’s Sender
procedure to transmit the result packet back to the caller machine. Once the
result packet is queued for transmission, the server thread returns to the Receiver
and again registers itself in the call table and waits for another call packet to
arrive.

Back at the caller machine, the Ethernet interrupt routine validates the
arriving result packet, does the UDP checksum, and tries to find the caller thread
waiting in the call table. If successful, the interrupt routine directly awakens the
caller thread, which returns to step (4) in the caller stub described above.

The steps involved in transporting a call packet and a result packet are nearly
identical, from calling the Sender through transmitting and receiving the packet
to awakening a suitable thread in the call table. We refer to these steps as the
“send+receive” operation. A complete RPC requires two send+receives: one for
the call packet and one for the result packet.

3.2 Structuring for Low Latency

The scenario just outlined for the fast path of RPC incorporates several design
features that lower latency. We already mentioned that the stubs use custom
generated assignment statements in most cases to marshal arguments and results
for each procedure, rather than library procedures or an interpreter. Another
performance enhancement in the caller stub is invoking the chosen Starter,
Transporter, and Ender procedures through procedure variables filled in at
binding time, rather than finding the procedures by a table lookup.

Directly awakening a suitable thread from the Ethernet interrupt routine is
another important performance optimization for RPC. This approach means
that demultiplexing of RPC packets is done in the interrupt routine. The more
traditional approach is to have the interrupt handler awaken an operating-system
thread to demultiplex the incoming packet. The traditional approach lowers the
amount of processing in the interrupt handier, but doubles the number of wakeups

3 We lump three procedures of the actual implementation under the name Receiver here.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Performance of Firefly RPC 9

Table VI. Latency of Steps in the Send+Receive Operation

Action

Number of
microseconds

for 74-byte
packet

Number of
microseconds

for 1514-
byte packet
(if different)

Finish UDP header (Sender)
Calculate UDP checksum
Handle trap to Nub
Queue packet for transmission
Interprocessor interrupt to CPU 0
Handle interprocessor interrupt
Prod Ethernet controller
QBus/Controller transmit latency
Transmission time on Ethernet
QBus/Controller receive latency
General I/O interrupt handler
Handle interrupt for received packet
Calculate UDP checksum
Wakeup RPC thread

59”
45b
37"
39”
10”
76"
22"
70d
60d
80d
14"

177"
45b

220"

-
440b

-
-
-
-

815"
1230"
835"

-
-

440b
-

Total for send+receive 954 4414

e Calculated by adding the measured execution times of the machine
instructions in this code sequence.
b Measured by disabling UDP checksums and noting speedup.
‘Estimated.
d Measured with logic analyzer.
eMeasurements d adjusted assuming 10 Mbit/s Ethernet, 16 M/s QBus
transfer, and no cut through.

required for an RPC. By carefully coding the demultiplexing code for RPC
packets, the time per packet in the interrupt handler can be kept within reason-
able bounds (see Table VI). Even with only two wakeups for each RPC, the time
to do these wakeups can be a major contributor to RPC latency. Considerable
work has been done on the Firefly scheduler to minimize this cost. The slower
path through the operating-system address space is used when the interrupt
routine cannot find the appropriate RPC thread in the call table, when it
encounters a lock conflict in the call table, or when it handles a non-RPC packet.
The latency of an RPC to Null() is about 4.5 ms when the slower path through
the operating system is followed for both the call and the result packet.

The packet buffer management scheme we have adopted also increases RPC
performance. We mentioned above that the server stub retains the call packet to
use it for the results. We also arrange for the receive interrupt handler to
immediately replace the buffer used by an arriving call or result packet. Each
call table entry occupied by a waiting thread also contains a packet buffer. In the
case of a calling thread, it is the call packet; in the case of a server thread, it is
the last result packet. These packets must be retained for possible retransmission.
The RPC packet exchange protocol is arranged so that arrival of a result or call
packet means that the packet buffer in the matching call table entry is no longer
needed. Thus, when putting the newly arrived packet into the call table, the

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

10 l M. Schroeder and M. Burrows

interrupt handler removes the buffer found in that call table entry and adds it to
the Ethernet controller’s receive queue. Since the interrupt handler always checks
for additional packets to process before terminating, on-the-fly receive buffer
replacement can allow many packets to be processed per interrupt, Recycling is
sufficiently fast that we have seen several hundred packets processed in a single
receive interrupt.

