
Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency

Cary G. Gray and David R. Cheriton
Computer Science Department

!3tanford University

Abstract

Caching introduces the overbead and complexity of ensur-
ing consistency, reducing some of its performance bene-
fits. In a distributed system, caching must deal ,wit.h the
additional complications of communication and host fail-
ures.

Leases are proposed as a time-based mechanism that
provides efficient consistent access to cached data in dis-
tributed systems. Non-Byzantine failures affect perfor-
mance, not correctness, with their effect minimized by
short leases. An analytic model and an evaluation for file
access in the V system show that leases of short duration
provide good performance. The impact of leases on per-
formance grows more significant in systems of lar;ger scale
and higher processor performance.

1 Introduction

Caching introduces the problem of ensuring consistency
between the cached data and its primary location of stor-
age. By consistent, we mean that the behavior is equiv-
alent to there being only a single (uncached) copy of the
data except for the performance benefit of the cache. With
large caches, the traffic required to maintain consistency
can be the dominant factor in cache performance.

Cache consistency protocols have been extensively
studied in the work on shared memory multiprocessor

This work was supported in part by the Defense Advanced Re-
search Projects Agency under contract NOO039-84-C-02 11, by the Na-
tional Science Foundation Grant DCR-83-52048, and by Digital Equip-
ment Corporation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM089791-338-3/89/0012/0202 $1.50

architectures; this work relies on reliable, synchronous
broadcast communication as provided by the system bus.
A distributed system, however, can experience partial fail-
ures: a host may crash or messages may be lost. Existing
approaches to consistency for file caches fall into two cat-
egories: those that assume reliable broadcast, and so do
not tolerate communication failures, and those that require
a consistency check for every read, and so fail to deliver
good performance.

In this paper, leases are proposed as a consistency pro-
tocol that handles host and communication failures us-
ing physical clocks. An analytic model and an evalua-
tion using file access characteristics of the V system show
that short-term leases provide near optimal efficiency for
a large class of systems in spite of the fault-tolerance pro-
visions. We argue that leases are of increased benefit in
future distributed systems of larger scale with their larger
ratio of processor speed to network delay and larger ag-
gregate rate of failure.

The next section describes leases and how they are used
to implement cache consistency. Section 3 derives our
simple analytic model for picking lease terms and explores
their application using data from the V distributed sys-
tem [4]. Section 4 describes some optimizations in lease
management. Section 5 examines the fault-tolerance of
leasing. Section 6 compares leases with other work on
distributed cache consistency and related problems. The
concluding section summarizes our results and speculates
on further applications of leases and directions for future
research.

2 Leases and Cache Consistency

A lease is a contract that gives its holder specified rights
over property for a limited period of time. In the context
of caching, a lease grants to its holder control over writes
to the covered datum during the term of the lease, such that
the server must obtain the approval of the leaseholder be-
fore the datum may be written. When a leaseholder grants
approval for a write, it invalidates its local copy of the da-

202

mm.
A cache using leases requires a valid lease on the da-

tum (in addition to holding the datum) before it returns the
datum in response to a read, or modifies the datum in re-
sponse to a write. When a datum is fetched from the server
(the primary storage site of the datum), the server also re-
turns a lease guaranteeing that the data will not be writ-
ten by any client during the lease rerm unless the server
first obtains the approval of this leaseholder. If the da-
tum is read again within the term of the lease (and the da-
tum is still in the cache), the cache provides immediate ac-
cess to the datum without communicating with the server.
After the lease expires, a read of the datum requires that
the cache first extend the lease on the datum, updating the
cache if the datum has been modified since the lease ex-
pired. When a client writes a datum, the server must defer
the request until each leaseholder has granted approval or
the term of its lease has expired.

We limit ourselves here to write-through caches, for do-
ing so simplifies the explanation; extending the mecha-
nism to support non-write-through caches is straightfor-
ward. Write-through gives clean failure semantics: no
write that has been made visible to any client can be lost;
applications must otherwise be prepared to recover from
lost writes. Though the cost of write-through for file
caches is considered prohibitive by some [16], the cost can
be largely eliminated by giving special handling to tempo-
rary files [9,24], since they receive the majority of writes.

