Information Flow Control for

Maxwell Krohn Alexander Yip
M. Frans Kaashoek
MIT CSAIL

Eddie Kohler®

Standard OS Abstractions

Micah Brodsky Natan Cliffer
Robert Morris
TUCLA

http://flume.csail.mit.edu/

ABSTRACT

Decentralized Information Flow Control (DIFC) [24] is an-ap
proach to security that allows application writers to cohtiow
data flows between the pieces of an application and the eutsid
world. As applied to privacy, DIFC allows untrusted softedao
compute with private data while trusted security code aistthe
release of that data. As applied to integrity, DIFC allowssted
code to protect untrusted software from unexpected maicin-
puts. In either case, only bugs in the trusted code, whiatistembe
small and isolated, can lead to security violations.

We presenFlume a new DIFC model and system that applies at
the granularity of operating system processes and stat@@rab-
stractions (e.g., pipes and file descriptors). Flume eaffe€'Buse
in existing applications and allows safe interaction bemveon-
ventional and DIFC-aware processes. Flume runs as a u&r-le
reference monitor on Linux. A process confined by Flume canno
perform most system calls directly; instead, an interpmsitayer
replaces system calls with IPC to the reference monitorclwen-
forces data flow policies and performs safe operations ompritre
cess’s behalf. We ported a complex Web application (MoimMVioi
wiki) to Flume, changing only 2% of the original code. The Rk
version is roughly 30—40% slower due to overheads in oureotirr
implementation but supports additional security polidgiegossible
without DIFC.

Categories and Subject Descriptors:

D.4.6 [Operating System$: Security and Protection+aformation
flow controls, Access controlB.4.7 [Operating System$: Orga-
nization and Design; C.5.%jomputer System Implementatior:
Servers

General Terms: Security, Design, Performance

Keywords: distributed information flow control, DIFC, end-
points, reference monitor, system call interposition, \fetvices

1 INTRODUCTION

As modern applications grow in size, complexity and depanée
on third-party software, they become more susceptible ¢argg
flaws. Decentralized information flow control (DIFC) [24]vari-
ant of classic information flow control [1, 2, 6], can improtre
security of complex applications, even in the presence ténital
exploits. Existing DIFC systems operate as programmingudage
abstractions [24] or are integrated into communicatiomfives in
new operating systems [8, 38]. These approaches have adesnt

Permission to make digital or hard copies of all or part o tiork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listguires prior specific
permission and/or a fee.

SOSP’070ctober 14-17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ... $5.00.

such as fine-grained control of information flow and high perf
mance, but require a shift in how applications are developkane
instead provides process-level DIFC as a minimal exterisidhe
communication primitives irexisting operating systems, making
DIFC work with the languages, tools, and operating systestrat-
tions already familiar to programmers.

The Flume system provides DIFC at the granularity of proegss
and integrates DIFC controls with standard communicatixstrac-
tions such as pipes, sockets, and file descriptors, via alessr
reference monitor. Its interface helps programmers sesxigting
applications and write new ones with existing tools andaliles.
Flume enforces the DIFC policy as the application runs.

A typical Flume application consists of processes of twasyp
Untrusted processes do most of the computation. They are con-
strained by, but possibly unaware of, DIFC contrdleustedpro-
cesses, in contrast, are aware of DIFC and set up the privaty a
integrity controls that constrain untrusted processesstéd pro-
cesses also have thprivilege to selectively violate classical in-
formation flow control—for instance, bgeclassifyingorivate data
(perhaps to export it from the system), ordaydorsingdata as high-
integrity. This privilege is distributed among the trusf@dcesses
according to application policy, making it decentralizéte(“D” in
DIFC). Though bugs in the trusted code can lead to comprgmise
bugs elsewhere in the application cannot, and trusted canistay
relatively isolated and concise even as the applicatioamsatp.

A central challenge for Flume is to accommodate processas th
use existing communication interfaces such as sockets iged p
but also need to specify how and when they use their privilege
It would be awkward to, for example, modify each callrtead
orwr i t e to take arguments indicating whether privilege should be
applied. Worse, the conventional process interface iswitle chan-
nels that “leak” information, like network sockets. A systeould
simply mark these channels off-limits, restricting theqass inter-
face to those system calls with obvious and controllablermftion
flow, but this approach would make many libraries unusabileng
instead seeks to restrict access to these uncontrollechelsaonly
when necessary.

Our solution is arendpointabstraction. Flume represents each
resource a process uses to communicate as an endpoindingiu
pipes, sockets, files, and network connections. A processac-
ify what subset of its privileges should be exercised whenroa-
nicating through each endpoint. Uncontrolled channelsrerdéeled
as endpoints that exit the DIFC system; Flume ensures thpitaio
cess can have both an uncontrolled channel and access ébepriv
data it cannot declassify.

We built Flume in user-space (with a few small kernel patghes
for implementation convenience and portability: the inmpémta-
tion runs on Linux and OpenBSD. Unlike prior systems that pro
vide DIFC as part of a new kernel design (e.g., Asbestos [6] an
HiStar [38]), Flume takes advantage of large existing &ffdo
maintain and improve the kernel support for hardware, NFSPR
SMP, etc. The disadvantage is that Flume’s trusted congpbiise
is many times larger than those of dedicated DIFC kernetsjg

it vulnerable to security flaws in the underlying operatipgtem.

Also, Flume’s user space implementation incurs some padoce

penalties and may expose covert channels that deeper lketeel
gration would close.

To evaluate Flume’s programmability, we ported a complek an
popular application, MoinMoin wiki [22], to the Flume syste
MoinMoin is a feature-rich Web document sharing systemQ@Q,
lines of Python code), with support for access control listdex-
ing, Web-based editing, versioning, syntax highlightiog $ource
code, downloadable “skins”, etc. We captured Moin’s acaess
trol policies with DIFC-based equivalents, thereby movihg se-
curity logic out of the main application and into a small J&ted se-
curity module about a thousand lines long. Only bugs in tcesey
module, as opposed to the large tangle of Moin code and ity plu
ins, can compromise end-to-end security. We also impleedeat
Moin security policy that could not exist without Flumend-to-
end integrity protectionMoin can pull third-party plug-ins into its
address space, but with end-to-end integrity protectisersican
enforce that selected plug-ins never touch (and poteynialirupt)
their sensitive data, either on input or output.

FlumeWiki achieves these security goals with only a thodsan
lines of modification to the original MoinMoin system (in atidin
to the new security module). Though prior DIFC work has suc-
ceeded in sandboxing legacy applications [38] or rewritimgm
anew [8, 15], the “drop-in” replacement of an existing asoesn-
trol policy with a DIFC-based one is a new result. In at lehsté
cases, FlumeWiki closes security holes in the original M&Rr-
periments with FlumeWiki on Linux show that the new system
performs 43% slower than the original in read workloads, and
34% slower on write workloads. Slow-downs are due primaoly
Flume’s user-space implementation. We expect that for riveely
sites the prototype’s performance is adequate.

This paper’s contributions include:

e New DIFC rules that fit standard operating system abstnastio
well and that are simpler than those of Asbestos and HiStar.
Flume’s DIFC rules are close to rules for classic “centediz
information flow control [1, 2, 6], with small extensions foe-
centralization and communication abstractions found uhelyi-
used operating systems.

The first design and implementation of process-level DIFC fo
stock operating systems (OpenBSD and Linux).

Refinements to Flume DIFC required to build real systemd) suc
as machine cluster support, and DIFC primitives that saale t
large numbers of users.

A full-featured DIFC Web site (FlumeWiki) with novel end-to
end integrity guarantees, composed largely of existingcod

All security claims made for Flume rely on two important as-
sumptions. First, machines running Flume must not haverggcu
bugs that result in super-user privileges. Second, thouglfrfume
design makes a concerted effort to close all known costerage
channels (and we indicate where it falls short), Flume assymo-
cesses running on the machine do not leak data via ctiverig
channels. For example, an exploit might transmit sensitifer-
mation by carefully modulating its CPU use in a way obsermdyl
other processes. Covert timing channels are present ixiatirey
DIFC systems; they can be reduced but not eliminated, péatiy
for systems connected to the network [38].

The rest of this paper proceeds as follows: Section 2 describ
related work. Section 3 considers an abstract definitiorDI6iC,
while Section 4 presents endpoints and the instantiationlBC
on Unix. Section 5 and 6 describe the design of Flume and és fil

system, and Section 7 describes the FlumeWiki. Section\dgee
a performance evaluation, and Section 9 concludes.

2 RELATED WORK

There has been much work on improving security on stock oper-
ating systems, including buffer overrun protection (e[§,,18]),
system call interposition (e.g., [11, 12, 16, 27, 32]), &ian
techniques (e.g., [13, 17]), virtual machines (e.g., [13, 35]),

and recovering from compromises (e.g., [7]). Flume usesesoin
these techniques for its implementation (e.g., LSMs [3&] ays-
trace [27]), but Flume is more closely related to mandatageas
control and specifically decentralized information flow toh

Mandatory access control (MAC) [28] refers to a system se-
curity plan in which security policies ammandatoryand not en-
forced at the discretion of the application writers. In maugch
systems, software components may be allowed to read paedse
but are forbidden from revealing it. Traditional MAC systein-
tend that an administrator set a single system-wide poiiyen
servers run multiple third-party applications, howeveimanistra-
tors cannot understand every application’s detailed #gdogic.
DIFC promises to support such situations better than mos€MA
mechanisms, because it partially delegates the settinglmfypto
the individual applications.

SELinux [20] and TrustedBSD [34] are recent examples ofistoc
operating systems modified to support many MAC policies.yThe
include interfaces for a security officer to dynamicallyartssecu-
rity policies into the kernel, which then limit the behaviafr ker-
nel abstractions like inodes and tasks [30]. Flume, like iBEX,
uses the Linux security module (LSM) framework in its imple-
mentation [36]. However, SELinux and TrustedBSD do notvallo
untrusted applications to define and update security gsli@s in
DIFC). If SELinux and TrustedBSD were to provide such an API,
they would need to address the challenges considered ipapes.

TightLip [37] implements a specialized form of IFC that pre-
vents privacy leaks in legacy applications. TightLip ugeistheir
private data and TightLip prevents that private data froawvileg the
system via untrusted processes. Unlike TightLip, Flume @thér
DIFC systems (e.g. Asbestos and HiStar) support multiparsy
classes, which enable safe commingling of private data ety
policies other than privacy protection.

