
Information Flow Control for Standard OS Abstractions
Maxwell Krohn Alexander Yip Micah Brodsky Natan Cliffer

M. Frans Kaashoek Eddie Kohler† Robert Morris
MIT CSAIL †UCLA

http://flume.csail.mit.edu/

ABSTRACT

Decentralized Information Flow Control (DIFC) [24] is an ap-
proach to security that allows application writers to control how
data flows between the pieces of an application and the outside
world. As applied to privacy, DIFC allows untrusted software to
compute with private data while trusted security code controls the
release of that data. As applied to integrity, DIFC allows trusted
code to protect untrusted software from unexpected malicious in-
puts. In either case, only bugs in the trusted code, which tends to be
small and isolated, can lead to security violations.

We presentFlume, a new DIFC model and system that applies at
the granularity of operating system processes and standardOS ab-
stractions (e.g., pipes and file descriptors). Flume eases DIFC’s use
in existing applications and allows safe interaction between con-
ventional and DIFC-aware processes. Flume runs as a user-level
reference monitor on Linux. A process confined by Flume cannot
perform most system calls directly; instead, an interposition layer
replaces system calls with IPC to the reference monitor, which en-
forces data flow policies and performs safe operations on thepro-
cess’s behalf. We ported a complex Web application (MoinMoin
wiki) to Flume, changing only 2% of the original code. The Flume
version is roughly 30–40% slower due to overheads in our current
implementation but supports additional security policiesimpossible
without DIFC.

Categories and Subject Descriptors:
D.4.6 [Operating Systems]: Security and Protection—Information
flow controls, Access controls; D.4.7 [Operating Systems]: Orga-
nization and Design; C.5.5 [Computer System Implementation]:
Servers
General Terms: Security, Design, Performance
Keywords: distributed information flow control, DIFC, end-
points, reference monitor, system call interposition, Webservices

1 INTRODUCTION

As modern applications grow in size, complexity and dependence
on third-party software, they become more susceptible to security
flaws. Decentralized information flow control (DIFC) [24], avari-
ant of classic information flow control [1, 2, 6], can improvethe
security of complex applications, even in the presence of potential
exploits. Existing DIFC systems operate as programming language
abstractions [24] or are integrated into communication primitives in
new operating systems [8, 38]. These approaches have advantages,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07,October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 . . . $5.00.

such as fine-grained control of information flow and high perfor-
mance, but require a shift in how applications are developed. Flume
instead provides process-level DIFC as a minimal extensionto the
communication primitives inexistingoperating systems, making
DIFC work with the languages, tools, and operating system abstrac-
tions already familiar to programmers.

The Flume system provides DIFC at the granularity of processes,
and integrates DIFC controls with standard communication abstrac-
tions such as pipes, sockets, and file descriptors, via a user-level
reference monitor. Its interface helps programmers secureexisting
applications and write new ones with existing tools and libraries.
Flume enforces the DIFC policy as the application runs.

A typical Flume application consists of processes of two types.
Untrustedprocesses do most of the computation. They are con-
strained by, but possibly unaware of, DIFC controls.Trustedpro-
cesses, in contrast, are aware of DIFC and set up the privacy and
integrity controls that constrain untrusted processes. Trusted pro-
cesses also have theprivilege to selectively violate classical in-
formation flow control—for instance, bydeclassifyingprivate data
(perhaps to export it from the system), or byendorsingdata as high-
integrity. This privilege is distributed among the trustedprocesses
according to application policy, making it decentralized (the “D” in
DIFC). Though bugs in the trusted code can lead to compromise,
bugs elsewhere in the application cannot, and trusted code can stay
relatively isolated and concise even as the application expands.

A central challenge for Flume is to accommodate processes that
use existing communication interfaces such as sockets and pipes
but also need to specify how and when they use their privileges.
It would be awkward to, for example, modify each call toread
orwrite to take arguments indicating whether privilege should be
applied. Worse, the conventional process interface is rifewith chan-
nels that “leak” information, like network sockets. A system could
simply mark these channels off-limits, restricting the process inter-
face to those system calls with obvious and controllable information
flow, but this approach would make many libraries unusable. Flume
instead seeks to restrict access to these uncontrolled channels only
when necessary.

Our solution is anendpointabstraction. Flume represents each
resource a process uses to communicate as an endpoint, including
pipes, sockets, files, and network connections. A process can spec-
ify what subset of its privileges should be exercised when commu-
nicating through each endpoint. Uncontrolled channels aremodeled
as endpoints that exit the DIFC system; Flume ensures that nopro-
cess can have both an uncontrolled channel and access to private
data it cannot declassify.

We built Flume in user-space (with a few small kernel patches)
for implementation convenience and portability: the implementa-
tion runs on Linux and OpenBSD. Unlike prior systems that pro-
vide DIFC as part of a new kernel design (e.g., Asbestos [8] and
HiStar [38]), Flume takes advantage of large existing efforts to
maintain and improve the kernel support for hardware, NFS, RAID,
SMP, etc. The disadvantage is that Flume’s trusted computing base
is many times larger than those of dedicated DIFC kernels, leaving



it vulnerable to security flaws in the underlying operating system.
Also, Flume’s user space implementation incurs some performance
penalties and may expose covert channels that deeper kernelinte-
gration would close.

To evaluate Flume’s programmability, we ported a complex and
popular application, MoinMoin wiki [22], to the Flume system.
MoinMoin is a feature-rich Web document sharing system (91,000
lines of Python code), with support for access control lists, index-
ing, Web-based editing, versioning, syntax highlighting for source
code, downloadable “skins”, etc. We captured Moin’s accesscon-
trol policies with DIFC-based equivalents, thereby movingthe se-
curity logic out of the main application and into a small, isolated se-
curity module about a thousand lines long. Only bugs in the security
module, as opposed to the large tangle of Moin code and its plug-
ins, can compromise end-to-end security. We also implemented a
Moin security policy that could not exist without Flume:end-to-
end integrity protection. Moin can pull third-party plug-ins into its
address space, but with end-to-end integrity protection, users can
enforce that selected plug-ins never touch (and potentially corrupt)
their sensitive data, either on input or output.

FlumeWiki achieves these security goals with only a thousand
lines of modification to the original MoinMoin system (in addition
to the new security module). Though prior DIFC work has suc-
ceeded in sandboxing legacy applications [38] or rewritingthem
anew [8, 15], the “drop-in” replacement of an existing access con-
trol policy with a DIFC-based one is a new result. In at least three
cases, FlumeWiki closes security holes in the original Moin. Ex-
periments with FlumeWiki on Linux show that the new system
performs 43% slower than the original in read workloads, and
34% slower on write workloads. Slow-downs are due primarilyto
Flume’s user-space implementation. We expect that for manyWeb
sites the prototype’s performance is adequate.

This paper’s contributions include:

• New DIFC rules that fit standard operating system abstractions
well and that are simpler than those of Asbestos and HiStar.
Flume’s DIFC rules are close to rules for classic “centralized”
information flow control [1, 2, 6], with small extensions forde-
centralization and communication abstractions found in widely-
used operating systems.

• The first design and implementation of process-level DIFC for
stock operating systems (OpenBSD and Linux).

• Refinements to Flume DIFC required to build real systems, such
as machine cluster support, and DIFC primitives that scale to
large numbers of users.

• A full-featured DIFC Web site (FlumeWiki) with novel end-to-
end integrity guarantees, composed largely of existing code.

All security claims made for Flume rely on two important as-
sumptions. First, machines running Flume must not have security
bugs that result in super-user privileges. Second, though the Flume
design makes a concerted effort to close all known covertstorage
channels (and we indicate where it falls short), Flume assumes pro-
cesses running on the machine do not leak data via coverttiming
channels. For example, an exploit might transmit sensitiveinfor-
mation by carefully modulating its CPU use in a way observable by
other processes. Covert timing channels are present in all existing
DIFC systems; they can be reduced but not eliminated, particularly
for systems connected to the network [38].

The rest of this paper proceeds as follows: Section 2 describes
related work. Section 3 considers an abstract definition forDIFC,
while Section 4 presents endpoints and the instantiation ofDIFC
on Unix. Section 5 and 6 describe the design of Flume and its file

system, and Section 7 describes the FlumeWiki. Section 8 provides
a performance evaluation, and Section 9 concludes.

2 RELATED WORK

There has been much work on improving security on stock oper-
ating systems, including buffer overrun protection (e.g.,[5, 18]),
system call interposition (e.g., [11, 12, 16, 27, 32]), isolation
techniques (e.g., [13, 17]), virtual machines (e.g., [14, 33, 35]),
and recovering from compromises (e.g., [7]). Flume uses some of
these techniques for its implementation (e.g., LSMs [36] and sys-
trace [27]), but Flume is more closely related to mandatory access
control and specifically decentralized information flow control.

Mandatory access control (MAC) [28] refers to a system se-
curity plan in which security policies aremandatoryand not en-
forced at the discretion of the application writers. In manysuch
systems, software components may be allowed to read privatedata
but are forbidden from revealing it. Traditional MAC systems in-
tend that an administrator set a single system-wide policy.When
servers run multiple third-party applications, however, administra-
tors cannot understand every application’s detailed security logic.
DIFC promises to support such situations better than most MAC
mechanisms, because it partially delegates the setting of policy to
the individual applications.

SELinux [20] and TrustedBSD [34] are recent examples of stock
operating systems modified to support many MAC policies. They
include interfaces for a security officer to dynamically insert secu-
rity policies into the kernel, which then limit the behaviorof ker-
nel abstractions like inodes and tasks [30]. Flume, like SELinux,
uses the Linux security module (LSM) framework in its imple-
mentation [36]. However, SELinux and TrustedBSD do not allow
untrusted applications to define and update security policies (as in
DIFC). If SELinux and TrustedBSD were to provide such an API,
they would need to address the challenges considered in thispaper.

TightLip [37] implements a specialized form of IFC that pre-
vents privacy leaks in legacy applications. TightLip userstag their
private data and TightLip prevents that private data from leaving the
system via untrusted processes. Unlike TightLip, Flume andother
DIFC systems (e.g. Asbestos and HiStar) support multiple security
classes, which enable safe commingling of private data and security
policies other than privacy protection.

IX [21] and LOMAC [10] add information flow control to Unix,
but again with support for only centralized policy decisions. Flume
faces some of the same Unix-related problems as these systems,
such as shared file descriptors that become storage channels.

Myers and Liskov introduced a decentralized information
model [23], thereby relaxing the restriction in previous information
flow control systems that only a security officer could declassify.
JFlow and its successor Jif are Java-based programming languages
that enforce DIFC within a program, providing finer-grainedcon-
trol than Flume [24]. One benefit is that Jif can limit declassifica-
tion privileges to specific function(s) within a process, rather than
(as with Flume) to the entire process. On the other hand, Jif re-
quires applications (such as Web services [4]) to be rewritten while
Flume provides better support for applying DIFC to existingsoft-
ware. Flume’s DIFC rules (Section 3) are inspired by Jif’s but split
readership and ownership into separate per-process labels, and al-
low ownership to be transfered as capabilities. Flume’s endpoints
(Section 4) provide the glue between software written for anexist-
ing API and DIFC.