The alert reader will have suspected another feature of our buffer management
strategy: RPC packet buffers reside in memory shared among all user address
spaces and the Nub. These buffers also are permanently mapped into VAX I/O
space. Thus, RPC stubs in user spaces, and the Ethernet driver code and interrupt
handler in the Hub, all can read and write packet buffers in memory using the
same addresses. This strategy eliminates the need for extra address mapping
operations or copying when doing RPC. While its insecurity makes shared buffers
unsuitable for use in a time-sharing system, security is acceptable for a single
user workstation or for a server where only trusted code executes (say, a file
server). This technique would also work for, say, kernel-to-kernel RPCs. For user
space to user space RPCs in a time-sharing environment, the more secure buffer
management required would introduce extra mapping or copying operations into
RPCs.

Like the pool of RPC buffers, the RPC call table also is shared among all user
address spaces and the Nub. The shared call table allows the interrupt handler
to find and awaken the waiting (calling or server) thread in any user address
space.

Several of the structural features used to improve RPC performance collapse
layers of abstraction. Programming a fast RPC is not for the squeamish.

3.3 Allocation of Latency
We now try to account for the time an RPC takes.

Table VI shows a breakdown of time for the send+receive operation that is
executed twice per RPC: once for the argument packet and once for the result
packet. The first seven actions are activities of the sending machine. The next
three are Ethernet and hardware controller delays. The last four are actions
performed by the receiving machine. All of the software in this table is written
in assembly language. Table VI shows that Ethernet transmission time and
QBus/controller latency are dominant for large packets, but software costs are
dominant for small packets. The biggest single software cost is the scheduler
operation to awaken the waiting RPC thread.

Table VII shows where time is spent in the user space RPC run time and stubs
for a call to Null(). The procedures detailed in Table VII are written in Modula2+.
The times were calculated by adding up the instruction timings for the compiler-
generated code. The Modula2+ code listed in Table VII includes nine procedure
calls. Since each call/return takes about 15 ps, depending on the number of
arguments, about 20 percent of the time here is spent in the calling sequence.

In Table VIII we combine the numbers presented so far to account for the
time required for a complete call of Null() and of MaxResult(

The best measured total latency for a call to Null() is 2645 ps, so we we have
failed to account for 131 ps. The best measured total latency for a call to
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Performance of Firefly RPC l 11

Table VII. Latencv of Stubs and RPC Run Time

Machine Procedure PS

Caller Calling program (loop to repeat call)
Calling stub (call and return)
Starter

Server

Caller

Transporter (send call packet)

Receiver (receive call packet)
Server stub (call and return)
Null (the server procedure)
Receiver (send result pkt)

Transporter (receive result pkt)
Ender

Total

16
90

128
21

158
68
10
27

49
33

606

Table VIII. Calculation of Latency for RPC to Null()
and MaxResult

Procedure Action 1s

Null() Caller, server, stubs, RPC run time 606
Send+receive 74-byte call packet 954
Send+receive 74-byte result packet 954

Total 2514

MaxResult Caller, server, stubs, RPC run time 606
Marshall 1440-byte result packet 550
Send+receive 74-byte call packet 954
Send+receive 1514-byte result pkt 4414

Total 6524

MaxResult is 6347 pus, so we have accounted for 177 ps too much. By adding
the time of each instruction executed and of each hardware latency encoun-
tered, we have accounted for the total measured time of RPCs to Null() and
MaxResult to within about 5 percent.

4. IMPROVEMENTS

One of the important steps in improving the performance of Firefly RPC over
its initial implementation was to rewrite the ModulaB+ versions of the fast path
code in the Ethernet send+receive operation in VAX assembly language. In this
section we illustrate the speedups achieved by using machine code.

We then use the analysis and measurement reported so far to estimate the
impact that other changes could have on overall RPC performance. It is hard to
judge how noticeable these possible improvements would be to the normal user
of the system. The Firefly RPC implementation has speeded up by a factor of
three or so from its initial implementation. This improvement has produced no
perceived change in the behavior of most applications. However, lower latency
RPC may encourage programmers to use RPC interfaces where they might

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

12 l M. Schroeder and M. Burrows

Table IX. Execution Time
for the Main Path of the

Ethernet Interrupt Routine

Version
Time
(IL4

Original ModulaP+ 758
Best ModulaP+ 541
Assembly language 111

previously have been tempted to use ad hoc protocols before, and encourage the
designers of new systems to make extensive use of RPC.

4.1 Assembly Language versus Modula2+

In order to give some idea of the improvement obtained when Modula2+ code
fragments are recoded in assembly language, Table IX shows the time taken by
one particular code fragment at various stages of optimization. This fragment
was chosen because it was the largest one that was recorded and is typical of the
improvements obtained for all the code that was rewritten.