IX [21] and LOMAC [10] add information flow control to Unix,
but again with support for only centralized policy decisioRlume
faces some of the same Unix-related problems as these system
such as shared file descriptors that become storage channels

Myers and Liskov introduced a decentralized information
model [23], thereby relaxing the restriction in previoutimation
flow control systems that only a security officer could desifgs
JFlow and its successor Jif are Java-based programmingdgeg
that enforce DIFC within a program, providing finer-grairemh-
trol than Flume [24]. One benefit is that Jif can limit decifisa-
tion privileges to specific function(s) within a processhea than
(as with Flume) to the entire process. On the other handgdif r
quires applications (such as Web services [4]) to be reswritthile
Flume provides better support for applying DIFC to existaugt-
ware. Flume’s DIFC rules (Section 3) are inspired by Jif's $plit
readership and ownership into separate per-process |anelsal-
low ownership to be transfered as capabilities. Flume'eimds
(Section 4) provide the glue between software written foexist-
ing APl and DIFC.

Asbestos [3, 8] and HiStar [38] incorporate DIFC into new op-
erating systems, applying labels at the granularity of lisivke
messages between processes (Asbestos) or threads, gdtsega
ments (HiStar). Flume’s labels are influenced by Asbestast

incorporate HiStar's improvement that threads must eiflice-

quest label changes (since implicit label changes are toten-
nels). Asbestos and HiStar labels combine mechanismsif@cyr
integrity, authentication, declassification privilegedaport send
rights. Flume separates (or eliminates) these mechanisasvay
that is intended to be easier to understand and use.

HiStar implements an untrusted, user-level Unix emulaléger
using DIFC-controlled low-level kernel primitives. A pregs that
uses the Unix emulation layer but needs control over the CHéiE
icy would have to understand and manipulate the mappingdsstw
Unix abstractions and HiStar objects. Such controls coeldalo-
tored into a new library, and this paper answers the questiamat
such a library might look like.

(4) pwith b € S cannot transmit information over an uncontrolled
channel (like the network). If all four conditions hold, tha simple
inductive argument shows that the editor cannot leak Bohts d
from the system.

Example: Integrity A complementary policy involves integrity.
Say Charlie has administrator privilege on his machinewatig
him to edit sensitive files (e.g/,et c/ rc, the script that con-
trols which processes run with superuser privileges whenaa m
chine boots up). However, other users constantly updatariés
and download new software, so Charlie lacks confidence that a
editors on the system will faithfully execute his intensomhen he
edits/ et ¢/ r c. A path misconfiguration might lead Charlie to ac-

As new operating systems, Asbestos and HiStar have smallercegs a malicious editor that shares a name with a respoesiinoe,

TCBs than Flume, and can tailor their APIs to work well witHQ!.
However, they don’t automatically benefit from mainstregrerat-
ing systems’ frequent updates, such as new hardware sugpdrt
kernel improvements.

3 INFORMATION FLOW IN FLUME

This section describes Flume's approach to decentraliméat-i
mation flow control. Thé=lume modeklosely follows traditional
IFC [6], adding a simple new representation of how processes-
tain and use decentralized privilege.

3.1 Tags and Labels

Flume usedagsandlabelsto track data as it flows through a sys-
tem. Let.7 be a very large set of opaque tokens catbagh A tagt
carries no inherent meaning, but processes generallyiagseach
tag with some category of secrecy or integrity. Tadgor example,
might label Bob’s private data.

Labelsare subsets of7. Labels form a lattice under the par-
tial order of the subset relation [6]. Each Flume progessis two
labels,S, for secrecy and,, for integrity. If tagt € S, then the
system conservatively assumes thatas seen some private data

tagged witht. A process whose secrecy label contains one or more

tags requires independent consent for each tag to revempdat
licly. For integrity, ift € I, then every input tp has been endorsed

as having integrity fot. Files (and other objects) also have secrecy

and integrity labels.

Although any tag can appear in any type of label, in practice

secrecy and integrity usage patterns are so different thag as
usedeither in secrecy label®r in integrity labels, not both. We
therefore sometimes refer to a “secrecy tag” or an “intgd&g”.

We will illustrate Flume’s information flow with several roimg
examples.

or a good editor that links at runtime against phony libarie

Secrecy protection won't help Charlie; rather, he needsnah e
to-end guarantee thatl files read when editinget ¢/ r ¢ are un-
corrupted. Only under these integrity constraints shdubds/stem
allow modifications to the file. Say that an integrity tagepresents
data that is “vendor-certified.” As described below, sonwpsses
on the system cagndorsdiles and processes, giving them integrity
v. For now, consider all other processes, like the text edibar-
lie seeks four guarantees for each such propeés) if p modifies
/et c/rcthenve lp; (2) aprocesp with v € I, cannot read from
files or processes that laskintegrity, and only uncorrupted files
(like binaries and libraries) haweintegrity; (3) a procesp cannot
addv to Ip; and (4)p with v € Ip cannot accept input from un-
controlled channels (like the network). If all four condits hold,
Charlie knows that changes t@t c/ r c were mediated by an un-
corrupted editor.

3.2 Decentralized Privilege

In centralized IFC, only a trusted “security officer” canatenew
tags, subtract tags from secrecy labelsqlassifyinformation), or
add tags to integrity labelgfdorseinformation). In Flume DIFC,
any process can create new tags, which gives that procepsithe
ilege to declassify and/or endorse information for thogs.ta
Flume represents privilege using twapabilitiesper tag. For tag
t, the capabilities are” andt~. Each processwnsa set of capabili-
tiesOp. A process witht™ € Op ownsthet™ capability, giving it the
privilege to add to its labels; and a process with € Op can re-
movet from its labels. In terms of secredy, lets a process addo
its secrecy label, granting itself the privilege to recedeeret data,
while t~ lets it removet from its secrecy label, effectively declas-
sifying any secret data it has seen. In terms of integrity, lets a
process removefrom its integrity label, allowing it to receive low-

Example: Secrecy Alice and Bob share access to a server, but t-integrity data, while™ lets it addt to its integrity label, endorsing

wish to keep some files (but not all) secret from one anothé&= M
behaving software can complicate even this basic poliayexam-
ple, Bob might download a text editor that, as a side effeastp
his secret files to a public Web site, or writes them to a puiéén

/ t mp. Under the typical OS security plan, Bob can only convince

himself that the text editor won't reveal his data if he (omsmne
he trusts) audits the software and all of its libraries.

With information flow control, Bob can reason about the atéto
(mis)behavior without auditing its code. Say that tagepresents
Bob’s secret data. As described below, Bob explicitly susime
processes to export his data out of the system. For now, demail

other (i.e.untrusted processes, like the text editor and its minions.

Bob seeks four guarantees for each such proadds if p reads his
secret files, thel € S,; (2) p with b € S can only write to other
processes (and fileg)with b € &; (3) p cannot remové from S;;

the process’s current state as higimtegrity. A process that owns
botht™ andt™ hasdual privilegefor t and can completely control
howt appears in its labels. The €8 = {t | t" € Op andt™ € Op}
represents all tags for whighhas dual privilege.

Any process can allocate a tag. Tag allocation yields a rahdo
selected tagand set©, — OpU{t",t" }, grantingp dual privilege
fort.

Flume also supports global capability setO. Every process
owns every capability ifD: the system enforces that C Op for
all p. Only tag allocation can chand®; an allocation parameter
determines whether the new tag’s, t—, or neither is added t®
(and thus to every current and future proce€$. A process can
test whether a given capability is @, but to prevent data leaks,
processes cannot enumerate the contentS.oA processp can,
however, enumerate its non-global capabilities (thoggpin- O).

Two processes can transfer capabilities so long as theyaan ¢
municate. A process can freely drop non-global capalsl{tieough
we add a restriction in Section 4.2).

For a set of tag, we define the capability s¢T} * as{t™ |t e
T}, and similarly for{T}".

Example: Secrecy Bob can maintain the secrecy of his private
data with a policy calle@xport protectionOne of Bob’s processes
allocates the secrecy tégised to mark his private data; during the
allocation,b™ is added tdD, but only the allocating trusted process
getsb™. Thus, any procesp can addb to S, and therefore read
b-secret data, but only processes that dwn(i.e., Bob’s trusted
process and its delegates) can declassify this data andt éxpot

of the system. (We describe how to creltsecret data below.)

A related but more stringent policy is callegiad protection A
process allocates a secrecy taput neithert™ nort™ is added to
O. By controllingt™, the allocating process can limit which other
processes cawmiew tsecret data, as well as limiting which other
processes can declasstfgecret data. Read protection can prevent
secret data from leaking through covert channels, inclwtiming
channels [38].

Example: Integrity Another policy,integrity protection is suit-
able for our integrity example. A “certifier” process alltes in-
tegrity tagv, and during the allocatiow;” is added tdD. Now, any

p process camemove Vfrom Ip, but only the certifier has™. The
ability to addv to an integrity label—and thus to endorse informa-
tion as highv-integrity—is tightly controlled by the certifier. Char-
lie requests of the certifier to ediet ¢/ r ¢ using an editor of his
choice. The certifier forks, creating a new process wiihtegrity;
the child drops the™ capability and attempts to execute Charlie’s
chosen editor. Witly € I, andv' ¢ Op, the editor process can only
read high-integrity files (be they binaries, libraries, onfiguration
files) and therefore cannot come under corrupting influences

These three policies—export protection, read protectod, in-
tegrity protection—enumerate the common uses for tagspadth
others are possible.

3.3 Security

For example, say procegswishes to subtract tagfrom S,, to
achieve a new secrecy Iabq;. In set notationt € § — S;) and
such a transition is only safe f owns the subtraction capability
fort (i.e.t™ € Op). The same logic holds for addition, yielding the
above formula.

Safe Messages Information flow control restricts process com-
munication to prevent data leaks. The Flume model restrimts-
munication among unprivileged processes as in classical pF
can send a message dgoonly if § C & (“no read up, no write
down” [1]) andlq C Ip (“no read down, no write up” [2]).

Processes that hold some privilege are less restrictedyamd-
lax our rules accordingly. Specifically, if two processesild com-
municate by changing their labels, sending a message useg t
centralized rules, and then restoring their original lapgien the
model can safely allow the processes to communicate witlasut
bel changes. A process can make such a temporary label change
only for tags inDp, for which it has dual privilege. A procegs
with labelsS,, |, would get maximum latitude in sending messages
if it were to lower its secrecy t& — Dp and raise its integrity to
IpUDp. It could receive the most messages if it were to raise se-
crecy toS, U Dp and lower integrity tdp — Dp. The following def-
inition captures theskypotheticalabel changes to determine what
messages are safe:

Definition3. A message fronp to q is safeiff
S$-DpC§UDg and lIg—Dq ClpuDp.

For processes with no dual privilegBd = Dgq = {}), Definition

3 gives the centralized IFC definition for safe flows. On theeot
hand, ifp must send with a hypothetical secrecy labeBgf- Dy,
thenp is declassifying the data it sendsdolf q must receive with
secrecyS; U Dy, then it is declassifying the data it received frpm
In terms of integrity, ifp must use an integrity labép U Dp, then

it is endorsing the data sent, and similadyis endorsing the data
received with integrity labelq — Dq. Declassification or endorse-
ment can also occur when a procgssakes actual (rather than
hypothetical) label changes 8 or I, respectively.