Asbestos [3, 8] and HiStar [38] incorporate DIFC into new op-
erating systems, applying labels at the granularity of unreliable
messages between processes (Asbestos) or threads, gates, and seg-
ments (HiStar). Flume’s labels are influenced by Asbestos’sand



incorporate HiStar’s improvement that threads must explicitly re-
quest label changes (since implicit label changes are covert chan-
nels). Asbestos and HiStar labels combine mechanisms for privacy,
integrity, authentication, declassification privilege, and port send
rights. Flume separates (or eliminates) these mechanisms in a way
that is intended to be easier to understand and use.

HiStar implements an untrusted, user-level Unix emulationlayer
using DIFC-controlled low-level kernel primitives. A process that
uses the Unix emulation layer but needs control over the DIFCpol-
icy would have to understand and manipulate the mapping between
Unix abstractions and HiStar objects. Such controls could be fac-
tored into a new library, and this paper answers the questionof what
such a library might look like.

As new operating systems, Asbestos and HiStar have smaller
TCBs than Flume, and can tailor their APIs to work well with DIFC.
However, they don’t automatically benefit from mainstream operat-
ing systems’ frequent updates, such as new hardware supportand
kernel improvements.

3 INFORMATION FLOW I N FLUME

This section describes Flume’s approach to decentralized infor-
mation flow control. TheFlume modelclosely follows traditional
IFC [6], adding a simple new representation of how processesmain-
tain and use decentralized privilege.

3.1 Tags and Labels
Flume usestagsand labelsto track data as it flows through a sys-
tem. LetT be a very large set of opaque tokens calledtags. A tag t
carries no inherent meaning, but processes generally associate each
tag with some category of secrecy or integrity. Tagb, for example,
might label Bob’s private data.

Labelsare subsets ofT . Labels form a lattice under the par-
tial order of the subset relation [6]. Each Flume processp has two
labels,Sp for secrecy andIp for integrity. If tag t ∈ Sp, then the
system conservatively assumes thatp has seen some private data
tagged witht. A process whose secrecy label contains one or more
tags requires independent consent for each tag to reveal data pub-
licly. For integrity, if t ∈ Ip, then every input top has been endorsed
as having integrity fort. Files (and other objects) also have secrecy
and integrity labels.

Although any tag can appear in any type of label, in practice
secrecy and integrity usage patterns are so different that atag is
usedeither in secrecy labelsor in integrity labels, not both. We
therefore sometimes refer to a “secrecy tag” or an “integrity tag”.

We will illustrate Flume’s information flow with several running
examples.

Example: Secrecy Alice and Bob share access to a server, but
wish to keep some files (but not all) secret from one another. Mis-
behaving software can complicate even this basic policy; for exam-
ple, Bob might download a text editor that, as a side effect, posts
his secret files to a public Web site, or writes them to a publicfile in
/tmp. Under the typical OS security plan, Bob can only convince
himself that the text editor won’t reveal his data if he (or someone
he trusts) audits the software and all of its libraries.

With information flow control, Bob can reason about the editor’s
(mis)behavior without auditing its code. Say that tagb represents
Bob’s secret data. As described below, Bob explicitly trusts some
processes to export his data out of the system. For now, consider all
other (i.e.untrusted) processes, like the text editor and its minions.
Bob seeks four guarantees for each such processp: (1) if p reads his
secret files, thenb∈ Sp; (2) p with b ∈ Sp can only write to other
processes (and files)q with b∈ Sq; (3) p cannot removeb from Sp;

(4) p with b∈ Sp cannot transmit information over an uncontrolled
channel (like the network). If all four conditions hold, then a simple
inductive argument shows that the editor cannot leak Bob’s data
from the system.

Example: Integrity A complementary policy involves integrity.
Say Charlie has administrator privilege on his machine, allowing
him to edit sensitive files (e.g.,/etc/rc, the script that con-
trols which processes run with superuser privileges when a ma-
chine boots up). However, other users constantly update libraries
and download new software, so Charlie lacks confidence that all
editors on the system will faithfully execute his intentions when he
edits/etc/rc. A path misconfiguration might lead Charlie to ac-
cess a malicious editor that shares a name with a responsibleeditor,
or a good editor that links at runtime against phony libraries.

Secrecy protection won’t help Charlie; rather, he needs an end-
to-end guarantee thatall files read when editing/etc/rc are un-
corrupted. Only under these integrity constraints should the system
allow modifications to the file. Say that an integrity tagv represents
data that is “vendor-certified.” As described below, some processes
on the system canendorsefiles and processes, giving them integrity
v. For now, consider all other processes, like the text editor. Char-
lie seeks four guarantees for each such processp: (1) if p modifies
/etc/rc thenv∈ Ip; (2) a processp with v∈ Ip cannot read from
files or processes that lackv integrity, and only uncorrupted files
(like binaries and libraries) havev integrity; (3) a processp cannot
add v to Ip; and (4)p with v ∈ Ip cannot accept input from un-
controlled channels (like the network). If all four conditions hold,
Charlie knows that changes to/etc/rc were mediated by an un-
corrupted editor.

3.2 Decentralized Privilege

In centralized IFC, only a trusted “security officer” can create new
tags, subtract tags from secrecy labels (declassifyinformation), or
add tags to integrity labels (endorseinformation). In Flume DIFC,
any process can create new tags, which gives that process thepriv-
ilege to declassify and/or endorse information for those tags.

Flume represents privilege using twocapabilitiesper tag. For tag
t, the capabilities aret+ andt−. Each processownsa set of capabili-
tiesOp. A process witht+ ∈Op ownsthet+ capability, giving it the
privilege to addt to its labels; and a process witht− ∈ Op can re-
movet from its labels. In terms of secrecy,t+ lets a process addt to
its secrecy label, granting itself the privilege to receivesecrett data,
while t− lets it removet from its secrecy label, effectively declas-
sifying any secrett data it has seen. In terms of integrity,t− lets a
process removet from its integrity label, allowing it to receive low-
t-integrity data, whilet+ lets it addt to its integrity label, endorsing
the process’s current state as high-t-integrity. A process that owns
both t+ andt− hasdual privilegefor t and can completely control
how t appears in its labels. The setDp = {t | t+ ∈Op andt− ∈Op}
represents all tags for whichp has dual privilege.

Any process can allocate a tag. Tag allocation yields a randomly-
selected tagt and setsOp←Op∪{t+, t−}, grantingp dual privilege
for t.

Flume also supports aglobal capability setO. Every process
owns every capability inO: the system enforces thatO ⊆ Op for
all p. Only tag allocation can changeO; an allocation parameter
determines whether the new tag’st+, t−, or neither is added toO
(and thus to every current and future process’sOp). A process can
test whether a given capability is inO, but to prevent data leaks,
processes cannot enumerate the contents ofO. A processp can,
however, enumerate its non-global capabilities (those inOp−O).



Two processes can transfer capabilities so long as they can com-
municate. A process can freely drop non-global capabilities (though
we add a restriction in Section 4.2).

For a set of tagsT, we define the capability set{T}+ as{t+ | t ∈
T}, and similarly for{T}−.

Example: Secrecy Bob can maintain the secrecy of his private
data with a policy calledexport protection. One of Bob’s processes
allocates the secrecy tagb used to mark his private data; during the
allocation,b+ is added toO, but only the allocating trusted process
getsb−. Thus, any processp can addb to Sp and therefore read
b-secret data, but only processes that ownb− (i.e., Bob’s trusted
process and its delegates) can declassify this data and export it out
of the system. (We describe how to createb-secret data below.)

A related but more stringent policy is calledread protection. A
process allocates a secrecy tagt, but neithert+ nor t− is added to
O. By controlling t+, the allocating process can limit which other
processes canview t-secret data, as well as limiting which other
processes can declassifyt-secret data. Read protection can prevent
secret data from leaking through covert channels, including timing
channels [38].

Example: Integrity Another policy,integrity protection, is suit-
able for our integrity example. A “certifier” process allocates in-
tegrity tagv, and during the allocation,v− is added toO. Now, any
p process canremove vfrom Ip, but only the certifier hasv+. The
ability to addv to an integrity label—and thus to endorse informa-
tion as high-v-integrity—is tightly controlled by the certifier. Char-
lie requests of the certifier to edit/etc/rc using an editor of his
choice. The certifier forks, creating a new process withv integrity;
the child drops thev+ capability and attempts to execute Charlie’s
chosen editor. Withv∈ Ip andv+ 6∈Op, the editor process can only
read high-integrity files (be they binaries, libraries, or configuration
files) and therefore cannot come under corrupting influences.

These three policies—export protection, read protection,and in-
tegrity protection—enumerate the common uses for tags, although
others are possible.

3.3 Security
The Flume model assumes many processes running on the same
machine and communicating via messages, or “flows”. The model’s
goal is to track data flow by regulating both process communication
and process label changes.

Definition1. A system is secure in the Flume model if and only if
all allowed process label changes are “safe” (Definition 2) and all
allowed messages are “safe” (Definition 3).

We define “safe” label changes and messages below. Though many
systems might fit this general model, we focus on the Flume system
in particular in Section 4.

Safe Label Changes In the Flume model (as in HiStar), only pro-
cessp itself can changeSp andIp, and must request such a change
explicitly. Other models allow a process’s label to change as the re-
sult of receiving a message [8, 10, 21], but implicit label changes
turn the labels themselves into covert channels [6, 38]. When a pro-
cess requests a change, only those label changes permitted by a
process’s capabilities are safe:

Definition2. For a processp, letL beSp or Ip, and letL′ be the new
value of the label. The change fromL to L′ is safeif and only if:

{L′−L}+∪{L−L′}− ⊆Op.

For example, say processp wishes to subtract tagt from Sp, to
achieve a new secrecy labelS′p. In set notation,t ∈ Sp−S′p, and
such a transition is only safe ifp owns the subtraction capability
for t (i.e. t− ∈Op). The same logic holds for addition, yielding the
above formula.

Safe Messages Information flow control restricts process com-
munication to prevent data leaks. The Flume model restrictscom-
munication among unprivileged processes as in classical IFC: p
can send a message toq only if Sp ⊆ Sq (“no read up, no write
down” [1]) andIq ⊆ Ip (“no read down, no write up” [2]).