The “Original Modula2+” was the state of the interrupt routine before any
assembly language code was written. The “Best Modula2+” code was structured
so that the compiler output would follow the assembly language version as closely
as possible. The “assembly language” version, however, runs in one-third the
time. Writing in assembly language is hard work and also makes the programs
harder to maintain. Because RPC is the preferred communication paradigm for
the Firefly, however, it seemed reasonable to concentrate considerable attention
on its key code sequence. (There cannot be too much assembly language in the
fast path, or it would not be fast!) The ModulaZ+ compiler used here apparently
generates fairly inefficient code. The speedup achieved by using assembly lan-
guage will be less dramatic starting from a better compiler, but would still be
substantial.

4.2 Speculations on Future Improvements

While improving the speed of the RPC system, we noticed several further
possibilities for improving its performance and also considered the impact that
faster hardware and networks would have. In this section we speculate on the
performance changes such improvements might generate. Some of these changes
have associated disadvantages or require unusual hardware. For each change, we
give the estimated speedup for a call to Null() and a call to MaxResult(The
effect on maximum throughput has not been estimated for all the changes, since
this figure is likely to be limited by a single hardware component.

Some estimates are based on best conceivable figures, and these may ignore
some practical issues. Also, the effects discussed are not always independent, so
the performance improvement figures cannot always be added.

4.2.1 Different Network Controller. A controller that provided maximum con-
ceivable overlap between Ethernet and QBus transfers would save about 300 ps
on Null() (11 percent) and about 1800 ps (28 percent) on MaxResult(It is
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Performance of Firefly RPC l 13

more difficult to estimate the improvement in throughput with multiple threads,
since the Ethernet controller is already providing some overlap in that case. We
think improvement is still possible on the transmission side, since the saturated
reception rate is 40 percent higher than the corresponding transmission rate.

4.2.2 Faster Network. If the network ran at 100 Mbits/s and all other factors
remained constant, the time to call Null() would be reduced by 110 ~LS (4 percent),
and the time to call MaxResult would be reduced by 1160 pus (18 percent).

4.2.3 Faster CPUs. If all processors were to increase their speed by a factor of
three, the time to call Null() would reduce by about 1380 pus (52 percent). The
time to call MaxResult would reduce by 2280 ps (36 percent).

4.2.4 Omit UDP Checksums. Omitting UDP checksums saves 180 ps (7 per-
cent) on a call to Null() and 1000 ys (16 percent) on a call to MaxResult(At
present, we use these end-to-end software checksums because the Ethernet
controller occasionally makes errors after checking the Ethernet CRC. End-to-
end checksums still would be essential for crossing gateways in an internet.

4.2.5 Redesign RPC Protocol. We estimate that by redesigning the RPC packet
header to make it easy to interpret and by changing an internal hash function,
it would be possible to save about 200 ,us per RPC. This represents approximately
8 percent of a call to Null() and 3 percent of a call to MaxResult(

4.2.6 Omit Layering on IP and UDP. We estimate that direct use of Ethernet
datagrams, omitting the IP and UDP headers, would save about 100 ps per RPC,
assuming that checksums were still calculated. This is about 4 percent of a call
to Null() and l-2 percent of a call to MaxResult(This change would make it
considerably more difficult to implement RPC on machines where we do not
have access to the kernel. It would also make it impossible to use RPC via an IP
gateway. (Some of the fields in IP and UDP headers would have to be incorporated
into the RPC header.)

4.2.7 Busy Wait. If caller and server threads were to loop in user space while
waiting for incoming packets, the time for a wakeup via the Nub would be saved
at each end. This is about 440 ,US per RPC, which is 17 percent of a call to Null()
and 7 percent of a call to MaxResult(Allowing threads to busy wait (in such
a way that they would relinquish control whenever the scheduler demanded)
would require changes to the scheduler and would make it difficult to measure
accurately CPU usage for a thread.

4.2.8 Recode RPC Run-Time Routines (except stubs). If the RPC run-time
routines in Table VII were rewritten in hand-generated machine code, we would
expect to save approximately 280 ~LS per RPC. This corresponds to 10 percent of
a call to Null() and 4 percent of a call to MaxResult(This figure is based on
an expected speedup of a factor of three in 422 pus of routines to be recoded,
which is typical of other code fragments that have been rewritten.

5. FEWER PROCESSORS

The Fireflies used in the tests reported here had five MicroVAX II processors.
The measurements in other sections were done with all five available to

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

14 l M. Schroeder and M. Burrows

Table X. Calls to Null() from One Thread
with Varying Numbers of Processors

Caller
processors

Server
processors

Number of
seconds for
1000 calls

5 5 2.69
4 5 2.73
3 5 2.85
2 5 2.98
1 5 3.96
1 4 3.98
1 3 4.13
1 2 4.21
1 1 4.81

the scheduler. In this section we report the performance with fewer available
processors.