The Flume model assumes many processes running on the sam&Xternal Sinks and Sources Any data sink or source outside of

machine and communicating via messages, or “flows”. The fisode
goal is to track data flow by regulating both process comnaiitn
and process label changes.

Definition1. A system is secure in the Flume model if and only if
all allowed process label changes are “safe” (Definitionr) all
allowed messages are “safe” (Definition 3).

We define “safe” label changes and messages below. Though man
systems might fit this general model, we focus on the Flumisys
in particular in Section 4.

Safe Label Changes Inthe Flume model (as in HiStar), only pro-
cessp itself can chang&, andlp, and must request such a change
explicitly. Other models allow a process’s label to changéha re-
sult of receiving a message [8, 10, 21], but implicit labehmtes
turn the labels themselves into covert channels [6, 38].Wéhgro-
cess requests a change, only those label changes permjttad b
process’s capabilities are safe:

Definition2. For a procesp, letL beS, orlp, and letl’ be the new
value of the label. The change frdoto L’ is safeif and only if:

{U'—L}Tu{L-L"}" COp.

Flume’s control, such as a remote host, the user’s termarminter,
and so forth, is modeled as an unprivileged processth perma-
nently empty secrecy and integrity labef: = Ix = {} and also

Ox = O. As a result, a procegscan only write to the network or
console if it could reduce its secrecy labelo(the only label with

$ € &), and a process can only read from the network or key-
board if it could reduce its integrity label {g (the only label with

Objects Objects such as files and directories are modeled as pro-
cesses witimmutablesecrecy and integrity labels, fixed at object
creation. A procesg’s write to an object then becomes a flow
from p to o; reading is a flow sent froro to p. When a procesp
creates an objed, p specifieso’s labels, subject to the restriction
thatp must be able to write to. In many caseq) must also update
some referring object (e.g., a process writes a directogndneat-

ing a file), and writes to the referrer must obey the normadsul

Example: Secrecy We now can see how the Flume model en-
forces our examples’ security requirements. In the editanle,
Bob requires that all untrusted processes like his editer, (hosep

for whichb™ ¢ Op) meet the four stated requirements. We first note
that sinceb is an export-protect tady~ ¢ Op implies thatb ¢ Dy,

1. If process p reads Bob's secret files, thea ,: Bob’s secret
files are modeled as objedtswith b € §. Sinceb™ € O, any

The Flume system applies DIFC controls to the Unix primitive
for communication, thdile descriptor Flume assigns aendpoint

process can write such files. Reading an object is modeled as a to each Unix file descriptor. A process can potentially adibe

information flow fromf to p, which requires thag C S, UDp
by Definition 3. Sincéb € &, andb ¢ Dy, it follows thatb € S;.

2. Process p with l= S, can only write to other processes (or files)
g with be & If a processp with b € S, successfully sends a
message to a procegsthen by Definition 35, — Dp € §UDq.
Sinceb is in neitherDp nor Dy, thenb € §,.

3. Processes cannot drop b fromy:She process that allocatdx
kept b~ private, so by Definition 2, only those processes that
own b~ can dropb from their secrecy labels.

4. Process p with = §, cannot transmit information over uncon-
trolled channels An uncontrolled channet has secrecy label
{}, so by Definition 3, procegs can only transmit information
to xif it owns b™, which it does not.

Note that sincéo™ € O, any process (like the editor) can addo

its secrecy label. Such a procgssan read Bob'’s files, compute
arbitrarily, and write the resulting data to files or proessthat also
haveb in their secrecy labels. But it cannot export Bob’s secrets
from the system. Of courseffownedb™ or could coerce a process
that did, Bob’s security could be compromised. Similar angats
hold for the integrity example.

Example: Shared Secrets The power of decentralized IFC lets
Flume users combine their private data in interesting waisowt
leaking information. Imagine a simple calendar applicatichere
all system users keep private data files describing theedidbs.
A user such as Bob can schedule a meeting with Alice by ruraing
program that examines his calendar file and hers, and theéesvai
message to Alice with possible meeting times. When Alics et
message, she responds with her selection. Such an exchienge s
reveal only what Bob and Alice chose to reveal (candidategim
and the final time, respectively) and nothing more about ttedi
endars. Alice and Bob both export-protect their calendes fititha
andb respectively. To reveal to Alice a portion of his calendasbB
launches a procegswith labelsS, = {a,b} andOp = {b~} UO.
This process can read both calendar files, find possible ngeeti
times, and then lower it§, label to{a} and write these times to
a file f labeledS = {a}. Thoughf contains information about
both Alice and Bob’s calendars, only Alice can export it—amd
particular, Bob himself cannot export it (since it contaige’s
private data). Thus, other users “eavesdropping” on thifi@xge
learn nothing. When Alice logs on, she can use a similar padto
to read Bob’s suggestions, choose one, and export thatechoic
Bob in a fileg labeledS; = {b}. Bob and Alice have agreed on a
meeting time while exposing none of their private inforraatio
other users, and even while controlling the informatiory texepose
to each other.

4 ENDPOINTS IN FLUME

This section describes tii@ume systema refinement of the Flume
modelfrom Section 3. The Flume model gives general guidelines
for what properties a system ought to uphold to be consideed
cure” but does not dictate system specifics such as what ARI pr
cesses use to communicate. Some DIFC kernels like Asbestos e
pose only unreliable messages (as in Definition 3) to apjmics,
making reliable user-level semantics difficult to achiekeyoal of

the Flume system is to better fit existing (i.e. reliable) &\fir pro-
cess communication—that of Unix in particular—while upding
security in the Flume model.

labels on an endpoint, so that all future information flow loa file
descriptor, either sent or received, is controlled by itdpaint’s
label settings.

Relative to raw message-based communication, endpoints si
plify application programming. When message deliverysfait-
cording to Definition 3, it does ssilentlyto avoid data leaks. Such
silent failures can complicate application developmermt @ebug-
ging. However, when a process attempts and fails to adjesiath
bels on its endpoints, the system can safely report errelgirty the
programmer debug the error. In many cases, once processes pr
erly configure their endpoints, reliable IPC naturally éalk.

Endpoints also make many declassification (and endors¢ment
decisionsxplicit. According to Definition 3, every message a priv-
ileged process sends and receives is implicitly decladsfie en-
dorsed), potentially resulting in accidental data disates(or en-
dorsement). The Flume system requires processes to dhyplici
mark those file descriptors that serve as avenues for déidass
tion (or endorsement); others do not allow it.

4.1 Endpoints

When a procesp acquires a new file descriptor, it gets a new cor-
respondingendpoint Each endpoine has its own secrecy and in-
tegrity labels S andle. By default,S = S andle = Ip. A process
owns readable endpoints for each of its readable resowrciézhle
endpoints for writable resources, and read/write endpdartthose
that are bidirectional. Endpoints meet safety constrast®llows:

Definition4. A readable endpoire is safeiff
(Se—S)U(lp—le) C Dp.

A writable endpoint is safe iff
(S —S)U(le—Ip) € Dp.

A read/write endpoint is safe iff it meets both requirements

All IPC now happens between twendpoints not two processes,
requiring a new version of Definition 3.

Definition5. A message from endpoietto endpoint is safeiff e
is writable,f is readables C &, andl; C le.

We can now prove that any safe message between two safe end-
points is also a safe message between the correspondirgspesc
Take procesp with safe endpoing, processy with safe endpoint
f, and a safe message froeto f. In terms of secrecy, that the
message between the endpoints is safe implies by Definittbat5
e is writable,f is readable, an& C &. Sincee andf are safe,
Definition 4 implies thatS, — Dp € S and & C §UDq. Thus,
$ —Dp € §UDq, and the message between processes is safe for
secrecy by Definition 3. A similar argument holds for intégni

4.2 Enforcing Safe Communication

For the Flume system to be secure in the model defined in Sec-
tion 3, all messages must be safe. Thus, the Flume systemtesfo
message safety by controlling a process’s endpoint coiatligus
(which mustalwaysbe safe), and by limiting the messages sent
between endpoints. The exact strategy depends on the tyoensf
munication and how well Flume can control it.

S={xy
Op={yt,y .z}

S ={}
Oq = {x*,x7,y"}
Figure 1: Processep andg. AssumeO = {}.

IPC First is communication that the Flume reference monitor
can completely control, where both ends of the communinatie
Flume processes and all channels involving the communicaitie
understood: for example, two Flume procesgesdq communi-
cating over a pipe or socketpair. Flume can proxy these @&lann
message-by-message, dropping messages as appropriae pWh
sends data tq, or vice-versa, Flume checks the corresponding end-
point labels, silently dropping the data if it is unsafe adaog to
Definition 5. A receiving processes cannot distinguish leetwa
message unsent, and a message dropped because it is Urerafe; t
fore, dropped messages do not leak information.

The endpoints of such a pipe or socketpair @mrgable p andq
can change the labels on their endpoints so long as they airaint
endpoint safety (Definition 4), even if the new configuratiesults
in dropped messages. Verifying that a progebas safe endpoints
requires information abouis labels, but not information abogts.
Thus, if a process attempts to change a mutable endpoiligs la
in an unsafe way, the system can safely notify the proceskeof t
failure and its specific cause. Similarly, endpoint safe@yprevent
a process from dropping one or more of its non-global cajbisil
or from making certain label changes, until either the einttpabel
is changed or the endpoint itself is dropped.

Two processes with different process-wide labels can ude en
points to set up bidirectional (i.e., reliable) communicatif they
have the appropriate capabilities. For example, in Figune dan
setS, = {x}, andq can setS;, = {x}, thus data can flow in both
directions across these endpoints. In this configurafiagprohib-
ited from droppingy~ ory™, since so doing would male unsafe;
similarly, g cannot dropx— or x™. Note that reliable two-way com-
munication is needed even in the case of a one-way Unix pipee s
pipes convey flow control information from the receiver bézkhe
sender. Flume can safely allow one-way communication opgrea
by hiding this flow control information and rendering the gipn-
reliable; see Section 5.3.

File /O Second is communication that the Flume reference mon-
itor chooses not to completely control. For example, Flumme-c
trols a process’s file 1/0 with coarse granularity: once Féuatiows

a process to open a file for reading or writing, it allows atufe
reads or writes to the file (see Section 6.1). Since the ne¢ermon-

itor does not interpose on file 1/0 to drop messages, it eafosafe
communication solely through endpoint labels.