Processes that hold some privilege are less restricted, andwe re-
lax our rules accordingly. Specifically, if two processescouldcom-
municate by changing their labels, sending a message using the
centralized rules, and then restoring their original labels, then the
model can safely allow the processes to communicate withoutla-
bel changes. A process can make such a temporary label change
only for tags inDp, for which it has dual privilege. A processp
with labelsSp, Ip would get maximum latitude in sending messages
if it were to lower its secrecy toSp−Dp and raise its integrity to
Ip∪Dp. It could receive the most messages if it were to raise se-
crecy toSp∪Dp and lower integrity toIp−Dp. The following def-
inition captures thesehypotheticallabel changes to determine what
messages are safe:

Definition3. A message fromp to q is safeiff

Sp−Dp ⊆ Sq∪Dq and Iq−Dq ⊆ Ip∪Dp.

For processes with no dual privilege (Dp = Dq = {}), Definition
3 gives the centralized IFC definition for safe flows. On the other
hand, ifp must send with a hypothetical secrecy label ofSp−Dp,
thenp is declassifying the data it sends toq. If q must receive with
secrecySq∪Dq, then it is declassifying the data it received fromp.
In terms of integrity, ifp must use an integrity labelIp∪Dp, then
it is endorsing the data sent, and similarly,q is endorsing the data
received with integrity labelIq−Dq. Declassification or endorse-
ment can also occur when a processp makes actual (rather than
hypothetical) label changes toSp or Ip, respectively.

External Sinks and Sources Any data sink or source outside of
Flume’s control, such as a remote host, the user’s terminal,a printer,
and so forth, is modeled as an unprivileged processx with perma-
nently empty secrecy and integrity labels:Sx = Ix = {} and also
Ox = O. As a result, a processp can only write to the network or
console if it could reduce its secrecy label to{} (the only label with
Sp ⊆ Sx), and a process can only read from the network or key-
board if it could reduce its integrity label to{} (the only label with
Ix⊆ Ip).

Objects Objects such as files and directories are modeled as pro-
cesses withimmutablesecrecy and integrity labels, fixed at object
creation. A processp’s write to an objecto then becomes a flow
from p to o; reading is a flow sent fromo to p. When a processp
creates an objecto, p specifieso’s labels, subject to the restriction
thatp must be able to write too. In many cases,p must also update
some referring object (e.g., a process writes a directory when creat-
ing a file), and writes to the referrer must obey the normal rules.

Example: Secrecy We now can see how the Flume model en-
forces our examples’ security requirements. In the editor example,
Bob requires that all untrusted processes like his editor (i.e., thosep
for whichb− /∈Op) meet the four stated requirements. We first note
that sinceb is an export-protect tag,b− /∈Op implies thatb /∈Dp.



1. If process p reads Bob’s secret files, then b∈ Sp: Bob’s secret
files are modeled as objectsf with b ∈ Sf . Sinceb+ ∈ O, any
process can write such files. Reading an object is modeled as an
information flow fromf to p, which requires thatSf ⊆ Sp∪Dp
by Definition 3. Sinceb∈ Sf , andb /∈Dp, it follows thatb∈ Sp.

2. Process p with b∈Sp can only write to other processes (or files)
q with b∈ Sq: If a processp with b ∈ Sp successfully sends a
message to a processq, then by Definition 3,Sp−Dp⊆Sq∪Dq.
Sinceb is in neitherDp nor Dq, thenb∈ Sq.

3. Processes cannot drop b from Sp: The process that allocatedb
kept b− private, so by Definition 2, only those processes that
own b− can dropb from their secrecy labels.

4. Process p with b∈ Sp cannot transmit information over uncon-
trolled channels: An uncontrolled channelx has secrecy label
{}, so by Definition 3, processp can only transmit information
to x if it owns b−, which it does not.

Note that sinceb+ ∈ O, any process (like the editor) can addb to
its secrecy label. Such a processp can read Bob’s files, compute
arbitrarily, and write the resulting data to files or processes that also
haveb in their secrecy labels. But it cannot export Bob’s secrets
from the system. Of course ifp ownedb− or could coerce a process
that did, Bob’s security could be compromised. Similar arguments
hold for the integrity example.

Example: Shared Secrets The power of decentralized IFC lets
Flume users combine their private data in interesting ways without
leaking information. Imagine a simple calendar application where
all system users keep private data files describing their schedules.
A user such as Bob can schedule a meeting with Alice by runninga
program that examines his calendar file and hers, and then writes a
message to Alice with possible meeting times. When Alice gets the
message, she responds with her selection. Such an exchange should
reveal only what Bob and Alice chose to reveal (candidate times,
and the final time, respectively) and nothing more about their cal-
endars. Alice and Bob both export-protect their calendar files witha
andb respectively. To reveal to Alice a portion of his calendar, Bob
launches a processp with labelsSp = {a,b} andOp = {b−}∪O.
This process can read both calendar files, find possible meeting
times, and then lower itsSp label to{a} and write these times to
a file f labeledSf = {a}. Though f contains information about
both Alice and Bob’s calendars, only Alice can export it—andin
particular, Bob himself cannot export it (since it containsAlice’s
private data). Thus, other users “eavesdropping” on this exchange
learn nothing. When Alice logs on, she can use a similar protocol
to read Bob’s suggestions, choose one, and export that choice to
Bob in a fileg labeledSg = {b}. Bob and Alice have agreed on a
meeting time while exposing none of their private information to
other users, and even while controlling the information they expose
to each other.

4 ENDPOINTS I N FLUME

This section describes theFlume system, a refinement of the Flume
modelfrom Section 3. The Flume model gives general guidelines
for what properties a system ought to uphold to be considered“se-
cure” but does not dictate system specifics such as what API pro-
cesses use to communicate. Some DIFC kernels like Asbestos ex-
pose only unreliable messages (as in Definition 3) to applications,
making reliable user-level semantics difficult to achieve.A goal of
the Flume system is to better fit existing (i.e. reliable) APIs for pro-
cess communication—that of Unix in particular—while upholding
security in the Flume model.

The Flume system applies DIFC controls to the Unix primitive
for communication, thefile descriptor. Flume assigns anendpoint
to each Unix file descriptor. A process can potentially adjust the
labels on an endpoint, so that all future information flow on the file
descriptor, either sent or received, is controlled by its endpoint’s
label settings.

Relative to raw message-based communication, endpoints sim-
plify application programming. When message delivery fails ac-
cording to Definition 3, it does sosilently to avoid data leaks. Such
silent failures can complicate application development and debug-
ging. However, when a process attempts and fails to adjust the la-
bels on its endpoints, the system can safely report errors, helping the
programmer debug the error. In many cases, once processes prop-
erly configure their endpoints, reliable IPC naturally follows.

Endpoints also make many declassification (and endorsement)
decisionsexplicit. According to Definition 3, every message a priv-
ileged process sends and receives is implicitly declassified (or en-
dorsed), potentially resulting in accidental data disclosure (or en-
dorsement). The Flume system requires processes to explicitly
mark those file descriptors that serve as avenues for declassifica-
tion (or endorsement); others do not allow it.

4.1 Endpoints

When a processp acquires a new file descriptor, it gets a new cor-
respondingendpoint. Each endpointe has its own secrecy and in-
tegrity labels,Se andIe. By default,Se = Sp andIe = Ip. A process
owns readable endpoints for each of its readable resources,writable
endpoints for writable resources, and read/write endpoints for those
that are bidirectional. Endpoints meet safety constraintsas follows:

Definition4. A readable endpointe is safeiff

(Se−Sp)∪ (Ip− Ie)⊆ Dp.

A writable endpointe is safe iff

(Sp−Se)∪ (Ie− Ip)⊆ Dp.

A read/write endpoint is safe iff it meets both requirements.

All IPC now happens between twoendpoints, not two processes,
requiring a new version of Definition 3.

Definition5. A message from endpointe to endpointf is safeiff e
is writable,f is readable,Se⊆ Sf , andIf ⊆ Ie.

We can now prove that any safe message between two safe end-
points is also a safe message between the corresponding processes.
Take processp with safe endpointe, processq with safe endpoint
f , and a safe message frome to f . In terms of secrecy, that the
message between the endpoints is safe implies by Definition 5that
e is writable, f is readable, andSe ⊆ Sf . Sincee and f are safe,
Definition 4 implies thatSp−Dp ⊆ Se and Sf ⊆ Sq ∪Dq. Thus,
Sp−Dp ⊆ Sq∪Dq, and the message between processes is safe for
secrecy by Definition 3. A similar argument holds for integrity.

4.2 Enforcing Safe Communication

For the Flume system to be secure in the model defined in Sec-
tion 3, all messages must be safe. Thus, the Flume system enforces
message safety by controlling a process’s endpoint configurations
(which mustalwaysbe safe), and by limiting the messages sent
between endpoints. The exact strategy depends on the type ofcom-
munication and how well Flume can control it.



e4

e1

e5

e⊥

procp procq

e2
file
f1

file
f2

network

Sq = {}
Oq = {x+,x−,y+}

Sp = {x,y}
Op = {y+,y−,z+}

Figure 1: Processesp andq. AssumeO = {}.

IPC First is communication that the Flume reference monitor
can completely control, where both ends of the communication are
Flume processes and all channels involving the communication are
understood: for example, two Flume processesp andq communi-
cating over a pipe or socketpair. Flume can proxy these channels
message-by-message, dropping messages as appropriate. When p
sends data toq, or vice-versa, Flume checks the corresponding end-
point labels, silently dropping the data if it is unsafe according to
Definition 5. A receiving processes cannot distinguish between a
message unsent, and a message dropped because it is unsafe; there-
fore, dropped messages do not leak information.

The endpoints of such a pipe or socketpair aremutable: p andq
can change the labels on their endpoints so long as they maintain
endpoint safety (Definition 4), even if the new configurationresults
in dropped messages. Verifying that a processp has safe endpoints
requires information aboutp’s labels, but not information aboutq’s.
Thus, if a process attempts to change a mutable endpoint’s label
in an unsafe way, the system can safely notify the process of the
failure and its specific cause. Similarly, endpoint safety may prevent
a process from dropping one or more of its non-global capabilities,
or from making certain label changes, until either the endpoint label
is changed or the endpoint itself is dropped.

Two processes with different process-wide labels can use end-
points to set up bidirectional (i.e., reliable) communication if they
have the appropriate capabilities. For example, in Figure 1, p can
setSe4 = {x}, andq can setSe5 = {x}, thus data can flow in both
directions across these endpoints. In this configuration,p is prohib-
ited from droppingy− or y+, since so doing would makee4 unsafe;
similarly, q cannot dropx− or x+. Note that reliable two-way com-
munication is needed even in the case of a one-way Unix pipe, since
pipes convey flow control information from the receiver backto the
sender. Flume can safely allow one-way communication over apipe
by hiding this flow control information and rendering the pipe un-
reliable; see Section 5.3.