At first we were unable to get reasonable performance when running with a
single available processor on the caller and server machines. Calls to Null() were
taking around 20 ms. We finally discovered the cause to be a few lines of code
that slightly improved multiprocessor performance but had a dramatic negative
effect on uniprocessor performance. The good multiprocessor code tends to lose
about 1 packet/s when a single thread calls Null() using uniprocessors, producing
a penalty of about 600 ms waiting for a retransmission to occur. Fixing the
problem requires swapping the order of a few statements at a penalty of about
100 ~LS for multiprocessor latency. The results reported in this section were
measured with the swapped lines installed. (This change was not present for
results reported in other sections.)

These measurements were taken with the RPC Exerciser, which uses hand-
produced stubs that run faster than the standard ones (because they do not do
marshaling, for one thing). With the RPC Exerciser, the latency for Null() is
140 ps faster and the latency for MaxResult is 600 I.LS faster than reported in
Table I. Such hand-produced stubs might be used in performance-sensitive
situations, such as kernel-to-kernel RPCs, where one could trust the caller and
server code to reference all arguments and results directly in RPC packet buffers.

Table X shows one thread making RPCs to Null(), with varying numbers of
processors available on each machine. When the calls are being done one at a
tipe from a single thread, reducing the number of caller processors from five
dg.wn to two increases latency only about 10 percent. There is a sharp jump in
latency for the uniprocessor caller. Reductions in server processors seem to follow
a similar pattern. Latency with uniprocessor caller and server machines is
75 percent longer than for five processor machines.

Table XI shows the effect on the data transfer rate of varying the number of
processors on RPCs to MaxResult(In this test each thread made 1000 calls.
RPC throughput in this system is quite sensitive to the difference between a
uniprocessor and a multiprocessor. Uniprocessor throughput is slightly more
than half-of-five processor performance for the same number of caller threads.
ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

Performance of Firefly RPC l 15

Table XI. Throughput in Mbits/s of MaxResult
with Varying Numbers of Processors and Threads

Caller processors: 5 1 I

Server processors: 5 5 1

1 caller thread 2.0 1.5 1.3
2 caller threads 3.4 2.3 2.0
3 caller threads 4.6 2.1 2.4
4 caller threads 4.7 2.7 2.5
5 caller threads 4.7 2.7 2.5

We have not tried very hard to make Firefly RPC perform well on a unipro-
cessor machine. The fast path for RPC is followed exactly only on a multipro-
cessor. On a uniprocessor, extra code gets included in the basic latency for RPC,
such as a longer path through the scheduler. Also, the fast path is abandoned
more often by lock conflicts on a uniprocessor. Even with just one caller thread,
the interrupt code can require a lock held by the caller or server thread. It is
plausible that better uniprocessor throughput could be achieved by an RPC
design, like Amoeba’s [9], V’s [3], or Sprite’s [6], that streamed a large argument
or result from a single call in multiple packets, rather than depended on multiple
threads transferring just a packet’s worth of data per call. The streaming strategy
requires fewer thread-to-thread context switches.

6. OTHER SYSTEMS

A sure sign of the coming of age of RPC is that others are beginning to report
RPC performance in papers on distributed systems. Indeed, an informal compe-
tition has developed to achieve low latency and high throughput. Table XII
collects the published performances of several systems of interest. All of the
latency measurements were for intermachine RPCs to the equivalent of Null().
The throughput measurements were made using either single-threaded multi-
packet calls or multithreaded single-packet calls, depending on which worked
best on a particular system. All measurements were for a 10 Mbit Ethernet, with
the exception that the Cedar measurements used a 3 Mbit Ethernet. No other
paper has attempted to account exactly for the measured performance, as we
have tried to do.

Amoeba advertises itself as the world’s fastest distributed system. But the
Cedar system achieved 20 percent lower latency four years earlier (using a slower
network and a faster processor). Determining a winner in the RPC sweepstakes
is tricky business. These systems vary in processor speed, I/O bus bandwidth,
and controller performance. Some of these RPC implementations work only
kernel to kernel; others work user space to user space. Some protocols provide
internet headers; others work only within a single Ethernet. Some use automat-
ically generated stubs; others use hand-produced stubs. Some generate end-to-
end checksums with software; others do not. The implementations are written in
different languages with varying quality compilers. Researchers can disagree
about which corrections to apply to normalize the reported performance of
different systems.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