When a procesgopens a fild, p can specify which labels to ap-
ply the corresponding endpoigt. If no labels fores are specified,
they default tgp's. When openingd for reading,p succeeds ié& is
a safe readable endpoil®, C Sy andlg C Is. When opening for
writing, p succeeds ik is a safe writable endpoing, € & and
It C leg. Whenp opensf for both reading and writinggs must be
safe, read/write, and must have labels equal to the fileis.dasy
to show thatp’s file 1/0O to f is safe under these initial conditions
(Definition 3).

A process must hold such an endpoigt at least until it closes
the corresponding file. Moreover, the labels @rareimmutable
p cannot change them under any circumstances. Because #ie lab

Bob’s Bob’s|
console file
! Bob's 7" Bob’s . T
shell 6h ek fE | editor (ed)
Si=0 S={), Se-{)
Osh= {b*,b™} Vie[l,5 Oeg = {b™}

Figure 2: A configuration for Bob’s shell and editor. Hel®,= {b™}.

on e andf are immutable, and the initial conditions at file open
enforced safety, all subsequent reads and writdsaorosses are
safe. This immutable endpoint preserves safety by reisigittow
the process can change its labels and capabilities. In &igusay
that filef, is open read/write ans, = &, = {x}. Thenp cannot
drop they~ capability, since doing so would malkg unsafe. Sim-
ilarly, p cannot addz to S, despite itsz" capability; it could only
do so if it also owned, which would preserve,’s safety. Again,
Flume can safely report any of these errorgtwithout inappro-
priately exposing information, since the error dependy onlp’s
local state.

External Sources and Sinks Immutable endpoints also allow
Flume to manage data sentinto and out of the Flume systenetsia n
work connections, user terminals and the like. If the systaows

a processy to have access to resources that allow transmission
or receipt of external messages (such as a network sockes; i
signsp an immutable read/write endpoiet , with S, =le, = {}.
Sincee; must always be safe, it must always be the case that
S —Dp=I1p—Dp={}. Thatis,p has the privileges required import
and export all of its data.

Similarly, if a process has communication channels not yet u
derstood by the Flume reference monitor (e.g. System V IRC ob
jects), then Flume simply assumes the process can expasmant
tion at any time and gives it a&_ endpoint that cannot be removed
until the resources are closed. This blunt restriction @lvbsened
as Flume’s understanding of Unix resources improves.

Endpoints in Practice Endpoints help fill in the details of our
earlier examples. For our secrecy example, Figure 2 showShob
uses a shelkh, to launch his new (potentially evil) editor. Because
sh can write data to Bob's terminal, it must have @n endpoint,
signifying its ability to export data out of the Flume systeBob
trusts this shell to export his data to the terminal and nowkise,
so he launches the shell with™ € Ogn. Now the shell can interact
with the editor, even if the editor is viewing secret filsklaunches
the editor processdwith secrecyS.q = {b} and without théo~ ca-
pability. The shell communicates with the editor via twogspone
for reading and one for writing. Both endpoints in both psses
have secrecy labeld}, allowing reliable communication between
the two processes. These endpoints are safe for the shellisgec
b~ € Ogn and thereforeb € Dgp. €ds endpoint labels matchg
and are therefore also safe. Once the editor has launcheukris
Bob’s secret file for reading and writing, acquiring an imehie
endpointes with S5 = {b}. The file open does not changels
existing endpoints and therefore does not interrupt conication
with the shell.

In the shared-secrecy calendar example, Bob launches agsroc
g that is disconnected from his shell, and therefore has nend-
points.q can then se&; = {a} without affecting the safety of ex-
isting endpoints. Another implementation of the calendavise
might involve a server processthat Alice and Bob both trust to
work on their behalf. That ig, runs witha™ andb™ in its owner-
ship set, and with secre& = {a,b}. By default,r can only write

machine running
Flume

Flume
Sytem spawnel

proces$P i
Flumel i bc ——~— | Referenceq

Monitor
/

NFS Server
/i home

/

ke
]

|

P i (N

/tnp /'i homre
FS FS

proces<)
Flumel i bc

tag
registry

\\y”

Figure 3: High-level design of the Flume implementation. The shaded
boxes represent Flume’s trusted computing base.

to processes or files that have both export protectiogan carve
out an exception for communicating with Alice’s or Bob's By
creating endpoints with secre¢w} or {b}, respectively.

Similar examples hold for integrity protection and for pgeses
that read from low-integrity sources.

5 THE FLUME IMPLEMENTATION

We present a user-space implementation of Flume for Unit) wi
some extensions for managing data for large numbers of (&&rs
in Web sites). Flume’s user space design is influenced by tlihie
systems that build confinement in user space, such as O2}iarjd
Plash [29]. The advantages of a user space design are ftibrtabi
ease of implementation, and in some sense correctnesse Eloes
not destabilize the kernel. The disadvantages are decteastor-
mance and less access to kernel data structures, which encasas
makes the user-exposed semantics more restrictive thablB@
rules require (e.g., immutable endpoints on files).

Flume’s Linux implementation, like Ostia’s, runs a smalfrgm-
nentin the kernel: a Linux Security Module (LSM) [36] implents
Flume’s system call interposition (see Section 5.2). Ther@®SD
implementation of Flume uses thgstracesystem call [27] instead,
but we focus on the Linux implementation in this description

Figure 3 shows the major components of the Flume implementa-
tion. Thereference monitofRM) keeps track of each process’s la-
bels, authorizes or denies its requests to change labelsaauties
system calls on its behalf. The reference monitor relies enite
of helpers: a dedicated spawner process (see Section Se2hche
tag registry (see Section 6.3), and user space file senezsS@&c-
tion 6.7). The Flume-aware C library redirects Unix systettsco
the RM and also supports the new Flume calls shown in Figure 4.
Other machines running Flume can connect to the same tag reg
istry and therefore can share the same underlying file system.,

i hone) over NFS.

5.1 Confined and Unconfined Processes

To the reference monitor, all processes other than the teehre
potential actors in the DIFC system. A process can use thaé-lu
system by communicating with the reference monitor via RPCs
sent over a&ontrol socketFor convenience, a C library, which can
be linked either statically or dynamically, translates snagstem
calls into the relevant RPCs. The system calls that retuendfé-
scriptors (e.g.ppen) use file-descriptor passing over the control
socket. A process can have multiple control sockets to hétlp w
multi-threading.

Processes on a system running Flume are edbefinedor un-

| abel get_l abel ({S,1})
Return the current processZor | label.

capset get _ownership()
For the current procegs return capability seD, — O.

int change_l abel ({S,1}, label 1)

Set current processSor | label tol, so long as the change is safe
(Definition 2) and the change keeps all endpoints safe (Diefirdt).
Return an error code on failure.

i nt reduce_owner shi p(capset 0)
Reduce the calling process’s ownershipQa O'. Succeed if the
new ownership keeps all endpoints safe and is a subset ofdhe o

| abel get _fdlabel ({S,1}, int fd)
Get theSor | label on file descriptof d’'s endpoint.

int change_fd.label ({S,1}, int fd, label)

Set theSor | label onf d’s endpoint to the given label. Return an
error code if the change would violate the endpoint (Defni#), or

if the endpoint is immutable. Still succeed even if the cleastpps
endpoint flows (in the sense of Definition 5).

tag create_tag({EP, I P, RP})

Create a new tagfor the specified security policy (export, integrity
or read protection). In the first case addto O; in the second add
t~ to O; and in the third add neither.

int flume_pipe(int xfd, token xt)
Make a new Flume pipe, returning a file descriptor and a pikerto

int clai mfd_by_token(token t)
Exchange the specified token for its corresponding file descr

pi d spawn(char =argv[], char *env[], token

pi pes[], [label S label I, capset Q])

Spawn a new process with the given command line and envinonme
Collect given pipes. By default, set secrecy, integrity amthership

to that of the caller. IfS, | and O are supplied and represent a per-
missible setting, set labels &1, and ownership set t0.

Figure 4: A partial list of new API calls in Flume.

the process may have network connections to remote hoss, op
writable files, or an open user terminal (see Section 4.2).

An unconfined process conforms to regular Unix access dontro
checks. If an unconfined process so desires, it can issudasthn
system calls (likeopen) that circumvent the Flume RM. In other
words, the underlying Linux system dictates the securigngbr
unconfined processes.

5.2 Confinement andspawn

Confined processese those for which the reference monitor care-
fully controls starting conditions and system calls. For eonfined

proces®, the reference monitor installs a system call interpositio
policy (via LSM) that prevent® from directly issuing most sys-
tem calls, especially those that yield resources outsiddwhe’s
purview. In this context, system calls fit three categorigydirect,
those thap can issue directly as if it were running outside of Flume;
(2) forwarded those that the LSM forbidg from making directly,
but the RM performs op’s on behalf; and (3jorbidden which are
denied via LSM and not handled by the RM. Figure 5 provides-a de
tailed list of which calls fall into which categories. Theaydere is
for the RM to maintain a complete understanding'sfresources.
A confined process likp trades the restrictions implied gy for a
more restrictive system call interface.

Flume’'s spawn operation is the only way that new confined
processes come into existence. Confined and unconfinedsgesce
can callspawn to make a new confined process, but confined pro-

confined By default, processes are unconfined and have empty cesses may not forkpawn combines the Unix operationsbbr k

labels and empty non-global ownership (i®, — O = {}). The
RM assigns an unconfined process an immutable endppintith
labelsle, = &, = {}, reflecting a conservative assumption that

andexec, to create a hew process running the supplied command.
When a procesp spawns a new confined processy's labels de-
fault to p's, butq starts without any file descriptors or endpoirgs.

accumulates endpoints as a result of making new pipes akdtsoc
or opening files (see Section 6.1). System call interpasitiocks
other resource-granting system calls.

Withoutf or k, confined processes cannot use the Unix conven-
tion of sharing pipes or socketpairs with new children. dast,
Flume offersf | ume_pi pe and f | une_socket pai r, which
take the same arguments as their Unix equivalents, but letdihnr
a single file descriptor and a random 64-bit “pipe token.” ©ac
process receives this pair, it typically communicates the pipe to-
ken to another procesp(perhaps across a call spawn). g then
makes a call to the reference monitor, supplying the pipenais
an argument, and getting back a file descriptor in returnckvis
the other logical end of the pipe (or socketpair) that thenezice
monitor gave ta.

The spawn operation takes up to six arguments: the command
line to execute, an initial environment setting, an arrapipe to-
kens, and optional labels. The new process’s labels areddmm
the process that callespawn, unlessS, 1,0 are specified. If the
creator could change to the specifigd, O labels, then those labels
are applied instead. The only file descriptors initially ilalzle to
the new process are a control socket and file descriptorsnebita
by claiming the array of pipe tokens. The new process is net th
Unix child of the creating process, but the creator recedvean-
dom, unguessable token that uniquely identifies the newegsoc
(see below for a rationale). Labels permitting, the creagor wait
for the new process or send it a signal, via forwarded vessain
wai t andki || .