File I/O Second is communication that the Flume reference mon-
itor chooses not to completely control. For example, Flume con-
trols a process’s file I/O with coarse granularity: once Flume allows
a process to open a file for reading or writing, it allows all future
reads or writes to the file (see Section 6.1). Since the reference mon-
itor does not interpose on file I/O to drop messages, it enforces safe
communication solely through endpoint labels.

When a processp opens a filef , p can specify which labels to ap-
ply the corresponding endpointef . If no labels foref are specified,
they default top’s. When openingf for reading,p succeeds ifef is
a safe readable endpoint,Sf ⊆ Sef andIef ⊆ If . When openingf for
writing, p succeeds ifef is a safe writable endpoint,Sef ⊆ Sf and
If ⊆ Ief . Whenp opensf for both reading and writing,ef must be
safe, read/write, and must have labels equal to the file’s. Itis easy
to show thatp’s file I/O to f is safe under these initial conditions
(Definition 3).

A processp must hold such an endpointef at least until it closes
the corresponding file. Moreover, the labels onef are immutable:
p cannot change them under any circumstances. Because the labels

e⊥

Bob’s
shell (sh)

Bob’s
editor (ed)

e1

e2

e3

e4
e5

Bob’s
file

Bob’s
console

Ssh = {}
Osh = {b+,b−}

Sed = {b}
Oed = {b+}

Sei = {b},
∀i ∈ [1, 5]

Figure 2: A configuration for Bob’s shell and editor. Here,O = {b+}.

on ef and f are immutable, and the initial conditions at file open
enforced safety, all subsequent reads and writes tof acrossef are
safe. This immutable endpoint preserves safety by restricting how
the process can change its labels and capabilities. In Figure 1, say
that file f2 is open read/write andSe2 = Sf2 = {x}. Thenp cannot
drop they− capability, since doing so would makee2 unsafe. Sim-
ilarly, p cannot addz to Sp despite itsz+ capability; it could only
do so if it also ownedz−, which would preservee2’s safety. Again,
Flume can safely report any of these errors top without inappro-
priately exposing information, since the error depends only on p’s
local state.

External Sources and Sinks Immutable endpoints also allow
Flume to manage data sent into and out of the Flume system via net-
work connections, user terminals and the like. If the systemknows
a processp to have access to resources that allow transmission
or receipt of external messages (such as a network socket), it as-
signsp an immutable read/write endpointe⊥, with Se⊥ = Ie⊥ = {}.
Since e⊥ must always be safe, it must always be the case that
Sp−Dp = Ip−Dp = {}. That is,p has the privileges required import
and export all of its data.

Similarly, if a process has communication channels not yet un-
derstood by the Flume reference monitor (e.g. System V IPC ob-
jects), then Flume simply assumes the process can expose informa-
tion at any time and gives it ane⊥ endpoint that cannot be removed
until the resources are closed. This blunt restriction can be loosened
as Flume’s understanding of Unix resources improves.

Endpoints in Practice Endpoints help fill in the details of our
earlier examples. For our secrecy example, Figure 2 shows how Bob
uses a shell,sh, to launch his new (potentially evil) editor. Because
sh can write data to Bob’s terminal, it must have ane⊥ endpoint,
signifying its ability to export data out of the Flume system. Bob
trusts this shell to export his data to the terminal and nowhere else,
so he launches the shell withb− ∈Osh. Now the shell can interact
with the editor, even if the editor is viewing secret files.sh launches
the editor processedwith secrecySed= {b} and without theb− ca-
pability. The shell communicates with the editor via two pipes, one
for reading and one for writing. Both endpoints in both processes
have secrecy labels{b}, allowing reliable communication between
the two processes. These endpoints are safe for the shell because
b− ∈ Osh and thereforeb ∈ Dsh. ed’s endpoint labels matchSed
and are therefore also safe. Once the editor has launched, itopens
Bob’s secret file for reading and writing, acquiring an immutable
endpointe5 with Se5 = {b}. The file open does not changeed’s
existing endpoints and therefore does not interrupt communication
with the shell.

In the shared-secrecy calendar example, Bob launches a process
q that is disconnected from his shell, and therefore has noe⊥ end-
points.q can then setSq = {a} without affecting the safety of ex-
isting endpoints. Another implementation of the calendar service
might involve a server processr that Alice and Bob both trust to
work on their behalf. That is,r runs witha− andb− in its owner-
ship set, and with secrecySr = {a,b}. By default,r can only write



Reference
Monitor

/usr
FS

/tmp
FS

/ihome
FS

spawner

Flumelibc

processP

Flumelibc

processQ

tag
registry

NFS Server
/ihome

Flume
Sytem

machine running
Flume

tag registry
machine

Figure 3: High-level design of the Flume implementation. The shaded
boxes represent Flume’s trusted computing base.

to processes or files that have both export protections.r can carve
out an exception for communicating with Alice’s or Bob’s shell by
creating endpoints with secrecy{a} or {b}, respectively.

Similar examples hold for integrity protection and for processes
that read from low-integrity sources.

5 THE FLUME I MPLEMENTATION

We present a user-space implementation of Flume for Unix, with
some extensions for managing data for large numbers of users(as
in Web sites). Flume’s user space design is influenced by other Unix
systems that build confinement in user space, such as Ostia [12] and
Plash [29]. The advantages of a user space design are portability,
ease of implementation, and in some sense correctness: Flume does
not destabilize the kernel. The disadvantages are decreased perfor-
mance and less access to kernel data structures, which in some cases
makes the user-exposed semantics more restrictive than theDIFC
rules require (e.g., immutable endpoints on files).

Flume’s Linux implementation, like Ostia’s, runs a small compo-
nent in the kernel: a Linux Security Module (LSM) [36] implements
Flume’s system call interposition (see Section 5.2). The OpenBSD
implementation of Flume uses thesystracesystem call [27] instead,
but we focus on the Linux implementation in this description.

Figure 3 shows the major components of the Flume implementa-
tion. Thereference monitor(RM) keeps track of each process’s la-
bels, authorizes or denies its requests to change labels andhandles
system calls on its behalf. The reference monitor relies on asuite
of helpers: a dedicated spawner process (see Section 5.2), aremote
tag registry (see Section 6.3), and user space file servers (see Sec-
tion 6.7). The Flume-aware C library redirects Unix system calls to
the RM and also supports the new Flume calls shown in Figure 4.
Other machines running Flume can connect to the same tag reg-
istry and therefore can share the same underlying file systems (e.g.,
ihome) over NFS.

5.1 Confined and Unconfined Processes
To the reference monitor, all processes other than the helpers are
potential actors in the DIFC system. A process can use the Flume
system by communicating with the reference monitor via RPCs
sent over acontrol socket. For convenience, a C library, which can
be linked either statically or dynamically, translates many system
calls into the relevant RPCs. The system calls that return file de-
scriptors (e.g.,open) use file-descriptor passing over the control
socket. A process can have multiple control sockets to help with
multi-threading.

Processes on a system running Flume are eitherconfinedor un-
confined. By default, processes are unconfined and have empty
labels and empty non-global ownership (i.e.,Op−O = {}). The
RM assigns an unconfined process an immutable endpointe⊥ with
labels Ie⊥ = Se⊥ = {}, reflecting a conservative assumption that

• label get label({S,I})
Return the current process’sSor I label.

• capset get ownership()
For the current processp, return capability setOp−O.

• int change label({S,I}, label l)
Set current process’sS or I label to l, so long as the change is safe
(Definition 2) and the change keeps all endpoints safe (Definition 4).
Return an error code on failure.

• int reduce ownership(capset O′)
Reduce the calling process’s ownership toO∪O′. Succeed if the
new ownership keeps all endpoints safe and is a subset of the old.

• label get fd label({S,I}, int fd)
Get theSor I label on file descriptorfd’s endpoint.

• int change fd label({S,I}, int fd, label l)
Set theS or I label onfd’s endpoint to the given label. Return an
error code if the change would violate the endpoint (Definition 4), or
if the endpoint is immutable. Still succeed even if the change stops
endpoint flows (in the sense of Definition 5).

• tag create tag({EP,IP,RP})
Create a new tagt for the specified security policy (export, integrity
or read protection). In the first case addt+ to O; in the second add
t− to O; and in the third add neither.

• int flume pipe(int *fd, token *t)
Make a new Flume pipe, returning a file descriptor and a pipe token.

• int claim fd by token(token t)
Exchange the specified token for its corresponding file descriptor.

• pid spawn(char *argv[], char *env[], token
pipes[], [label S, label I, capset O])
Spawn a new process with the given command line and environment.
Collect given pipes. By default, set secrecy, integrity andownership
to that of the caller. IfS, I andO are supplied and represent a per-
missible setting, set labels toS, I , and ownership set toO.

Figure 4: A partial list of new API calls in Flume.

the process may have network connections to remote hosts, open
writable files, or an open user terminal (see Section 4.2).

An unconfined process conforms to regular Unix access control
checks. If an unconfined process so desires, it can issue standard
system calls (likeopen) that circumvent the Flume RM. In other
words, the underlying Linux system dictates the security plan for
unconfined processes.

5.2 Confinement andspawn
Confined processesare those for which the reference monitor care-
fully controls starting conditions and system calls. For any confined
processp, the reference monitor installs a system call interposition
policy (via LSM) that preventsp from directly issuing most sys-
tem calls, especially those that yield resources outside ofFlume’s
purview. In this context, system calls fit three categories:(1) direct,
those thatp can issue directly as if it were running outside of Flume;
(2) forwarded, those that the LSM forbidsp from making directly,
but the RM performs onp’s on behalf; and (3)forbidden, which are
denied via LSM and not handled by the RM. Figure 5 provides a de-
tailed list of which calls fall into which categories. The goal here is
for the RM to maintain a complete understanding ofp’s resources.
A confined process likep trades the restrictions implied bye⊥ for a
more restrictive system call interface.

Flume’s spawn operation is the only way that new confined
processes come into existence. Confined and unconfined processes
can callspawn to make a new confined process, but confined pro-
cesses may not fork.spawn combines the Unix operations offork
andexec, to create a new process running the supplied command.
When a processp spawns a new confined processq, q’s labels de-
fault to p’s, butq starts without any file descriptors or endpoints.q



accumulates endpoints as a result of making new pipes and sockets
or opening files (see Section 6.1). System call interposition blocks
other resource-granting system calls.

Withoutfork, confined processes cannot use the Unix conven-
tion of sharing pipes or socketpairs with new children. Instead,
Flume offersflume pipe and flume socketpair, which
take the same arguments as their Unix equivalents, but both return
a single file descriptor and a random 64-bit “pipe token.” Once a
processp receives this pair, it typically communicates the pipe to-
ken to another processq (perhaps across a call tospawn). q then
makes a call to the reference monitor, supplying the pipe token as
an argument, and getting back a file descriptor in return, which is
the other logical end of the pipe (or socketpair) that the reference
monitor gave top.