16 - M. Schroeder and M. Burrows

Table XII. Performance of Remote RPC in Other Systems

System Machine Processor - MIPS ms/call Mbits/s

Cedar [2] Dorado Custom 1x4 1.1 2.0
Amoeba [9] Tadpole M68020 1 x 1.5 1.4 5.3
v [31 Sun 3/75 M68020 1x2 2.5 4.4
Sprite [6] Sun 3/75 M68020 1x2 2.8 5.6
Amoeba/UNIX4 [9] Sun 3/50 M68020 1 x 1.5 7.0 1.8

Firefly FF MicroVAX II 1x1 4.8 2.5
Firefly FF MicroVAX II 5x1 2.7 4.6

It is clear from the literature that developers of distributed systems are learning
how to get good request/response performance from their systems. Many system
developers and users now understand that it is not necessary to put up with high
latency or low throughput from RPC-style communication. Some RPC imple-
mentations appear to drive current Ethernet controllers at their throughput
limit5 and to provide basic remote call latency only about 100 times slower than
that for statically linked calls within a single address space.

7. CONCLUSIONS

Our objective in making Firefly RPC the primary communication mechanism
between address spaces, both intermachine and same-machine, was to explore
the bounds of effectiveness of this paradigm. In making the RPC implementation
fast, we sought to remove one excuse for not using it. To make it fast, we had to
understand exactly where time was being spent, remove unnecessary steps from
the critical path, give up some structural elegance, and write key steps in hand-
generated assembly code. We did not find it necessary to sacrifice function; RPC
still allows multiple transports, works over wide-area networks, copes with lost
packets, handles a large variety of argument types including references to garbage
collected storage, and contains the structural hooks for authenticated and secure
calls. The performance of Firefly RPC is now good enough that programmers
accept it as the standard way to communicate.

ACKNOWLEDGMENTS

Andrew Birrell designed the Firefly RPC facility, and Sheng Yang Chiu designed
the driver for the Ethernet controller. Andrew and Sheng Yang, along with
Michael Burrows, Eric Cooper, Ed Lazowska, Sape Mullender, Michael Schroe-
der, and Ted Wobber have participated in the implementation and improvement
of the facility. The recent round of performance improvements and measurements
were done by Michael Burrows and Michael Schroeder, at Butler Lampson’s
insistence. The RPC latency includes two wakeup calls to the scheduler, whose
design and implementation was done by Roy Levin. Andrew Birrell, Mark Brown,

4 UNIX is a trademark of AT&T Bell Laboratories.
5 In the case of Firefly RPC, throughput has remained the same as the last few performance
improvements were put in place. The CPU utilization continued to drop as the code got faster.

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990

Performance of Firefly RPC l

David Cheriton, Ed Lazowska, Hal Murray, John Ousterhout, Susan Owicki, and
Doug Terry made several suggestions for improving the presentation of the paper.

REFERENCES

1. BERSHAD, B. N., ANDERSON, T. E., LAZOWSKA, E. D., AND LEVY, H. M. Lightweight remote
procedure call. ACM Trans. Comput. Syst. 8, 1 (Feb. 1990).

2. BIRRELL, A. D., AND NELSON, B. Implementing remote procedure calls. ACM Trans. Comput.
Syst. 4,1 (Feb. 1984), 39-59.

3. CHERITON, D. R. The V distributed system. Commun. ACM 31,3 (Mar. 1988), 314-333.
4. DIGITAL EQUIPMENT CORP. Microsystems Handbook. Digital Equipment Corp., Palo Alto, Calif.,

1985 Appendix A.
5. DIGITAL EQUIPMENT CORP. DEQNA ETHERNET-User’s Guide. Digital Equipment Corp.,

Palo Alto, Calif., Sept. 1986.
6. OUSTERHOUT, J. K., ET AL. The Sprite network operating system. Computer 21, 2 (Feb. 1988),

23-35.
7. ROVNER, P. R. Extending Modula-2 to build large, integrated systems. IEEE Softw. 37,8 (Nov.

1986), 46-57.
8. THACKER, C. P., STEWART, L. C., AND SATTERTHWAITE, E. H., JR. Firefly: A multiprocessor

workstation. IEEE Trans. Comput. 3,6 (Aug. 1988), 909-920.
9. VAN RENESSE, R., VAN STAVEREN, H., AND TANENBAUM, A. S. Performance of the world’s

fastest distributed operating system. Oper. Syst. Rev. 22, 4 (Oct. 1988), 25-34.

Received May 1989; revised September 1989; accepted October 1989

ACM Transactions on Computer Systems, Vol. 8, No. 1, February 1990.