The reference monitor forwardspawn requests to a dedicated
spawner process. The spawner first céids k. In the child pro-
cess, the spawner (1) enables the Flume LSM policy; (2) pado
any setlabel label manipulations if the file to execute ikabet (see
Section 6.5); (3) opens the requested executablef(e@. sh), in-
terpreter (e.g. bi n/ sh) and dynamic linker (e.g/,l i b/ | d. so)
via standard Flumepen calls, invoking all of Flume’s permission
checks; (4) closes all open file descriptors except for itstrob
socket and those opened in the previous step; (5) claims kny fi
descriptors by token; and (6) caixec.

The Flume LSM policy disallows atlirectaccess to file systems
by confined processes with a notable exception. When thd chil
callsexec in Step (6), the LSM allows access to directories (used
during path lookups in the kernel) and access to the binarels
scripts needed bgxec, so long as they were opened during Step
(3). Once theexec operation completes, the LSM closes the loop-
hole, and rejects all future file system accesses.

The Flume LSM policy also disallonget pi d, get ppi d, and
friends. Because Linux allocates PIDs sequentially, twofioed
processes could alternatively exhaust and query the Lidix P
space to leak information. Thus, Flume issues its own PIBsqen
randomly from a sparse space) and hides Linux PIDs from cedfin
processes. The standard LSM framework distributed withuxin
does not interpose aget pi d and friends, but Flume’s small ker-
nel patch adds LSM hooks that can disable those calls. Fltithe s
works without the patch but allows confined processes to diedd
through PIDs.

Confined processes are always run as an unprivileged usger (e.
nobody). If an adversary were to take over a confined process,
it could issue only those system calls allowed by the FlumMLS
policy. All other system interaction happens through tHference
monitor and is subject to Flume’s restrictions.

5.3 IPC In Flume

Whenp and g establish communication as a result of pipe token
exchange, the file descriptors held pyndq actually lead to the

Direct

Forwarded

cl ock_gettine,cl ose(file), dup,
dup2,exit,fchnod, fstat,

get gi d, get ui d, get sockopt,

| seek, map, pi pe, pol |, read,
readv, recvnsg, sel ect,
sendnsg, set sockopt , setgi d,
si gpr ocmask, socket pai r,
wite,witev...

access, bi nd(Unix-domain socket,
chdir, cl ose(socke}, get cwd,
getpid,kill,link,lstat,

nmkdi r, open, synl i nk, readl i nk,
rodir, spawnT, stat, unlink,
utines,wait ...

Forbidden

bi nd(network socket, execve,
fork, get si d*, get pgrp*,
get pgi d*, get ppi d*, ptrace,
setuid...

Figure 5: System calls available to confined processes in Flume.erhos
marked with “*” could be forwarded with better reference ritonsup-
port. Those marked withi” are specific to Flume.

reference monitor, which passes data back and forth betéeen
two processes. The reference monitor proxies so it canruger
communication if either process changes its labels in a \way t
would make endpoint information flow unsafe.

Consider two processgsand g connected by a pipe or socket
where the relevant endpoint labels are the same as the prizees
bels. If§, = § andlp = g, data is free to flow in both directions,
and communication is reliable as in standard Unix. Thaffip,is
writing faster tharg can read, then the reference monitor will buffer
up to a fixed number of bytes, but then will stop reading from
eventually blockingy's ability to write. If § € § or Ip C 1g, data
cannot flow fromq to p. Communication becomes one-way in the
IFC sense and is no longer reliable in the Unix sense. Theaate
monitor will deliver messages fromto g, as before, but will al-
ways be willing to read fronp, regardless of whether exited or
stopped reading. As the reference monitor reads fsanthout the
ability to write toq (perhaps becauspstopped reading), it buffers
the data in a fixed-size queue but silently drops all overfloan-
versely, all data flowing frong to p (including an EOF marker) is
hidden fromp. The reference monitor buffers this data at first, then
drops it once its queue overflows gbr g changes its labels so that
S = § andlp = lg, then the reference monitor flushes all buffered
data and EOF markers.

Spawned Flume processes can also establish and connegkto Un
domain sockets. Creating a socket file is akin to creatingeaafid
keeping it open for writing and follows the same rules (seertixt
section). Connecting to a Unix domain socket is akin to apgni
that file for reading. Assuming a client and server are péehito
connect, they receive new file descriptors and communicite w
the proxy mechanism described above.

5.4

The RM, spawner, file servers, and tag registry are all part of
Flume’s trusted computing base. We implemented them in G++ u
ing the Tame event system [19]. Not counting comments antkbla
lines, the RM is approximately 14,000 LOC, the spawner about
1,000 LOC, the file server 2,500 LOC, and the tag registry fabou
3,500 LOC. The Flume LSM is about 500 LOC; the patch to the
LSM framework forget pi d and the like is less than 100 lines.
Totaling these counts, we see Flume’s total TCB (incrententa
Linux kernel and user space) is about 21,500 LOC.

Flume's version of i bc, the dynamic linker and various client
libraries (like those for Python) are not part of the trustechputing
base and can have bugs without compromising security gigsn
These libraries number about 6,000 lines of C code and 1i068 |
of Python, again not counting comments and empty lines.

Implementation Complexity and TCB

6 PERSISTENCE IN FLUME

The Flume system aims to provide file system semantics that ap
proximate those of Unix, while obeying DIFC constraintsurik
must apply endpoints to opened files to prevent data flowsigfro
the file system that are against DIFC rules. It also must eafar
naming scheme for files in a standard directory hierarchydbes

not allow inappropriate release of information. AdditibpaFlume
must solve problems specific to DIFC, such as persistenaggor
and management of capabilities.

6.1 Files and Endpoints

To get Unix-like semantics, a process under Flume (whetber ¢
fined or not) must have direct access to the Unix file desaripto
any file it opens, in case it needs to cattep on that descriptor.
Thus, the RM performepen on a process’s behalf and sends it the
resulting file descriptor. The process receives an immatabb-
point along with the descriptor.

File opens work as described in Section 4.2, with two adai#io
restrictions in the case of writing. First, Flume assigredferite
endpoints to all writable file descriptors. A writer can leanfor-
mation about a file's size by observimgi t e’'s or| seek’s return
codes, and hence can “read” the file. The read/write endpajnt
tures the conservative assumption (as in HiStar) thatvgrgidways
implies reading. Second, a fifehas awrite-protect set Win addi-
tion to its immutable label§ andl;. A process can only write to
objectf if it owns at least one capability W (i.e.,Op W # {}).
This mechanism allows write protection of files in a mannanilsir
to Unix’s; only programs with the correct credentials (daipges)
can write files with non-emptyV; sets. By convention, arite-
protect tagis the same as an integrity-protect tag:c O, andt™ is
closely guarded. Butdoes not appear ihor Slabels; only the ca-
pability t™ has any use. The presencetofin W yields the policy
that processes must owh to writef.

File closes use the standard Linakose. The reference moni-
tor does not “understand” a process’s internals well enaoghow
if a file is closed with certainty. Better LSM support can fixsth
shortcoming, but for now, Flume makes the conservativeragsu
tion that once a process has opened a file, it remains opdrthenti
process exits.

6.2 File Metadata

While Section 3.3 explains how file contents fit into Flumel§0,
information can also flow through meta-data: file names, file a
tributes, and file labels. Flume does not maintain explaiiels for
these items. Instead, Flume uses a directory’s label toaatcess
to the names and labels of files inside the directory, and'a fde
bel to control access to the file’s other attributes (sucleagth and
modification time). Flume considers that a path lookup ineslthe
process reading the contents of the directories in the patime ap-
plies its information flow rules to this implicitly labeledath, with
the following implications for applications.

A directory can contain secret files and yet still be readaihee
the directory’s label can be less restrictive than the Rbgthe files
it contains. Typically the root directory has an em@&jabel and
directories become more secret as one goes down. Integbig)d
typically start out at7 at the root directory and are non-increasing
as one descends, so that the path name to a high-integrihaglat
least as high integrity as the file.

The file system’s increasing secrecy with depth means a gsoce
commonly stores secret files under a directory that is lesese
The Flume label rules prevent a process from creating a fike in
directory that is less secret than the process, since thaldvieak

information through the file’s name and existence. Insteepro-
cess can “pre-create” the files and subdirectories it nestigia its
life, before it has raised itSlabel and read any private data. First,
the process creates empty files with restrictive file labete pro-
cess can then raise i®abel, read private data, and write output to
its files.

If a procesgp with labelsS, andl, wants to spontaneously cre-
ate a filef with the same labels, without pre-creating them, Flume
offers a special leak-proof, high-integrity file namespaogan cre-
ate a directory of the formi hore/ srl(lp).srl(S), wheresrl(L)
is a serialized representation of lalhelThis directory has integrity
level Ip and secrecy leve§,. Within that directory, the regular
file system rules apply. Processes cannot directly openaar tfee
/i hone directory, though they can traverse it on the way to open-
ing files contained therein.

6.3 Persistent Privileges

In addition to supporting legacy Unix-like semantics, Faupro-
vides persistence for capabilities and file labels. A preeesjuires
capabilities when it creates new tags but loses those déjeasbi
when it exits. In some cases, this loss of capabilities nendata
permanently unreadable or unwritable (in the case of iitiggr
Consider a useu storing export-protected data on the server. A
process acting om’'s behalf can create export-protect tagand
write a filef with § = {ty}, butif t,~ evaporates when the process
exits, the file becomes inaccessible to all processes oryttens,
including those who speak for

Flume has a simple mechanism for reusing capabilitiestijke
across processes, reboots, and multiple machines in ar sduge
ter. First, Flume includes a “central tag registry” thatgseappli-
cations give long-term meaning to tags and capabilitiesaft act
as a cluster-wide service for large installations, andustéd by all
machines in the cluster. The tag registry maintains thresigient
databases: one that maps “login tokens” to capabilities that re-
members the meanings of capability groups, and a third da&ab
for extended file attributes (see Section 6.7).

A login token is an opaque byte string, possession of which en
titles the holding process to a particular capability. Aqass that
owns a capabilityc can ask its RM to give it a login token far
On such a request, the RM asks the tag registry to createkar;to
the tag registry records the token amth a persistent database. A
process that knows a token can ask its RM to give it ownership o
the corresponding capability. The operation succeedg iRk can
find the token and corresponding capability in the registry.

When creating new tokens, the tag registry chooses tokens ra
domly from a large space so that they are difficult to forgeldb
can attach a timeout to each token, useful when making browse
cookies good for one Web session only.

6.4 Groups

Some trusted servers keep many persistent capabilities@uid
benefit from a simpler management mechanism than keepingr a se
arate login token for each capability. For example, considéin-

ger server” that users trust to declassify and make publitqos

of their otherwise private data. Each useprotecting data with
export-protect tady, must grant,~ to the finger server.