Thespawn operation takes up to six arguments: the command
line to execute, an initial environment setting, an array ofpipe to-
kens, and optional labels. The new process’s labels are copied from
the process that calledspawn, unlessS, I ,O are specified. If the
creator could change to the specifiedS, I ,O labels, then those labels
are applied instead. The only file descriptors initially available to
the new process are a control socket and file descriptors obtained
by claiming the array of pipe tokens. The new process is not the
Unix child of the creating process, but the creator receivesa ran-
dom, unguessable token that uniquely identifies the new process
(see below for a rationale). Labels permitting, the creatorcan wait
for the new process or send it a signal, via forwarded versions of
wait andkill.

The reference monitor forwardsspawn requests to a dedicated
spawner process. The spawner first callsfork. In the child pro-
cess, the spawner (1) enables the Flume LSM policy; (2) performs
any setlabel label manipulations if the file to execute is setlabel (see
Section 6.5); (3) opens the requested executable (e.g.foo.sh), in-
terpreter (e.g./bin/sh) and dynamic linker (e.g.,/lib/ld.so)
via standard Flumeopen calls, invoking all of Flume’s permission
checks; (4) closes all open file descriptors except for its control
socket and those opened in the previous step; (5) claims any file
descriptors by token; and (6) callsexec.

The Flume LSM policy disallows alldirectaccess to file systems
by confined processes with a notable exception. When the child
callsexec in Step (6), the LSM allows access to directories (used
during path lookups in the kernel) and access to the binariesand
scripts needed byexec, so long as they were opened during Step
(3). Once theexec operation completes, the LSM closes the loop-
hole, and rejects all future file system accesses.

The Flume LSM policy also disallowsgetpid, getppid, and
friends. Because Linux allocates PIDs sequentially, two confined
processes could alternatively exhaust and query the Linux PID
space to leak information. Thus, Flume issues its own PIDs (chosen
randomly from a sparse space) and hides Linux PIDs from confined
processes. The standard LSM framework distributed with Linux
does not interpose ongetpid and friends, but Flume’s small ker-
nel patch adds LSM hooks that can disable those calls. Flume still
works without the patch but allows confined processes to leakdata
through PIDs.

Confined processes are always run as an unprivileged user (e.g.
nobody). If an adversary were to take over a confined process,
it could issue only those system calls allowed by the Flume LSM
policy. All other system interaction happens through the reference
monitor and is subject to Flume’s restrictions.

5.3 IPC In Flume
Whenp and q establish communication as a result of pipe token
exchange, the file descriptors held byp andq actually lead to the

Direct Forwarded
clock gettime, close(file), dup,
dup2, exit, fchmod, fstat,
getgid, getuid, getsockopt,
lseek, mmap, pipe, poll, read,
readv, recvmsg, select,
sendmsg, setsockopt, setgid,
sigprocmask, socketpair,
write, writev . . .

access, bind(Unix-domain socket),
chdir, close(socket), getcwd,
getpid, kill, link, lstat,
mkdir, open, symlink, readlink,
rmdir, spawn†, stat, unlink,
utimes, wait . . .

Forbidden
bind(network socket), execve,
fork, getsid∗, getpgrp∗,
getpgid∗, getppid∗, ptrace,
setuid . . .

Figure 5: System calls available to confined processes in Flume. Those
marked with “*” could be forwarded with better reference monitor sup-
port. Those marked with “†” are specific to Flume.

reference monitor, which passes data back and forth betweenthe
two processes. The reference monitor proxies so it can interrupt
communication if either process changes its labels in a way that
would make endpoint information flow unsafe.

Consider two processesp andq connected by a pipe or socket
where the relevant endpoint labels are the same as the process la-
bels. If Sp = Sq andIp = Iq, data is free to flow in both directions,
and communication is reliable as in standard Unix. That is, if p is
writing faster thanq can read, then the reference monitor will buffer
up to a fixed number of bytes, but then will stop reading fromp,
eventually blockingp’s ability to write. If Sq ( Sp or Ip ( Iq, data
cannot flow fromq to p. Communication becomes one-way in the
IFC sense and is no longer reliable in the Unix sense. The reference
monitor will deliver messages fromp to q, as before, but will al-
ways be willing to read fromp, regardless of whetherq exited or
stopped reading. As the reference monitor reads fromp without the
ability to write toq (perhaps becauseq stopped reading), it buffers
the data in a fixed-size queue but silently drops all overflow.Con-
versely, all data flowing fromq to p (including an EOF marker) is
hidden fromp. The reference monitor buffers this data at first, then
drops it once its queue overflows. Ifp or q changes its labels so that
Sp = Sq andIp = Iq, then the reference monitor flushes all buffered
data and EOF markers.

Spawned Flume processes can also establish and connect to Unix
domain sockets. Creating a socket file is akin to creating a file and
keeping it open for writing and follows the same rules (see the next
section). Connecting to a Unix domain socket is akin to opening
that file for reading. Assuming a client and server are permitted to
connect, they receive new file descriptors and communicate with
the proxy mechanism described above.

5.4 Implementation Complexity and TCB

The RM, spawner, file servers, and tag registry are all part of
Flume’s trusted computing base. We implemented them in C++ us-
ing the Tame event system [19]. Not counting comments and blank
lines, the RM is approximately 14,000 LOC, the spawner about
1,000 LOC, the file server 2,500 LOC, and the tag registry about
3,500 LOC. The Flume LSM is about 500 LOC; the patch to the
LSM framework forgetpid and the like is less than 100 lines.
Totaling these counts, we see Flume’s total TCB (incremental to
Linux kernel and user space) is about 21,500 LOC.

Flume’s version oflibc, the dynamic linker and various client
libraries (like those for Python) are not part of the trustedcomputing
base and can have bugs without compromising security guarantees.
These libraries number about 6,000 lines of C code and 1,000 lines
of Python, again not counting comments and empty lines.



6 PERSISTENCE IN FLUME

The Flume system aims to provide file system semantics that ap-
proximate those of Unix, while obeying DIFC constraints. Flume
must apply endpoints to opened files to prevent data flows through
the file system that are against DIFC rules. It also must enforce a
naming scheme for files in a standard directory hierarchy that does
not allow inappropriate release of information. Additionally, Flume
must solve problems specific to DIFC, such as persistent storage
and management of capabilities.

6.1 Files and Endpoints
To get Unix-like semantics, a process under Flume (whether con-
fined or not) must have direct access to the Unix file descriptor for
any file it opens, in case it needs to callmmap on that descriptor.
Thus, the RM performsopen on a process’s behalf and sends it the
resulting file descriptor. The process receives an immutable end-
point along with the descriptor.

File opens work as described in Section 4.2, with two additional
restrictions in the case of writing. First, Flume assigns read/write
endpoints to all writable file descriptors. A writer can learn infor-
mation about a file’s size by observingwrite’s or lseek’s return
codes, and hence can “read” the file. The read/write endpointcap-
tures the conservative assumption (as in HiStar) that writing always
implies reading. Second, a filef has awrite-protect set Wf in addi-
tion to its immutable labelsSf andIf . A processp can only write to
objectf if it owns at least one capability inWf (i.e.,Op∩Wf 6= {}).
This mechanism allows write protection of files in a manner similar
to Unix’s; only programs with the correct credentials (capabilities)
can write files with non-emptyWf sets. By convention, awrite-
protect tagis the same as an integrity-protect tag:t− ∈O, andt+ is
closely guarded. Butt does not appear inI or S labels; only the ca-
pability t+ has any use. The presence oft+ in Wf yields the policy
that processes must ownt+ to write f .

File closes use the standard Linuxclose. The reference moni-
tor does not “understand” a process’s internals well enoughto know
if a file is closed with certainty. Better LSM support can fix this
shortcoming, but for now, Flume makes the conservative assump-
tion that once a process has opened a file, it remains open until the
process exits.

6.2 File Metadata
While Section 3.3 explains how file contents fit into Flume’s DIFC,
information can also flow through meta-data: file names, file at-
tributes, and file labels. Flume does not maintain explicit labels for
these items. Instead, Flume uses a directory’s label to control access
to the names and labels of files inside the directory, and a file’s la-
bel to control access to the file’s other attributes (such as length and
modification time). Flume considers that a path lookup involves the
process reading the contents of the directories in the path.Flume ap-
plies its information flow rules to this implicitly labeled data, with
the following implications for applications.

A directory can contain secret files and yet still be readable, since
the directory’s label can be less restrictive than the labels of the files
it contains. Typically the root directory has an emptyS label and
directories become more secret as one goes down. Integrity labels
typically start out atT at the root directory and are non-increasing
as one descends, so that the path name to a high-integrity filehas at
least as high integrity as the file.

The file system’s increasing secrecy with depth means a process
commonly stores secret files under a directory that is less secret.
The Flume label rules prevent a process from creating a file ina
directory that is less secret than the process, since that would leak

information through the file’s name and existence. Instead,the pro-
cess can “pre-create” the files and subdirectories it needs early in its
life, before it has raised itsS label and read any private data. First,
the process creates empty files with restrictive file labels.The pro-
cess can then raise itsS label, read private data, and write output to
its files.

If a processp with labelsSp andIp wants to spontaneously cre-
ate a filef with the same labels, without pre-creating them, Flume
offers a special leak-proof, high-integrity file namespace. p can cre-
ate a directory of the form/ihome/srl(Ip).srl(Sp), wheresrl(L)
is a serialized representation of labelL. This directory has integrity
level Ip and secrecy levelSp. Within that directory, the regular
file system rules apply. Processes cannot directly open or read the
/ihome directory, though they can traverse it on the way to open-
ing files contained therein.

6.3 Persistent Privileges
In addition to supporting legacy Unix-like semantics, Flume pro-
vides persistence for capabilities and file labels. A process acquires
capabilities when it creates new tags but loses those capabilities
when it exits. In some cases, this loss of capabilities renders data
permanently unreadable or unwritable (in the case of integrity).
Consider a useru storing export-protected data on the server. A
process acting onu’s behalf can create export-protect tagtu and
write a filef with Sf = {tu}, but if tu− evaporates when the process
exits, the file becomes inaccessible to all processes on the system,
including those who speak foru.

Flume has a simple mechanism for reusing capabilities liketu−

across processes, reboots, and multiple machines in a server clus-
ter. First, Flume includes a “central tag registry” that helps appli-
cations give long-term meaning to tags and capabilities. Itcan act
as a cluster-wide service for large installations, and is trusted by all
machines in the cluster. The tag registry maintains three persistent
databases: one that maps “login tokens” to capabilities, one that re-
members the meanings of capability groups, and a third database
for extended file attributes (see Section 6.7).