To illustrate the operation of a file cache using leases,
consider a diskless workstation being used for document
production. When the workstation executes latex for
the first time, it obtains a lease on the binary file contain-
ing latex for a term of (say) 10 seconds. Another ac-
cess to the same file 5 seconds later can use the cached
version of this file without checking with the file server.
An access to this file after the lo-second term has expired
requires the cache to check with the server. When a new
version of latex is installed, the write is delayed until
every leaseholder has approved the write. If some host
holding a lease for this file is unreachable, the delay con-
tinues until the lease expires.

In the preceding example, the relevant reads and writes
are not limited to operations on the contents of the file. In
order to support a repeated open, the cache must also hold
the name-to-file binding and permission information, and
it needs a lease over this information in order to use that
information to perform the open. Similarly, modification
of this information, such as renaming the file, would con-
stitute a write.

Short lease terms have several advantages. One is that
they minimize the delay resulting from client and server
failures (and partitioning communication failures). When
the server cannot communicate with a client, the server
must delay writes to a file for which the failed client holds

a lease until that lease expires.] When a server is recover-
ing after crashing, it must honor the leases it granted be-
fore it crashed. This is most easily done if it remembers
the maximum term for which it had granted a lease, and
it delays writes to all tiles for that period, effectively in-
creasing the time to fully recover by the maximum term.
Alternately, the server can maintain a more detailed record
of leases on persistent storage, but the additional I/O traffic
is unlikely to be justified unless terms of leases are much
longer than the time to recover.

Short leases also minimize the false write-sharing that
occurs. False sharing refers here to a lease conflict when
no actual conflict in file access exists. Speciftcally, false
sharing occurs when a client writes to a file which is cov-
ered by a lease held by another client when the other client
is not currently accessing the tie. False sharing introduces
the overhead of a callback to the leaseholder(s) (thereby
delaying the requesting client and loading the leaseholder
and server) in a situation where without leases there would
be no conflict. In the extreme, a lease term should be set
to zero if a client is not going to access the file before it is
modified by another client.

Finally, short lease terms reduce the storage require-
ments at the server, since the record of expired leases
could be reclaimed. However, the storage overhead for the
server to keep track of the leases it has granted is modest.
The server requires a record of each leaseholder’s identity
and a list of the leases it holds; each lease requires only a
couple of pointers. For a client holding about one hundred
leases, the total is around one kilobyte per client. Even
if this were a problem, it could be reduced by recording
leases at a larger granularity, so that each client holds few
leases, at the expense of some increase in contention. We
show later how the per-client record can be eliminated for
the most common class of widely-shared files.

Longer-term leases are significantly more efficient both
for the client and server on files that are accessed repeat-
edly and have relatively little write-sharing. This may be
observed in the Andrew file system project [lo], which
went from using a lease term of zero in the prototype to
effectively a lease term of infinity in the revised version.’
The next section presents an analytic model of lease per-
formance and detemrines appropriate lease terms using
parameters based on data from the V distributed system.

3 Choosing the Lease Term

The choice of lease term is based on the trade-off between
minimizing lease extension overhead versus minimizing

‘To avoid starvation of writes, the server does not grant new leases
on a file when a write is waiting for approval or for leases to expire.

‘At the expense of failing to guarantee consistency after a communi-
cations failure.

203

Symbol Description
N number of clients (caches)
R rate of reads for each client
W rate of writes for each client
s number of caches in which the file is shared

97, propagation delay for a message
+Droc time to process a message (send or receive)

E allowance for uncertainty in clocks
t.5 lease term (at server) :

Table 1: Performance parameters

false sharing. This trade-off applies to minimizing both
server load and client response. Lease space overhead is a
less critical consideration and so is ignored as a Eactor. In
addition, the rate of failures is assumed to be low enough
to have no significant effect on the average response time,
especially with short-term leases. Finally, we consider
here onIy on-demand extension of leases rather than peri-
odic extension or other options such as noted in Section 4.