Instead of directly collecting these capabilities (evaryet it
starts up), the finger server owns a gra@pontaining the capa-
bilities it uses for declassification. Owning a capability & im-
plies owning all capabilities contained ®. When a new usev
is added to the systera,can addt,~ to G, instantly allowing the
finger server to declassifys files. Groups can also contain group
capabilities, meaning the group structure forms a diregtegh.

Like any other capability, group capabilities are transifiée, and
can be made persistent with the scheme described in Sec8on 6
Capability groups are a scalability and programmabilityaacte
over previous DIFC proposals. In practice, secrecy andjiitiela-
bels stay small (less than 5 tags), and capability groupsvadivn-
ership sets to stay small, too. All group information is etbin the
central tag registry, so that multiple machines in a cluséeragree
on which capabilities a group contains. Reference monitors
tact the tag registry when performing label changes. Simoceps
could grow to contain many capabilities, a reference moniaes

the namespace. The reference monitor forwards requestsasuc
open andnkdi r to the appropriate file server. To reduce the dam-
age in case the file server code has bugs, each server runssas a d
tinct non-root user and ishr oot ed into the part of the underlying
file system that it is using. The usual Unix access-contrticigs
hide the underlying file system from unprivileged procesaéside
of Flume.

Each file server process store files and directories onesfer-
in an underlying conventional file system. It stores labalghie
extended attributes of each underlying file and directooyh@&lp

not need to download the entire group membership when check- larger labels fit into small extended attributes, the tagstegpro-

ing label change validity. Instead, it performs querieshaf form
“is capability c a member of groum,” and the registry can reply
“yes,” “no” or “maybe, check these subgroups.” In our expece,
groups graphs form squat, bushy trees, and the describ&atplo
is efficient and amenable to caching.

Finally, so that the groups themselves do not leak inforomati
Flume models groups as objects, like files on the file systeherw
created, a group takes on immutable labels for secrecy &egtity,
and also (at the creator’s discretion) a write-protect bajba set.
Processes modifying a group’s membership must be able te tori
the group object (currently, only addition is supportedpdesses
using groups in their label change operations are effdgtreading
the groups; therefore, processes can only use a group tigpeabi
their ownership sets if they can observe the group object.

6.5 Setlabel

Flume provides aetlabelfacility, analogous to Unix'setuid or
HiStar's gates, that is the best way to launch a declassH&dta-
bel tightly couples a persistent capability with a progrdmattis
allowed to exercise it. A setlabel file contains a login tokew a
command to execute. Flume never allows a setlabel file todu re
to prevent release of the login token. Instead, the flesd| la-
bels limit which processes can execute the file. Any procésse

vides a service that generates small persistent nicknaonésbils.
Flume file servers can also present entire underlying redqyfoe
systems (such alkusr) as-is to Flume-confined software, apply-
ing a single label to all files contained therein. The Flumstay
administrator determines this configuration.

Since Linux’s NFS client implementation does not support ex
tended attributes, Flume supports an alternate plan whamng
over an NFS-mounted file system. In this case, Flume stones pe
sistent label nicknames as 60-bit integers, split acrassisier and
group ID fields of a file’s metadata. The fake UID/GID pairstwri
ten to the file system are in the ran@é®, 231), avoiding UIDs and
GIDs already in use. This approach unfortunately requinesfite
server to run as root, for access to flehown call.

Simultaneous use of the same underlying file system by multi-
ple Flume file server processes might result in lack of ataynior
label checks and dependent operations. For example, ciuetiat
file creation is allowed in a directory and actually creatihg file
should be atomic. Race conditions might arise when a cluster
hosts share an NFS file system. Flume ensures the necessary at
icity by operating on file descriptors rather than full pagmes,
using system calls such as Linuxdgenat .

The DIFC rules require that a process must read all direxgori
in any path name it uses. One approach is to laboriously aback

Sandl would allow it to read the setlabel file may ask the reference directory in a given path name. In practice, however, apfitos

monitor to spawn the file. The reference monitor executesadhe
mand given in the file and grants the process the capabifityresl
to by the login token. Typically a setlabel program will esise the
capability to read data that the parent is not allowed to #xpad
then declassify it to the parent.

arrange their directory hierarchies so that secrecy iseand in-
tegrity decreases as one descends. The Flume implemengstio
forces this ordering, with no practical loss of generaktlyme can
thus optimize the path check: if a process can read & fitemust
also be able to read all 6% ancestors, so there is no need to check.

Setlabel files can also specify a minimum integrity label and Ifthe file'does not exist or the process canpot read it, Flieverts .
a maximum secrecy label, which executing processes must con to checking each path component, returning an error wherstt fi

form to. The minimum integrity label helps defend the sedlaivo-
cess from surprises in its environment. The maximum sedad}
helps a setlabel program limit the types of secrets it dsiflas.

6.6 Privileged Filters

Finally, in the application we've built, we have found a nded
automatic endorsement and declassification of files; se@8&c6

for a detailed motivation. A process can creatiltar to replace
“find label” (Ling) With a “replace label” rep) if it owns the priv-
ileges to add all tags itrep — Liing and to subtract all tags in
Liind — Lrepi- The filter appears as a file in the file system, similar
to a setlabel file. Any other procepghat can read this file can ac-
tivate this filter. After activation, whenevertries to open a file for
reading whose file label contains all the tagkdpy, Flume replaces
those tags with.ep before it decides whether to allow the process
to open the file. A process can activate multiple filters, cosig
their effects.

6.7 File System Implementation

The reference monitor runs a suite of user-space file semnger p
cesses, each responsible for file system operations oniaqueof

encounters a component that does not exist or cannot be read.

At present, Flume supports most but not all of Unix’s seneanti
The current implementation allows renames and creatioraad h
links only within the same directory as the original file. ARldime
implements the per-process working directory by rememibea
path name per process, which will deviate from Unix behaifior
directories are renamed.

Flume's file system has shortcomings in terms of security. An
unconfined process with Unix super-user privileges canhsei-
derlying file system directly, circumventing all of Flumegsotec-
tions. This freedom can be a valuable aid for system admatss,
as well as an opportunity for attackers. Also, Flume doesawoid
covert channels related to storage exhaustion and dislagust
solution would require deeper kernel integration (as intedis

7 APPLICATION

This section explores Flume's ability to enhance the sgcafioff-
the-shelf software. We first describe MoinMoin [22], a p@yiNVeb
publishing system with its own security policies. We thesatie
FlumeWiki, a system that is derived from Moin but enforces th
Moin’s policies with Flume’s DIFC mechanisms. FlumeWikiego

Flume Server
hiipd |« wikitaunch f«—{ wiki.py |
Port 8
httpd |'—'| wikilaunch |-—>| wiki.py |

Figure 6: FlumeWiki application overview, showing two of many pro-
cess pipelines. The top request is during a session logmdttom re-
quest is for a subsequent logged-in request. Flume-obbvimocesses
are unshaded, unconfined processes are striped, and conforesgses
are shaded.

further, adding a new security policy that offers end-ta-griegrity
protection against buggy MoinMoin plug-ins. The resultgygtem
substantially reduces the amount of trusted applicatiale co

7.1 MoinMoin Wiki

MoinMoin is a popular Python-based Web publishing system,(i
“wiki”) that allows Web clients to read and modify serversbed
pages. Moin is designed to share documents between useeadbu
page can have an access control list (ACL) that governs wisets
and groups can access or modify it. For example, if a compaary
gineering document is only meant to be read by the engineets a
their program manager Alice, the document would have thd rea
ACL (alice, engineers), where “alice” is an individual anehgi-
neers” is a group containing all the engineers.

Unfortunately, Moin’s ACL mechanism has been a source of se-
curity problems. Moin comprises over 91,000 lines of codd48
modules. It checks read ACLs in 41 places across 22 diffenet
ules and write ACLs in 19 places across 12 different mod(iges.
danger is that an ACL check could have easily been omitted. In
deed, a public vulnerability database [26] and MoinMoimternal
bug tracker [25] show at least five recent ACL-bypass vuliéra
ties. (We do not address cross-site scripting attacks naésdioned
in both forums.) In addition to ACL bugs, any bug in Moin’sdar
codebase that exposes a remote exploit could be used torfeatep
data or tamper with the site’s data.

Moin also supports plug-ins, for instance “skins” that apathe
way it renders pages in HTML. Site administrators downlokdp
ins and install them site-wide, but buggy or malicious ping-can
introduce further security problems. Plug-ins can violstein's
ACL policies. They also can wittingly or unwittingly misrder a
page, confusing users with incorrect output.

7.2 Fluming MoinMoin

Flume’s approach for enhancing Moin’s read and write prtaiac
is to factor out security code into a small, isolated segumodule,
and leave the rest of Moin largely unchanged. The securityuieo
needs to configure only a Flume DIFC policy and then run Moin ac
cording to that policy. This division of labor substantyateduces
the amount of trusted code and the potential for securitjating
bugs. In addition, the security module can impose end-tbien
tegrity by forcing the untrusted portion to run with a nongynin-
tegrity label, yielding guarantees of the form: “no plug-touched
the data on this page at any time” or “vendds plug-in touched
this data but no other plug-ins did.”

7.3 FlumeWiki Overview

Figure 6 illustrates the four main components of the FlumeWwi
system. FlumeWiki uses an unmodified Apache Web sehtgrd)
for the front-end request handlingiki.py is the bulk of the ap-
plication code, consisting of mostly unmodified MoinMoindeo

bronser [~ ttpd fe—] wikitaunch (p) fe—{ " wiki.py (@
S ={e}
Op=0u{es}

S ={a}
Oq = O [U{w,*}]

Figure 7: Label setup for aead or write request in FlumeWikiwiki.py
only gets capabilityv, ™ if writing. The target page is export- and write-
protected by usau.

pmgr.py is a small trusted program that manages usernames and
passwords; it runs as a setlabel program so that it may cempar
submitted passwords against read-protected hashes oertres. s
wikilaunch is the small trusted security module; it is responsible
for interpreting the Web request, launchingi.py with the correct
DIFC policy and proxyingwikilaunch’s response back to Apache.
Because it communicates with resources outside of Flumae (i.
httpd), it is unconfined and has an endpoint.

When a typical HTTP request enters the system it contains the
client's username and an authentication tokehnttpd receives the
request and launchegkilaunch as a CGI processvikilaunch re-
questas’s capabilities from the RM using the authentication token.
It then sets up a DIFC policy bypawning wiki.py with appropri-
ateS | andO. wiki.py renders the page’'s HTML, sends itwoki-
launch over a pipe and exitsvikilaunch forwards the HTML back
to httpd which finally sends it back ta's browserwiki.py’s Slabel
prevents it from exporting data without the helpugkilaunch.