A login token is an opaque byte string, possession of which en-
titles the holding process to a particular capability. A process that
owns a capabilityc can ask its RM to give it a login token forc.
On such a request, the RM asks the tag registry to create the token;
the tag registry records the token andc in a persistent database. A
process that knows a token can ask its RM to give it ownership of
the corresponding capability. The operation succeeds if the RM can
find the token and corresponding capability in the registry.

When creating new tokens, the tag registry chooses tokens ran-
domly from a large space so that they are difficult to forge. Italso
can attach a timeout to each token, useful when making browser
cookies good for one Web session only.

6.4 Groups
Some trusted servers keep many persistent capabilities andcould
benefit from a simpler management mechanism than keeping a sep-
arate login token for each capability. For example, consider a “fin-
ger server” that users trust to declassify and make public portions
of their otherwise private data. Each useru protecting data with
export-protect tagtu must granttu− to the finger server.

Instead of directly collecting these capabilities (every time it
starts up), the finger server owns a groupG containing the capa-
bilities it uses for declassification. Owning a capability for G im-
plies owning all capabilities contained inG. When a new userv
is added to the system,v can addtv− to G, instantly allowing the
finger server to declassifyv’s files. Groups can also contain group
capabilities, meaning the group structure forms a directedgraph.



Like any other capability, group capabilities are transferable, and
can be made persistent with the scheme described in Section 6.3.

Capability groups are a scalability and programmability advance
over previous DIFC proposals. In practice, secrecy and integrity la-
bels stay small (less than 5 tags), and capability groups allow own-
ership sets to stay small, too. All group information is stored in the
central tag registry, so that multiple machines in a clustercan agree
on which capabilities a group contains. Reference monitorscon-
tact the tag registry when performing label changes. Since groups
could grow to contain many capabilities, a reference monitor does
not need to download the entire group membership when check-
ing label change validity. Instead, it performs queries of the form
“is capability c a member of groupg,” and the registry can reply
“yes,” “no” or “maybe, check these subgroups.” In our experience,
groups graphs form squat, bushy trees, and the described protocol
is efficient and amenable to caching.

Finally, so that the groups themselves do not leak information,
Flume models groups as objects, like files on the file system. When
created, a group takes on immutable labels for secrecy and integrity,
and also (at the creator’s discretion) a write-protect capability set.
Processes modifying a group’s membership must be able to write to
the group object (currently, only addition is supported). Processes
using groups in their label change operations are effectively reading
the groups; therefore, processes can only use a group capability in
their ownership sets if they can observe the group object.

6.5 Setlabel
Flume provides asetlabelfacility, analogous to Unix’ssetuidor
HiStar’s gates, that is the best way to launch a declassifier.Setla-
bel tightly couples a persistent capability with a program that is
allowed to exercise it. A setlabel file contains a login tokenand a
command to execute. Flume never allows a setlabel file to be read,
to prevent release of the login token. Instead, the file’sS and I la-
bels limit which processes can execute the file. Any process whose
SandI would allow it to read the setlabel file may ask the reference
monitor to spawn the file. The reference monitor executes thecom-
mand given in the file and grants the process the capability referred
to by the login token. Typically a setlabel program will exercise the
capability to read data that the parent is not allowed to export, and
then declassify it to the parent.

Setlabel files can also specify a minimum integrity label and
a maximum secrecy label, which executing processes must con-
form to. The minimum integrity label helps defend the setlabel pro-
cess from surprises in its environment. The maximum secrecylabel
helps a setlabel program limit the types of secrets it declassifies.

6.6 Privileged Filters
Finally, in the application we’ve built, we have found a needfor
automatic endorsement and declassification of files; see Section 7.6
for a detailed motivation. A process can create afilter to replace
“find label” (Lfind) with a “replace label” (Lrepl) if it owns the priv-
ileges to add all tags inLrepl− Lfind and to subtract all tags in
Lfind−Lrepl. The filter appears as a file in the file system, similar
to a setlabel file. Any other processp that can read this file can ac-
tivate this filter. After activation, wheneverp tries to open a file for
reading whose file label contains all the tags inLfind, Flume replaces
those tags withLrepl before it decides whether to allow the process
to open the file. A process can activate multiple filters, composing
their effects.

6.7 File System Implementation
The reference monitor runs a suite of user-space file server pro-
cesses, each responsible for file system operations on a partition of

the namespace. The reference monitor forwards requests such as
open andmkdir to the appropriate file server. To reduce the dam-
age in case the file server code has bugs, each server runs as a dis-
tinct non-root user and ischrooted into the part of the underlying
file system that it is using. The usual Unix access-control policies
hide the underlying file system from unprivileged processesoutside
of Flume.

Each file server process store files and directories one-for-one
in an underlying conventional file system. It stores labels in the
extended attributes of each underlying file and directory. To help
larger labels fit into small extended attributes, the tag registry pro-
vides a service that generates small persistent nicknames for labels.
Flume file servers can also present entire underlying read-only file
systems (such as/usr) as-is to Flume-confined software, apply-
ing a single label to all files contained therein. The Flume system
administrator determines this configuration.

Since Linux’s NFS client implementation does not support ex-
tended attributes, Flume supports an alternate plan when running
over an NFS-mounted file system. In this case, Flume stores per-
sistent label nicknames as 60-bit integers, split across the user and
group ID fields of a file’s metadata. The fake UID/GID pairs writ-
ten to the file system are in the range[230,231), avoiding UIDs and
GIDs already in use. This approach unfortunately requires the file
server to run as root, for access to thefchown call.

Simultaneous use of the same underlying file system by multi-
ple Flume file server processes might result in lack of atomicity for
label checks and dependent operations. For example, checking that
file creation is allowed in a directory and actually creatingthe file
should be atomic. Race conditions might arise when a clusterof
hosts share an NFS file system. Flume ensures the necessary atom-
icity by operating on file descriptors rather than full path names,
using system calls such as Linux’sopenat.

The DIFC rules require that a process must read all directories
in any path name it uses. One approach is to laboriously checkeach
directory in a given path name. In practice, however, applications
arrange their directory hierarchies so that secrecy increases and in-
tegrity decreases as one descends. The Flume implementation en-
forces this ordering, with no practical loss of generality.Flume can
thus optimize the path check: if a process can read a filef , it must
also be able to read all off ’s ancestors, so there is no need to check.
If the file does not exist or the process cannot read it, Flume reverts
to checking each path component, returning an error when it first
encounters a component that does not exist or cannot be read.

At present, Flume supports most but not all of Unix’s semantics.
The current implementation allows renames and creation of hard
links only within the same directory as the original file. AndFlume
implements the per-process working directory by remembering a
path name per process, which will deviate from Unix behaviorif
directories are renamed.

Flume’s file system has shortcomings in terms of security. An
unconfined process with Unix super-user privileges can use the un-
derlying file system directly, circumventing all of Flume’sprotec-
tions. This freedom can be a valuable aid for system administrators,
as well as an opportunity for attackers. Also, Flume does notavoid
covert channels related to storage exhaustion and disk quotas. A
solution would require deeper kernel integration (as in HiStar).

7 APPLICATION

This section explores Flume’s ability to enhance the security of off-
the-shelf software. We first describe MoinMoin [22], a popular Web
publishing system with its own security policies. We then describe
FlumeWiki, a system that is derived from Moin but enforces the
Moin’s policies with Flume’s DIFC mechanisms. FlumeWiki goes



httpd

httpd

wikilaunch

wikilaunch

wiki.py

wiki.py

pmgr.py

Port 80

Flume Server

Figure 6: FlumeWiki application overview, showing two of many pro-
cess pipelines. The top request is during a session login; the bottom re-
quest is for a subsequent logged-in request. Flume-oblivious processes
are unshaded, unconfined processes are striped, and confinedprocesses
are shaded.

further, adding a new security policy that offers end-to-end integrity
protection against buggy MoinMoin plug-ins. The resultingsystem
substantially reduces the amount of trusted application code.

7.1 MoinMoin Wiki
MoinMoin is a popular Python-based Web publishing system (i.e.,
“wiki”) that allows Web clients to read and modify server-hosted
pages. Moin is designed to share documents between users, but each
page can have an access control list (ACL) that governs whichusers
and groups can access or modify it. For example, if a company’s en-
gineering document is only meant to be read by the engineers and
their program manager Alice, the document would have the read
ACL (alice, engineers), where “alice” is an individual and “engi-
neers” is a group containing all the engineers.

Unfortunately, Moin’s ACL mechanism has been a source of se-
curity problems. Moin comprises over 91,000 lines of code in349
modules. It checks read ACLs in 41 places across 22 differentmod-
ules and write ACLs in 19 places across 12 different modules.The
danger is that an ACL check could have easily been omitted. In-
deed, a public vulnerability database [26] and MoinMoin’s internal
bug tracker [25] show at least five recent ACL-bypass vulnerabili-
ties. (We do not address cross-site scripting attacks, alsomentioned
in both forums.) In addition to ACL bugs, any bug in Moin’s large
codebase that exposes a remote exploit could be used to leak private
data or tamper with the site’s data.

Moin also supports plug-ins, for instance “skins” that change the
way it renders pages in HTML. Site administrators download plug-
ins and install them site-wide, but buggy or malicious plug-ins can
introduce further security problems. Plug-ins can violateMoin’s
ACL policies. They also can wittingly or unwittingly misrender a
page, confusing users with incorrect output.

7.2 Fluming MoinMoin
Flume’s approach for enhancing Moin’s read and write protection
is to factor out security code into a small, isolated security module,
and leave the rest of Moin largely unchanged. The security module
needs to configure only a Flume DIFC policy and then run Moin ac-
cording to that policy. This division of labor substantially reduces
the amount of trusted code and the potential for security-violating
bugs. In addition, the security module can impose end-to-end in-
tegrity by forcing the untrusted portion to run with a non-empty in-
tegrity label, yielding guarantees of the form: “no plug-ins touched
the data on this page at any time” or “vendorv’s plug-in touched
this data but no other plug-ins did.”

7.3 FlumeWiki Overview
Figure 6 illustrates the four main components of the FlumeWiki
system. FlumeWiki uses an unmodified Apache Web server (httpd)
for the front-end request handling.wiki.py is the bulk of the ap-
plication code, consisting of mostly unmodified MoinMoin code.

httpd wikilaunch (p) wiki.py (q)
u’s

browser
Sp = {eu}

Op = O ∪ {eu
−}

Sq = {eu}
Oq = O [∪{wu

+}]

Figure 7: Label setup for areador write request in FlumeWiki.wiki.py
only gets capabilitywu

+ if writing. The target page is export- and write-
protected by useru.

pmgr.py is a small trusted program that manages usernames and
passwords; it runs as a setlabel program so that it may compare
submitted passwords against read-protected hashes on the server.
wikilaunch is the small trusted security module; it is responsible
for interpreting the Web request, launchingwiki.py with the correct
DIFC policy and proxyingwikilaunch’s response back to Apache.
Because it communicates with resources outside of Flume (i.e.,
httpd), it is unconfined and has ane⊥ endpoint.