3.1 A Simple Analytic Model

We consider a system consisting of a single server, char-
acterized by the performance parameters given iu Table 1.
That is, the server has one file and N clients for that fle,
where each client’s reads and writes follow Poisson dis-
tributions with rates R and W, respectively. The file is
shared by S of the caches at each point it is written. There
is at most one lease per client for the file.

We assume that the message processing time3 ‘mproe at
both the sender and recipient and the message propagation
time mprap are the same for all hosts. Thus, a message
is received mprop + 279,,,, after it is sent and a unicast
request and reply takes 27r+,, + 4rrpToC. Multicast mes-
sages are sent once, and received with high probability by
the recipients using a multicast facility [5, 61; it requires
time 2qFop + (n + 3)mp roe to send a multicast message
and receive n repliesP.

For a lease with term ts, the effective term lit at the
cache is

tc = m=(O, ts - (mprop + 29,,,) - f:)

3The processing time does not include processing that occurs after
the packet is sent or before it is received, only processing that is on the
critical delay path. Queueing delays due to congestion are ignored, as is
the xcond-order effect of response time on request rate.

4Thc average propagation and processing times m prop zand rnproe
include a normal IeveI of retransmissions, and so our estimates are rea-
sonable for multicasts to small numbers of recipients. When rhe number
of recipients (and replies) is large, the delay and processing overhead
increase as more retransmissions may be required.

because tc is shortened by the time for the cache to re-
ceive the lease rnprop + 2~9,~~~ plus the allowance E for
clock skew. Thus, in systems with large propagation de-
lays between clients and large clock skew, the server must
provide a proportionally larger lease term ts if the lease
term at the clients is to be effectively greater than zero.

If a cache handles an expected R~c reads over the term
of the lease not counting the read that results in the lease
request, the cost of the lease request is amortized over 1 +
Rtc reads, so that the rate of extension-related messages
handled by the server is

2NR

1 + Rtc

adding an average delay of

to each read request.
When it receives a write, the server multicasts a re-

quest for approval to all of the leaseholders and processes
the replies. Assuming the writer is one of the leasehold-
ers, one approval message can be saved if the request
for a write carries the implicit approval of the requesting
cache.5 Obtaining approval therefore requires one mnlti-
cast request message plus S - 1 approvals, for a total of
S messages.6 The time t, to gain approval is

for S > 1. Thus, the delay is at most t, and the load at
most NSW.

In the file cache environment, we expect lease terms on
the order of seconds and message times (including t,) in
the range of milliseconds. We therefore do not consider
cases in which t, is a significant fraction of ts. The ex-
ception is ts = 0: it is important to recognize that a zero
lease term is better than a very short lease term because a
non-zero ts and zero tc means that writes are penalized
but reads do not benefit.

When the lease term is zero or there is no sharing, the
load and delay are limited to those due to extensions of
leases. For S > 1 and ts > 0, though, the server sends
and receives

ltNR; + NSW (1)
c

consistency-related messages per unit time, and the aver-
age delay of

1 ,~R(~Tz’;~ ;t;m~r.c)

R+W
+ W&a) (2)

Vhis optimization is particularly important to allow the common
case of an unshared file to be handled with a single unicast request-
response from the client to the server. It means that a longer term always
decreases the server load for unshared files.

6Without multicast, it would require 2(S - 1) messages.

204

is added to each read or write.
The load for zero lease term is 2N R; a term longer than

t, produces a lower load if

2NR > lyR;c +NSW

Defining a lease benefit factor as

2R
a==’

the preceding condition holds if cx > 1 and

1
” ’ R(a - 1) ’

A sufficiently long lease term will reduce server load
whenever cy is greater than one. Larger values of CY and
R imply better performance for short terms7 Intuitively,
CY measures the ratio of reading to writing, scaled by the
additional overhead caused by sharing.