7.4 Principals, Tags and Capabilities

FlumeWiki enforces security at the level of principals, ethimay
be users or ACL-groups (which are groups of users). Eackipah
x has an export-protect tag and a write-protect tagi. Principal
x also has a capability grou@y = {ex~,wx " }.

If useruis a member of ACL-groug with read-write privileges,
her capability groupy also containgsg which allows her to read
and modifyg's private and write-protected data. If useis a mem-
ber of g with read-only privileges, her capability gro@, instead
containng’ = {eg™ } which provides enough capabilities to read
and exporg's private data but not modify it.

Each Web page on a FlumeWiki site may be export-protected
and/or write-protected. Export-protected pages havedbeesy la-
bel S= e« wherex is the principal allowed to read and export
it. X's write-protected pages have the write-protect capghdét
W = {Wx+}.

7.5 Export- and Write-Protection Policies

wikilaunch handles requests that read pages differently from those
that write. Ifu's request is for a read, andhas at least read access
for groupsgs, . - .,0n, thenwikilaunch spawns a newviki.py pro-
cessq with § = {ey, €y, ,...,€y,} andOqg = O, allowing the stan-
dard MoinMoin code in FlumeWiki transparent read accesdés fi
the user is allowed to read (see Figure 7). For a requestiates
creating or modifying a pagsyikilaunch looks at the directoryl
in which the page resides. dfis protected by an export-protect tag
ey, wikilaunch setswiki.py’'s S= {ex}. If d is also protected by a
write-protect tagwy, wikilaunch setswiki.py’s W = {wx*} (also
shown in Figure 7). If the useris not authorized to perform the re-
quested actionwikilaunch will fail when trying to spawnwiki.py
and notify the user of their transgression. Finalkilaunch sets
its secrecy label equal to that wiki.py so that they may share bi-
directional pipe communication.

This DIFC policy provides three security properties. Fiveki-
launch’s Slabel ensures that only data the logged-in user is allowed
to see can flow fromwiki.py to the browser. Second, any other form

of output produced byviki.py (for example a file) will also have a
label containinge, or someegy so that other usersvikilaunch or
wiki.py processes cannot reveal that output (since theydaclor
€y~). Third, it provides discretionary write control: only pesses
that ownwy ™ can overwritexs files.

7.6 End-to-End Integrity

In addition to read and write protection policies, FlumeiAtin op-
tionally use Flume's integrity mechanisms to guard againstden-
tal execution of untrusted dynamically-linked librariesRython
libraries like Moin plug-ins. The code that a Python prograit
execute is difficult to predict and thus difficult to inspettally,
since it depends on settings suchL&sL| BRARY_PATH, Python’s
class search path, and other run-time decisions.

FlumeWiki enforces an integrity constraint on the code firat
duced each page and then makes that integrity value visibigers.
By default, only code in the base FlumeWiki distribution lis;aed
to be involved in displaying a page. However, if a page hasnaena
like v.f, wherev is the name of a third party vendor, then FlumeWiki
also allows vendov's software to participate in generating the page.

The default integrity policy operates as follows. Duringtadla-
tion, all files in the distribution gekt = {iw}, whereiy represents
the integrity of the base distributiowikilaunch startswiki.py with
I ={iw}, which guarantees that the program will never read any file
(including dynamically-loaded program text) with an intieéglabel
that doesn’t contaim,. wikilaunch sets its own label td = {iw}.
Then, ifwiki.py drops its integrity td = {}, wikilaunch will be un-
able to receive its responses. This arrangement meandlthedfz
erly created wiki documents have= {iy}, which indicates that
they were created with the base distribution alone. In ttaamer, a
useru gets an end-to-end integrity guarantee: all code involvigl w
collectingu’s input, writingu's data to disk, retrieving the data, for-
matting the data, and outputting the data lgdn its label and
therefore involved only the base FlumeWiki software.

For pages that allow the use of plug-in codeikilaunch
launcheswiki.py with | = {iy} to allow v's plug-in code to par-
ticipate in the page’s rendering. However, the plug-ine®lon
FlumeWiki code during processing, which it cannot read b# t
disk: FlumeWiki’s code does not havgin its integrity label. For
wiki.py to read FlumeWiki's code, it would need to reduce its in-
tegrity label tol = {}, ruling out all future hopes of regaining
non-empty integrity and outputting teikilaunch. Filters (see Sec-
tion 6.6) provide the solution.

The site administrator who instal& plug-in owns the capabil-
ity iyv™, and thus can create an integrity filter that replaces labels
of the form! = {iw} with {iw,iy}. This filter implements the idea
that vendown's code trusts FlumeWiki code. With this filter in place,
wikilaunch can setviki.py’s and its own integrity labels to= {iy},
thus gaining assurance that any data returned was onlyedumh
vendorv's and FlumeWiki’s code.

7.7 Discussion

Adapting Moin to Flume required roughly 1,000 lines of new
C++ code forwikilaunch, and modifications to about 1,000 out
of Moin’s 91,000 lines of Python. We did not modify or even re-
compile Apache or the Python interpreter, even though Pyteo
spawned by Flume. The changes to Moin were in its login proce-
dure, access control lists, and file handling, which we medifo
observe and manipulate DIFC controls (like process labelsead-
point labels). Most of these changes are not user-visitleugh
wrapper programs likevikilaunch could be expressed in other
DIFC systems like Asbestos or HiStar, the integration witkiioin

would be difficult without an application-level APl like tlome pre-
sented here.

An advantage of the DIFC approach is that we did not need to
understand all of Moin’s code. Becauséki.py always runs within
Flume’s confines, we need only understamitilaunch to grasp
FlumeWiki’'s security policywikilaunch is small, and auditing it
gave us confidence in the overall security of FlumeWiki, desp
any bugs that may exist in the original Moin code or that we may
have introduced while adapting the code.

Time did not permit the adaptation of all MoinMoin’s featsre
such as internationalization, indexing, and hit count@esFlume,
these features attempt to leak data through shared filekggddil
with Flume permission errors. FlumeWiki could reenablenitvath
specialized declassifiers.

8 EVALUATION

In evaluating Flume and FlumeWiki we consider whether tmy i
prove system security, how much of a performance penalty the
impose and whether Flume’s scaling mechanisms are eféectiv

For security, we find that Flume prevents ACL vulnerabititie
and even helps discover new vulnerabilities. For perfoaaame
find that Flume adds from 35-26 of overhead to interposed sys-
tem calls, which is significant. However, at the system letied
throughput and latency of FlumeWiki is within 45% and 35% of
the unmodified MoinMoin wiki, respectively, and Flume’s sier-
ing ability enables FlumeWiki to scale beyond a single maelas
Web applications commonly do.

8.1 Security

The most important evaluation criterion for Flume is whethan-
proves the security of existing systems. Of the five recenit AZ
pass vulnerabilities [25, 26], three are present in the Miaim ver-
sion (1.5.6) we forked to create FlumeWiki. One of these stdn
bilities is in a feature disabled in FlumeWiki. The other twere
discovered in code FlumeWiki indeed inherits from Moin. Vég-v
ified that FlumeWiki still “implements” Moin’s original bugy be-
havior and that the Flume security architecture preversetbugs
from revealing private data.

To make FlumeWiki function in the first place, we had to
identify and solve a previously undocumented vulnerapbilit
Moin. The original Moin leaks data through its global names-
pace. For instance, a user Bob can prove that the secret docu-
mentReasonsToFi r eBob exists by trying and failing to cre-
ate the document himself. By contrast, Flume’s IFC rulesddr
FlumeWiki to be built in a way that doesn’t leak information
through its namespace.

8.2 Interposition Overhead

To evaluate the performance overhead when Flume interpmses
system calls, we measured the system call latencies shotig-in
ure 8. In all of these experiments, the server running Linersion
2.6.17 with and without Flume is a dual CPU, dual-core 2.3GHz
Xeon 5140 with 4GB of memory. The Web server is Apache 1.3.34
running MoinMoin and FlumeWiki as frozen Python CGI pro-
grams. The Web load generator is a 3GHz Xeon with 2GB of mem-
ory running FreeBSD 5.4.

For most system calls, Flume adds 35-286er system call
which results in latency overhead of a factor of 4-35. Tharidu
overhead includes additional IPC, RPC marshalling, aaluki sys-
tem calls for extended attributes and extra computatiosdourity
checks. The additional cost of IPC and RPC marshalling isvaho
by thef | unmenul | latency, which reports the latency for a no-op
RPC call into the reference monitor (RM). Most Flume systaifisc

Operation Linux Flume diff. mult. ‘ Throughput (reg/sec) Latency (ms/req)

nkdi r 86.0 371.1 2852 4.3 MoinMoin FlumeWiki | MoinMoin FlumeWiki

rdir 13.8 106.8 93.0 7.7 Read 33.2 18.8 ‘ 117 156

open Write 16.9 11.1 237 278

:g;?;ts 153 f(l)(())g %g;z égg Figure 9: Latency and throughput for FlumeWiki and unmodified
— exists, inlined 33 41.0 37.7 125 MoinMoin averaged over 10,000 requests.

— does not exist 43 1014 97.1 236

;g?es not exist, inlined g'g gg'f gg'g 33'2 FlumeWiki is 43% slower than MoinMoin in read throughput,
~inlined 28 387 359 137 34% slower in write throughput and it adds a latency overtafad
cl ose 0.6 0.9 0.2 1.3 roughly 40ms. For both systems, the bottleneck is the CPUnMo
unl i nk 15.4 110.0 94.6 7.2 Moin spends most of its time interpreting Python and FlumeaWi
synl i nk 9.5 106.8 97.3 112 has the additional system-call and IPC overhead of Flume.
readl i nk 27 9.2 875 330 Most of FlumeWiki's additional cost comes from callsdpen
create.tag 22.6 andst at when Python is opening modules. For each page read
?Pﬁﬂgﬁdl ?bel gg:(l) request, the RM serves 753 system calls including@@&ns and
IPC round trip latency 71 338 598 52 186 st at s. Of the calls tcopen, 18 are for existing non-public
IPC bandwidth 2045 0937 2008 31 files, 73 are for existing public files, 16 are for non-existean-

]] public files and 380 are for non-existent public files. Of et s,
Figure 8: System call and IPC microbenchmarks, and Flume overhead 156 are for public files and 30 are for non-public files. Thealsc
as a multiplier. Latencies are jrs and bandwidth is in MB/sec. System sum to 28ms of overhead per request, which accounts for miuch o
calls were repeated 10,000 times, IPC round trips were tegeane - . i .
million times, and IPC bandwidth was measured over a 20GBstea; the 39ms difference in reaq Ifitency. FlumeWiki also incarsxtra
these results are averages. for k andexec to spawrwiki.py as well as extra system calls on
each request to setup labels, pipes and filters.
The numbers reported in Figure 9 reflécizenPython pack-
ages, both in the case of FlumeWiki and MoinMoin. Frozen Byth
e packages store many Python packages in one file, and in the cas
of FlumeWiki reduce the combined number @pen and st at
calls from more 1900 to fewer than 700. Frozen packages iedlyec
benefit FlumeWiki’s performance, since its system call beed is
higher than standard Moin’s.