When a typical HTTP request enters the system it contains the
client’s usernameu and an authentication token.httpd receives the
request and launcheswikilaunch as a CGI process.wikilaunch re-
questsu’s capabilities from the RM using the authentication token.
It then sets up a DIFC policy byspawning wiki.py with appropri-
ateS, I andO. wiki.py renders the page’s HTML, sends it towiki-
launch over a pipe and exits.wikilaunch forwards the HTML back
to httpd which finally sends it back tou’s browser.wiki.py’s S label
prevents it from exporting data without the help ofwikilaunch.

7.4 Principals, Tags and Capabilities
FlumeWiki enforces security at the level of principals, which may
be users or ACL-groups (which are groups of users). Each principal
x has an export-protect tagex and a write-protect tagwx. Principal
x also has a capability groupGx = {ex

−,wx
+}.

If useru is a member of ACL-groupg with read-write privileges,
her capability groupGu also containsGg which allows her to read
and modifyg’s private and write-protected data. If useru is a mem-
ber ofg with read-only privileges, her capability groupGu instead
containsGro

g = {eg
−} which provides enough capabilities to read

and exportg’s private data but not modify it.
Each Web page on a FlumeWiki site may be export-protected

and/or write-protected. Export-protected pages have the secrecy la-
bel S = ex where x is the principal allowed to read and export
it. x’s write-protected pages have the write-protect capability set
W = {wx

+}.

7.5 Export- and Write-Protection Policies
wikilaunch handles requests that read pages differently from those
that write. Ifu’s request is for a read, andu has at least read access
for groupsg1, . . . ,gn, thenwikilaunch spawns a newwiki.py pro-
cessq with Sq = {eu,eg1 , . . . ,egn} andOq = O, allowing the stan-
dard MoinMoin code in FlumeWiki transparent read access to files
the user is allowed to read (see Figure 7). For a request that involves
creating or modifying a page,wikilaunch looks at the directoryd
in which the page resides. Ifd is protected by an export-protect tag
ex, wikilaunch setswiki.py’s S= {ex}. If d is also protected by a
write-protect tagwx, wikilaunch setswiki.py’s W = {wx

+} (also
shown in Figure 7). If the useru is not authorized to perform the re-
quested action,wikilaunch will fail when trying to spawnwiki.py
and notify the user of their transgression. Finally,wikilaunch sets
its secrecy label equal to that ofwiki.py so that they may share bi-
directional pipe communication.

This DIFC policy provides three security properties. First, wiki-
launch’s Slabel ensures that only data the logged-in user is allowed
to see can flow fromwiki.py to the browser. Second, any other form



of output produced bywiki.py (for example a file) will also have a
label containingeu or someeg so that other users’wikilaunch or
wiki.py processes cannot reveal that output (since they lackeu

− or
eg
−). Third, it provides discretionary write control: only processes

that ownwx
+ can overwritex’s files.

7.6 End-to-End Integrity

In addition to read and write protection policies, FlumeWiki can op-
tionally use Flume’s integrity mechanisms to guard againstacciden-
tal execution of untrusted dynamically-linked libraries or Python
libraries like Moin plug-ins. The code that a Python programwill
execute is difficult to predict and thus difficult to inspect statically,
since it depends on settings such asLD LIBRARY PATH, Python’s
class search path, and other run-time decisions.

FlumeWiki enforces an integrity constraint on the code thatpro-
duced each page and then makes that integrity value visible to users.
By default, only code in the base FlumeWiki distribution is allowed
to be involved in displaying a page. However, if a page has a name
like v.f , wherev is the name of a third party vendor, then FlumeWiki
also allows vendorv’s software to participate in generating the page.

The default integrity policy operates as follows. During installa-
tion, all files in the distribution getI = {iw}, whereiw represents
the integrity of the base distribution.wikilaunch startswiki.py with
I = {iw}, which guarantees that the program will never read any file
(including dynamically-loaded program text) with an integrity label
that doesn’t containiw. wikilaunch sets its own label toI = {iw}.
Then, ifwiki.py drops its integrity toI = {}, wikilaunch will be un-
able to receive its responses. This arrangement means that all prop-
erly created wiki documents haveI = {iw}, which indicates that
they were created with the base distribution alone. In this manner, a
useru gets an end-to-end integrity guarantee: all code involved with
collectingu’s input, writingu’s data to disk, retrieving the data, for-
matting the data, and outputting the data hadiw in its label and
therefore involved only the base FlumeWiki software.

For pages that allow the use of plug-in code,wikilaunch
launcheswiki.py with I = {iv} to allow v’s plug-in code to par-
ticipate in the page’s rendering. However, the plug-in relies on
FlumeWiki code during processing, which it cannot read off the
disk: FlumeWiki’s code does not haveiv in its integrity label. For
wiki.py to read FlumeWiki’s code, it would need to reduce its in-
tegrity label to I = {}, ruling out all future hopes of regaining
non-empty integrity and outputting towikilaunch. Filters (see Sec-
tion 6.6) provide the solution.

The site administrator who installsv’s plug-in owns the capabil-
ity iv+, and thus can create an integrity filter that replaces labels
of the formI = {iw} with {iw, iv}. This filter implements the idea
that vendorv’s code trusts FlumeWiki code. With this filter in place,
wikilaunch can setwiki.py’s and its own integrity labels toI = {iv},
thus gaining assurance that any data returned was only touched by
vendorv’s and FlumeWiki’s code.

7.7 Discussion
Adapting Moin to Flume required roughly 1,000 lines of new
C++ code forwikilaunch, and modifications to about 1,000 out
of Moin’s 91,000 lines of Python. We did not modify or even re-
compile Apache or the Python interpreter, even though Python is
spawned by Flume. The changes to Moin were in its login proce-
dure, access control lists, and file handling, which we modified to
observe and manipulate DIFC controls (like process labels and end-
point labels). Most of these changes are not user-visible. Though
wrapper programs likewikilaunch could be expressed in other
DIFC systems like Asbestos or HiStar, the integration within Moin

would be difficult without an application-level API like theone pre-
sented here.

An advantage of the DIFC approach is that we did not need to
understand all of Moin’s code. Becausewiki.py always runs within
Flume’s confines, we need only understandwikilaunch to grasp
FlumeWiki’s security policy.wikilaunch is small, and auditing it
gave us confidence in the overall security of FlumeWiki, despite
any bugs that may exist in the original Moin code or that we may
have introduced while adapting the code.

Time did not permit the adaptation of all MoinMoin’s features,
such as internationalization, indexing, and hit counters.To Flume,
these features attempt to leak data through shared files, so they fail
with Flume permission errors. FlumeWiki could reenable them with
specialized declassifiers.

8 EVALUATION

In evaluating Flume and FlumeWiki we consider whether they im-
prove system security, how much of a performance penalty they
impose and whether Flume’s scaling mechanisms are effective.

For security, we find that Flume prevents ACL vulnerabilities
and even helps discover new vulnerabilities. For performance, we
find that Flume adds from 35–286µs of overhead to interposed sys-
tem calls, which is significant. However, at the system level, the
throughput and latency of FlumeWiki is within 45% and 35% of
the unmodified MoinMoin wiki, respectively, and Flume’s cluster-
ing ability enables FlumeWiki to scale beyond a single machine as
Web applications commonly do.

8.1 Security
The most important evaluation criterion for Flume is whether it im-
proves the security of existing systems. Of the five recent ACL by-
pass vulnerabilities [25, 26], three are present in the MoinMoin ver-
sion (1.5.6) we forked to create FlumeWiki. One of these vulnera-
bilities is in a feature disabled in FlumeWiki. The other twowere
discovered in code FlumeWiki indeed inherits from Moin. We ver-
ified that FlumeWiki still “implements” Moin’s original buggy be-
havior and that the Flume security architecture prevents these bugs
from revealing private data.

To make FlumeWiki function in the first place, we had to
identify and solve a previously undocumented vulnerability in
Moin. The original Moin leaks data through its global names-
pace. For instance, a user Bob can prove that the secret docu-
mentReasonsToFireBob exists by trying and failing to cre-
ate the document himself. By contrast, Flume’s IFC rules forced
FlumeWiki to be built in a way that doesn’t leak information
through its namespace.

8.2 Interposition Overhead
To evaluate the performance overhead when Flume interposeson
system calls, we measured the system call latencies shown inFig-
ure 8. In all of these experiments, the server running Linux version
2.6.17 with and without Flume is a dual CPU, dual-core 2.3GHz
Xeon 5140 with 4GB of memory. The Web server is Apache 1.3.34
running MoinMoin and FlumeWiki as frozen Python CGI pro-
grams. The Web load generator is a 3GHz Xeon with 2GB of mem-
ory running FreeBSD 5.4.

For most system calls, Flume adds 35–286µs per system call
which results in latency overhead of a factor of 4–35. The Flume
overhead includes additional IPC, RPC marshalling, additional sys-
tem calls for extended attributes and extra computation forsecurity
checks. The additional cost of IPC and RPC marshalling is shown
by theflumenull latency, which reports the latency for a no-op
RPC call into the reference monitor (RM). Most Flume system calls



Operation Linux Flume diff. mult.
mkdir 86.0 371.1 285.2 4.3
rmdir 13.8 106.8 93.0 7.7
open
— create 12.5 200.2 187.7 16.0
— exists 3.2 110.3 107.1 34.5
— exists, inlined 3.3 41.0 37.7 12.5
— does not exist 4.3 101.4 97.1 23.6
— does not exist, inlined 4.2 39.8 35.6 9.5
stat 2.8 98.1 95.3 34.5
— inlined 2.8 38.7 35.9 13.7
close 0.6 0.9 0.2 1.3
unlink 15.4 110.0 94.6 7.2
symlink 9.5 106.8 97.3 11.2
readlink 2.7 90.2 87.5 33.0
create tag 22.6
change label 55.0
flumenull 20.1
IPC round trip latency 4.1 33.8 29.8 8.2
IPC bandwidth 2945 937 2008 3.1

Figure 8: System call and IPC microbenchmarks, and Flume overhead
as a multiplier. Latencies are inµs and bandwidth is in MB/sec. System
calls were repeated 10,000 times, IPC round trips were repeated one
million times, and IPC bandwidth was measured over a 20GB transfer;
these results are averages.

consist of two RPCs, one from the client application into therefer-
ence monitor and one from the reference monitor to a file server,
so the RPC overhead accounts for approximately 40µs of Flume’s
additional latency. As an optimization on public file systems, the
RM handlesopen andstat calls inline rather than querying a file
server and thus avoids a second RPC. Calls likecreate tag and
change label also use a single RPC into the RM andclose
for files does not contact the RM at all. For non-public file systems,
open on a non-existent file requires the RM to walk down the file
system to determine what error message to return to the client, so
this operation is particularly expensive. This check is faster in a
public file system (where all files are readable to everyone),because
the RM need not walk the parent directories.