In extending this analysis to handle multiple files, we
note that the load due to multiple leases sums directly. The
cache can batch its requests for extensions so that a single
request covers many tiles. R and W then correspond to
the total rates for all covered files, and so are higher; the
higher absolute rate of reads increases CY, and so the benefit
is greater. In general, a cache should extend together all
leases over all files that it still holds.

The server load due to consistency is roughly propor-
tional to the number of messages handled (sent or re-
ceived) by the server. If we know the fraction of server
load due to consistency for a lease term of zero, we can
calculate the (relative) total load from the (relative) con-
sistency load. Similarly, application-level response time
includes other processing in addition to the time required
to ensure consistency.

The formulas we have derived can be used to predict
performance in a specific system, given the appropriate
parameters, as demonstrated in the next section.

3.2 Expected Performance In V

The expected performance of leases with the V file
caching mechanism [9] is determined using the analytic
model developed above and system performance param-
eters collected from measurement, given in Table 2. The
measurements are determined from a trace of file access
traffic generated by recompiling the V file server, with the
file service and client programs executing on MicroVAX
II workstations connected by Ethernet. The message times
are based on separate timings of V inter-process commu-
nication. The trace includes only one client so there are

‘When unicast is used to request approval, the corresponding defini-
tionisa = R/(S - l)W.

I rate of reads IR I 0.864 /set I

Table 2: Parameters for file caching in V.

. s =: 40
-.- sz20
. s= 10
w-- SC1
- Trace

-‘*----.....*...........,.,..,.,...

.-*-.-.-.-,_,

*-**.............*,..

0.00 + I I I L I 1
0.0 5.0 10.0 15.0 20.0 25.0 30.0

lease term (set)

Figure 1: Relative Server Consistency vs. Lease Term

no writes to shared files. We have calculated estimates for
different degrees of sharing to illustrate its effect over a
plausible range.

Figure 1 gives the relative server load for consistency
as a function of the term, computed using formula 1 from
Section 3.1. The curve labelled Trace was determined us-
ing a trace-driven simulation of the cache and server. The
proximity of this curve to the no-sharing (S = 1) curve,
derived from our analytic model, validates the model for
this case. We note that the knee of the Truce curve is
sharper and at a lower term. This (favorable) discrepancy
is to be expected because actual file access is burstier than
that given by a Poisson distribution. This burstiness im-
plies that short terms should perform even better than our
estimates indicate.

From Figure 1, most of the benefit of a non-zero lease
term is gained by a term of just a few seconds. For exam-
ple, at S = 1, a term of 10 seconds reduces the consis-
tency traffic to 10% of that for a zero term. The load for
consistency must be considered as it affects the total on the
server. At a lease term of zero, consistency accounts for

205

lease term [set)

Figure 2: Delay due to consistency.

30% of the server traffic in the trace, so that the actual ben-
efit is a 27% reduction in total server traffic, to a level just
4.5% above that for infinite term. At S = 10, total server
traffic is 20% less than for a zero term and 4.1% over that
for an infinite term. Longer terms provide relatively little
additional reduction in server load yet introduce all the dis-
advantages of longer lease terms. Thus, a short lease term
of (say) 10 seconds appears as a good choice for these file
access characteristics, given the advantages of short leases
described earlier and the insignificant reduction in server
load provided by longer lease terms.

Figure 2 shows the average delay added to e:ach read
or write by consistency, as a function of the lease term.
Because writes are a small fraction of all operations, the
delay added to shared writes contributes little t1o the av-
erage delay, and the curves for S = 1 to S := 40 are
indistinguishable in the graph as shown. Again, much of
the benefit of leases is gained with lease terms in the 10
second range. Because many programs have significant
compute time between file accesses, the improvement in
response time for longer lease terms is insignificant.