consist of two RPCs, one from the client application intorésfer-
ence monitor and one from the reference monitor to a file serv
so the RPC overhead accounts for approximatelys46f Flume’s
additional latency. As an optimization on public file sysgerthe
RM handleopen andst at calls inline rather than querying a file
server and thus avoids a second RPC. Callsdikeat e_t ag and
change_l abel also use a single RPC into the RM aaobose
for files does not contact the RM at all. For non-public fileteyss, 8.4 Cluster Performance

open on a non-existent file requires the RM to walk down the file pegpite Flume’s slowdown, FlumeWiki may be fast enoughealye
system to determine what error message to return to thet,cien for many small wiki applications. The Flume implementatéauld

this operation is particularly expensive. This check idéas a be optimized further, but Flume’s support for a centralitzgireg-
public file system (where all files are readable to everydmejause istry and FS file sharing supports another strategy for imipgp
the RM need not walk the parent directories. performance, namely clustering. To investigate the sdéjabf the

Flume also adds overhead to IPC communication because itcluster mechanism, we ran the FlumeWiki read throughpueexp
proxies IPC between processes. The base case in our meastsem jment on the same server hardware, but with a varying number o

is an IPC round tripp writes toq, g readsg writes top, and therp single CPU virtual machines on top of a Linux-based virtua- m
reads. This exchange amounts to four system calls in totatam chine monitor. Each virtual machine is limited to a singledveare

dard Linux. The RM’s proxying of IPC adds eight system callst cpuy, and within each virtual machine, we ran Flume on a guest
this exchange: four calls ®el ect , twor eads and twoar i t es. Linux OS.

Thus, an IPC round trip takes 12 system calls on Flume, iimarr In this experiment, FlumeWiki stores shared data including
the three-fold performance penalty for additional systeffsseen pages and user profiles in an NFS file system and all other data

in IPC bandwidth. As witlf I umenul | computation and context s quplicated on each VM's private disk. The NFS file systerd an
switching in Flume add additional latency overhead, sungm the tag registry are both served by the host machine. Withgiesi

the eight-fold latency degradation seen in Figure 8. VM (i.e., a 1-node cluster), throughput was 4.3 requestsgeond.
Throughput scales linearly to an aggregate of 15.5 reqpestsec-
8.3 Flume Overhead ond in the case of four VMs (i.e., a 4-node cluster), whichhis t

maximum number of CPUs on our available hardware. Thisetust
configuration achieves lower throughput than the singlehime
configuration because of VM and NFS overhead.

To evaluate the system level performance overhead of Flurae,
compare the throughput and latency of pages served by andinmo
ified MoinMoin wiki and by FlumeWiki.

In the read experlments_, a load .generator randomly r(_equest58.5 Discussion
pages from a pool of 200 wiki pages; the pages are approxiynate
9 KB each. In the write experiments, each write request donta Although FlumeWiki’'s cluster performance may already bé-su
40 byte modification to one of the pages for which the server re able for some services, one direction for future perforraaine-

sponds with an 9 KB page. In all experiments, the requesbim & provements is to modify FlumeWiki to run as a FastCGI service
wiki user, who is logged in using an HTTP cookie. For the layen ~ which amortizes a CGI process’s startup cost over multiple r

results, we report the latency with a single concurrenttli€or the quests. Benchmarks posted on the MoinMoin site [31] show a
throughput results, we adjusted the number of concurréartslto tenfold performance improvement when running MoinMoin as a

maximize throughput. Figure 9 summarizes the results. FastCGI application [9] rather than a standalone CGI (asuin o

benchmarks) and FlumeWiki could benefit from a similar aeghi
ture. One approach is to emulate Asbestos’s event procéssgs
one Python instance running for eg&l, O) combination of labels
currently active, and route requests to instances basesbets|

9 CONCLUSION

Flume demonstrates that the advantages of DIFC can be hrmgh
bear on standard operating systems and applications. Bsinge

a programmer can provide strong security for Unix applarai
even if parts of the application contain bugs. We hope thatiimy
plifying DIFC and allowing it to coexist with legacy softwarboth

in the kernel and at application level, Flume can expose & wid
dience of developers to DIFC-style security policies arapam-
ming techniques.

ACKNOWLEDGMENTS

The authors thank Barbara Liskov, Steve VanDeBogart, Miled-W
fish, Nickolai Zeldovich, the anonymous reviewers and skeph
Andrew Myers for their comments on drafts of this paper. Vémth

the members of the Asbestos Project team for feedback ard sug
gestions on the Flume label model and its implementation. We
thank Mark Seaborn for his work on Plash, which helped us make [22]

gl i bc system call interposition work on Linux. Maxwell Krohn
was awarded an SOSP student travel scholarship, suppartie b
National Science Foundation, to present this paper at théeco
ence. This work was supported by the joint NSF CybertrusRBA
grant CNS-0430425, Nokia, Taiwan’'s Industrial Technoldgg-
search Institute (ITRI), and an NSF Graduate Student Feligw

REFERENCES

[1] D.E. Belland L. L. Padula. Secure computer system: Udifie
exposition and multics interpretation. Technical Report
MTR-2997, Rev. 1, MITRE Corp., Bedford, MA, March 1976.

[2] K.J. Biba. Integrity considerations for secure compusiestems.
Technical Report MTR-3153, Rev. 1, MITRE Corp., Bedford,
MA, 1976.

[3] M. Brodsky et al. Toward secure services from untrusted
developers. Technical Report TR-2007-041, MIT CSAIL, Aug.
2007.

[4] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing
confidentiality and integrity in web applications. Broc. 16th
USENIX SecurityAug. 2007.

[5] C.Cowan etal. StackGuard: Automatic detection and gméon
of buffer-overflow attacks. I#roc. 11th USENIX SecuritAug.
2002.

[6] D.E. Denning. A lattice model of secure information flow.
Communications of the ACM9(5):236-243, 1976.

[7] G.W. Dunlap, S. T.King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. Proc. 2002 OSDIDec.
2002.

[8] P. Efstathopoulos et al. Labels and event processe®in th
Asbestos operating system. Pnoc. 20th SOSPOctober 2005.

[9] FastCGl. Open Marketht t p: / / www. f ast cgi . com
[10] T. Fraser. LOMAC: Low water-mark integrity protectidor
COTS environments. IRroc. 2000 IEEE Security and Privacy
May 2000.
T. Fraser, L. Badger, and M. Feldman. Hardening COTS
software with generic software wrappers.Aroc. IEEE Security
and Privacy 1999.
T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delégg

architecture for secure system call interpositionPtoc. 2004
NDSS February 2004.

(11]

(12]

[13] J. Gelinas. Virtual private servers and security crigtelan.
2003.http://1inux-vserver.org.

R. Goldberg. Architecture of virtual machines. 1873 NCC
AFIPS Conf. Prog.volume 42, pages 309-318, 1973.

B. Hicks, K. Ahmadizadeh, and P. McDaniel. Understagdi
practical application development in security-typed lzeges.
In Proc. 22st ACSA(December 2006.

M. B. Jones. Interposition agents: Transparentlyrjmsing user
code at the system interface. Pnoc. 14th SOSFDec. 1993.

P.-H. Kamp and R. N. M. Watson. Jails: Confining the
omnipotent root. IrProc. 2nd SANEMay 2000.

V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding.Rroc. 11th USENIX
Security Aug. 2002.

M. Krohn, E. Kohler, and M. F. Kaashoek. Events can make
sense. IProc. 2007 USENIXJune 2007.

P. Loscocco and S. Smalley. Integrating flexible supfuoor
security policies into the Linux operating system.Froc. 2001
USENIX June 2001. FREENIX track.

M. D. Mcllroy and J. A. Reeds. Multilevel security in théNIX
tradition. Software—Practice and Experien@2(8):673-694,
1992.

MoinMoin. The MoinMoin Wiki Engine, Dec. 2006.
http:// nmoi nnoi n. wi ki wi ki web. de/ .

A. C. Myers and B. Liskov. A decentralized model for
information flow control. InProc. 16th SOSFOct. 1997.

A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label modeACM Transactions on Computer
Systems9(4):410-442, October 2000.

National Vulnerability Database. CVE-2007-263it.t p: / /
nvd. ni st. gov/ nvd. cf nPcvenanme=CVE- 2007- 2637.

osvdb.org. Open Source Vulnerability Database.
http://osvdb. or g/ sear chdb. php?base=noi nnoi n.

N. Provos. Improving host security with system callipigs. In
Proc. 12th USENIX Securitpug. 2003.

J. H. Saltzer and M. D. Schroeder. The protection ofrimi@tion
in computer systemd2roc. IEEE 63(9):1278-1308, Sept. 1975.

M. Seaborn. Plash: tools for practical least privilege
http://plash. beasts. org.

S. Smalley, C. Vance, and W. Salamon. Implementing 8&x.i
as a Linux security module, February 2006.t p: / / www.
nsa. gov/ sel i nux/ paper s/ nodul e- abs. cfm

N. Soffer. MoinBenchmarksht t p:
/1 moi nmoi n. wi ki wi ki web. de/ Moi nBenchnar ks.

R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces: &king
trust between applications and operating systems conbgura
In Proc. 2006 OSDQINov. 2006.

VMware. VMware and the National Security Agency team to
build advanced secure computer systems, Jan. 28p:
/I ww. viwar e. coml pdf / TechTr endNot es. pdf .

R. Watson, W. Morrison, C. Vance, and B. Feldman. The
TrustedBSD MAC framework: Extensible kernel access cdntro
for FreeBSD 5.0. IrProc. 2003 USENIXJune 2003.

A. Whitaker, M. Shaw, and S. D. Gribble. Scale and perfance
in the Denali isolation kernel. IRroc. 2002 OSDIDec. 2002.

C. Wright, C. Cowan, S. Smalley, J. Morris, and

G. Kroah-Hartman. Linux security modules: General segurit
support for the Linux kernel. IRroc. 11th USENIX Security
Aug. 2002.

A. R. Yumerefendi, B. Mickle, and L. P. Cox. TightLip: Kping
applications from spilling the beans. Rroc. 2007 NSDIApr.
2007.

N. B. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mages.

Making information flow explicit in HiStar. IiProc. 7th OSD|
Nov. 2006.

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

(23]

[24]

[25]
[26]
[27]
(28]
[29]

(30]

(31]

[32]

(33]

(34]

(35]

(36]

[37]

(38]