Flume also adds overhead to IPC communication because it
proxies IPC between processes. The base case in our measurements
is an IPC round trip:p writes toq, q reads,q writes top, and thenp
reads. This exchange amounts to four system calls in total onstan-
dard Linux. The RM’s proxying of IPC adds eight system calls to
this exchange: four calls toselect, tworeads and twowrites.
Thus, an IPC round trip takes 12 system calls on Flume, incurring
the three-fold performance penalty for additional system calls seen
in IPC bandwidth. As withflumenull computation and context
switching in Flume add additional latency overhead, summing to
the eight-fold latency degradation seen in Figure 8.

8.3 Flume Overhead

To evaluate the system level performance overhead of Flume,we
compare the throughput and latency of pages served by an unmod-
ified MoinMoin wiki and by FlumeWiki.

In the read experiments, a load generator randomly requests
pages from a pool of 200 wiki pages; the pages are approximately
9 KB each. In the write experiments, each write request contains a
40 byte modification to one of the pages for which the server re-
sponds with an 9 KB page. In all experiments, the request is from a
wiki user, who is logged in using an HTTP cookie. For the latency
results, we report the latency with a single concurrent client. For the
throughput results, we adjusted the number of concurrent clients to
maximize throughput. Figure 9 summarizes the results.

Throughput (req/sec) Latency (ms/req)
MoinMoin FlumeWiki MoinMoin FlumeWiki

Read 33.2 18.8 117 156
Write 16.9 11.1 237 278

Figure 9: Latency and throughput for FlumeWiki and unmodified
MoinMoin averaged over 10,000 requests.

FlumeWiki is 43% slower than MoinMoin in read throughput,
34% slower in write throughput and it adds a latency overheadof
roughly 40ms. For both systems, the bottleneck is the CPU. Moin-
Moin spends most of its time interpreting Python and FlumeWiki
has the additional system-call and IPC overhead of Flume.

Most of FlumeWiki’s additional cost comes from calls toopen
andstat when Python is opening modules. For each page read
request, the RM serves 753 system calls including 487opens and
186 stats. Of the calls toopen, 18 are for existing non-public
files, 73 are for existing public files, 16 are for non-existent non-
public files and 380 are for non-existent public files. Of thestats,
156 are for public files and 30 are for non-public files. These calls
sum to 28ms of overhead per request, which accounts for much of
the 39ms difference in read latency. FlumeWiki also incurs an extra
fork andexec to spawnwiki.py as well as extra system calls on
each request to setup labels, pipes and filters.

The numbers reported in Figure 9 reflectfrozenPython pack-
ages, both in the case of FlumeWiki and MoinMoin. Frozen Python
packages store many Python packages in one file, and in the case
of FlumeWiki reduce the combined number ofopen andstat
calls from more 1900 to fewer than 700. Frozen packages especially
benefit FlumeWiki’s performance, since its system call overhead is
higher than standard Moin’s.

8.4 Cluster Performance
Despite Flume’s slowdown, FlumeWiki may be fast enough already
for many small wiki applications. The Flume implementationcould
be optimized further, but Flume’s support for a centralizedtag reg-
istry and FS file sharing supports another strategy for improving
performance, namely clustering. To investigate the scalability of the
cluster mechanism, we ran the FlumeWiki read throughput exper-
iment on the same server hardware, but with a varying number of
single CPU virtual machines on top of a Linux-based virtual ma-
chine monitor. Each virtual machine is limited to a single hardware
CPU, and within each virtual machine, we ran Flume on a guest
Linux OS.

In this experiment, FlumeWiki stores shared data including
pages and user profiles in an NFS file system and all other data
is duplicated on each VM’s private disk. The NFS file system and
the tag registry are both served by the host machine. With a single
VM (i.e., a 1-node cluster), throughput was 4.3 requests persecond.
Throughput scales linearly to an aggregate of 15.5 requestsper sec-
ond in the case of four VMs (i.e., a 4-node cluster), which is the
maximum number of CPUs on our available hardware. This cluster
configuration achieves lower throughput than the single-machine
configuration because of VM and NFS overhead.

8.5 Discussion
Although FlumeWiki’s cluster performance may already be suit-
able for some services, one direction for future performance im-
provements is to modify FlumeWiki to run as a FastCGI service
which amortizes a CGI process’s startup cost over multiple re-
quests. Benchmarks posted on the MoinMoin site [31] show a
tenfold performance improvement when running MoinMoin as a
FastCGI application [9] rather than a standalone CGI (as in our



benchmarks) and FlumeWiki could benefit from a similar architec-
ture. One approach is to emulate Asbestos’s event processes: keep
one Python instance running for each(S, I ,O) combination of labels
currently active, and route requests to instances based on labels.

9 CONCLUSION

Flume demonstrates that the advantages of DIFC can be brought to
bear on standard operating systems and applications. UsingFlume
a programmer can provide strong security for Unix applications,
even if parts of the application contain bugs. We hope that bysim-
plifying DIFC and allowing it to coexist with legacy software, both
in the kernel and at application level, Flume can expose a wide au-
dience of developers to DIFC-style security policies and program-
ming techniques.

ACKNOWLEDGMENTS

The authors thank Barbara Liskov, Steve VanDeBogart, Mike Wal-
fish, Nickolai Zeldovich, the anonymous reviewers and shepherd
Andrew Myers for their comments on drafts of this paper. We thank
the members of the Asbestos Project team for feedback and sug-
gestions on the Flume label model and its implementation. We
thank Mark Seaborn for his work on Plash, which helped us make
glibc system call interposition work on Linux. Maxwell Krohn
was awarded an SOSP student travel scholarship, supported by the
National Science Foundation, to present this paper at the confer-
ence. This work was supported by the joint NSF Cybertrust/DARPA
grant CNS-0430425, Nokia, Taiwan’s Industrial TechnologyRe-
search Institute (ITRI), and an NSF Graduate Student Fellowship.

REFERENCES
[1] D. E. Bell and L. L. Padula. Secure computer system: Unified

exposition and multics interpretation. Technical Report
MTR-2997, Rev. 1, MITRE Corp., Bedford, MA, March 1976.

[2] K. J. Biba. Integrity considerations for secure computer systems.
Technical Report MTR-3153, Rev. 1, MITRE Corp., Bedford,
MA, 1976.

[3] M. Brodsky et al. Toward secure services from untrusted
developers. Technical Report TR-2007-041, MIT CSAIL, Aug.
2007.

[4] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing
confidentiality and integrity in web applications. InProc. 16th
USENIX Security, Aug. 2007.

[5] C. Cowan et al. StackGuard: Automatic detection and prevention
of buffer-overflow attacks. InProc. 11th USENIX Security, Aug.
2002.

[6] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. InProc. 2002 OSDI, Dec.
2002.

[8] P. Efstathopoulos et al. Labels and event processes in the
Asbestos operating system. InProc. 20th SOSP, October 2005.

[9] FastCGI. Open Market.http://www.fastcgi.com.

[10] T. Fraser. LOMAC: Low water-mark integrity protectionfor
COTS environments. InProc. 2000 IEEE Security and Privacy,
May 2000.

[11] T. Fraser, L. Badger, and M. Feldman. Hardening COTS
software with generic software wrappers. InProc. IEEE Security
and Privacy, 1999.

[12] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delegating
architecture for secure system call interposition. InProc. 2004
NDSS, February 2004.

[13] J. Gelinas. Virtual private servers and security contexts, Jan.
2003.http://linux-vserver.org.

[14] R. Goldberg. Architecture of virtual machines. In1973 NCC
AFIPS Conf. Proc., volume 42, pages 309–318, 1973.

[15] B. Hicks, K. Ahmadizadeh, and P. McDaniel. Understanding
practical application development in security-typed languages.
In Proc. 22st ACSAC, December 2006.

[16] M. B. Jones. Interposition agents: Transparently interposing user
code at the system interface. InProc. 14th SOSP, Dec. 1993.

[17] P.-H. Kamp and R. N. M. Watson. Jails: Confining the
omnipotent root. InProc. 2nd SANE, May 2000.

[18] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding. InProc. 11th USENIX
Security, Aug. 2002.

[19] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can make
sense. InProc. 2007 USENIX, June 2007.

[20] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the Linux operating system. InProc. 2001
USENIX, June 2001. FREENIX track.

[21] M. D. McIlroy and J. A. Reeds. Multilevel security in theUNIX
tradition. Software—Practice and Experience, 22(8):673–694,
1992.

[22] MoinMoin. The MoinMoin Wiki Engine, Dec. 2006.
http://moinmoin.wikiwikiweb.de/.

[23] A. C. Myers and B. Liskov. A decentralized model for
information flow control. InProc. 16th SOSP, Oct. 1997.

[24] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model.ACM Transactions on Computer
Systems, 9(4):410–442, October 2000.

[25] National Vulnerability Database. CVE-2007-2637.http://
nvd.nist.gov/nvd.cfm?cvename=CVE-2007-2637.

[26] osvdb.org. Open Source Vulnerability Database.
http://osvdb.org/searchdb.php?base=moinmoin.

[27] N. Provos. Improving host security with system call policies. In
Proc. 12th USENIX Security, Aug. 2003.

[28] J. H. Saltzer and M. D. Schroeder. The protection of information
in computer systems.Proc. IEEE, 63(9):1278–1308, Sept. 1975.

[29] M. Seaborn. Plash: tools for practical least privilege.
http://plash.beasts.org.

[30] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux
as a Linux security module, February 2006.http://www.
nsa.gov/selinux/papers/module-abs.cfm.

[31] N. Soffer. MoinBenchmarks.http:
//moinmoin.wikiwikiweb.de/MoinBenchmarks.

[32] R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces: Making
trust between applications and operating systems configurable.
In Proc. 2006 OSDI, Nov. 2006.

[33] VMware. VMware and the National Security Agency team to
build advanced secure computer systems, Jan. 2001.http:
//www.vmware.com/pdf/TechTrendNotes.pdf.

[34] R. Watson, W. Morrison, C. Vance, and B. Feldman. The
TrustedBSD MAC framework: Extensible kernel access control
for FreeBSD 5.0. InProc. 2003 USENIX, June 2003.

[35] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and performance
in the Denali isolation kernel. InProc. 2002 OSDI, Dec. 2002.

[36] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux security modules: General security
support for the Linux kernel. InProc. 11th USENIX Security,
Aug. 2002.

[37] A. R. Yumerefendi, B. Mickle, and L. P. Cox. TightLip: Keeping
applications from spilling the beans. InProc. 2007 NSDI, Apr.
2007.

[38] N. B. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. InProc. 7th OSDI,
Nov. 2006.