We expect that the same result would apply to Unix-like
systems even though our measurements of access rates
are different from those that have been reported [g, 171
in longer-term traces of Unix systems. For example, our
ratio of reads to writes is almost an order of magnitude
higher that those reported elsewhere. Several factors ac-
count for this difference. First, operations on temporary
files (which account for a large fraction of the writes) do
not appear because they are handled specially by the V file

cache, in a manner analogous to using a local disk for tem-
porary files. Second, unlike most other traces, our mea-
surements include program loading and access to informa-
tion about files (such as directory lookups), both of which
are predominantly reads. Finally, the read and write mea-
surements correspond to when a file is opened for reading
or closed (committed) with writing, as opposed to each
time a block is read or written; the directory operations
therefore are a larger fraction of the (logical) reads and
writes.

When these factors are considered, the composition of
this short trace is fairly consistent with those of the longer
term traces of Unix systems. Only the last factor repre-
sents a departure from the more common semantics of the
Unix file system; the other two factors are consequences
of the cache design in V and might be profitably employed
in a Unix system. Supporting Unix semantics, where read
and write correspond to block-level operations, would
give a higher absolute rate of reads, but a somewhat lower
ratio of reads to writes (because the ratio of reads to writes
for file blocks is lower than for other file-system data). The
performance of leases in such a system would be quali-
tatively similar; the higher rate of reads would give the
curves a sharper knee, favoring fairly short terms, while
the more frequent writes makes it more sensitive to shar-
ing.

3.3 Applicability to Future Distributed Sys-
tems

Several trends anticipate properties of future distributed
systems. Systems are being extended over wider-area
networks, increasing the delay for communication. The
speed of processors also continues to grow. Finally, larger
numbers of hosts, both clients and servers, are being tied
together within a single system.

Larger propagation delay between clients and servers
means that the impact of lease extensions and invalida-
tions on response time is greater. Figure 3 shows the added
delay on a network where the round-tip time is 100 mil-
liseconds, while all other parameters remain as in our pre-
vious analysis. In this case, a 10 second term degrades re-
sponse by 10.1% over using an infinite term and a 30 sec-
ond term degrades it by 3.6%. Thus, with a significant
increase in propagation delay, slightly longer lease terms
may be appropriate, but terms in the lo-30 second range
still appear to be adequate.

Faster client processors reduce the amount of time for
computation between read and write requests, so that the
number of operations occuring within a term increases.
The higher rate pushes the knee of the load curve lower.
The impact on application-level response time is almost
identical to that of a slower networkz the fraction of time
spent in communication delay is larger, so that the signif-

206

P g 60.0
CrJ R

lease term (set)

Figure 3: Added delay with 100 ms round-trip time.

icance of consistency is greater.
Increased numbers of clients and servers have no signif-

icant effect unless it increases the level of write-sharing,
which we do not expect to be the case. In fact, there is no
evidence that the level of write-sharing has increased over
the very modest levels measured by Montgomery [15] in
Multics over 12 years ago. Leases have the benefit of in-
creasing the ratio of clients to servers (by reducing consis-
tency overhead), thereby reducing the cost (or improving
the performance) of large-scale systems.

4 Options for Lease Management

Lease management in the server admits several options
that may be exploited to improve performance. The server
controls the term of the leases it grants; it is also free to
wait for a lease to expire instead of seeking approval of a
write. The client is free in deciding when to request ex-
tension of leases, when to relinquish them, and when to
approve a write. The combinations of these options give
different trade-offs between load and response time.

For example, the client may anticipate the expiration of
its leases and request extension before the covered file is
accessed. Doing so improves response time by eliminat-
ing the added delay for reads, but it does so at the cost of
increased load for the server. In particular, an idle client
continues to request extensions even when files are not
being accessed, and because the cache continues to hold
leases it may increase the level of contention due to false
sharing.

The server can use these options to optimize the han-
dling of installed files, which account for a significant pro-
portion of shared access. fnstalledfiles are files such as
commands, header files and libraries which are part of the
standard system support. These files are widely shared,
heavily read and only infrequently written. In the trace
taken from V, they account for almost half of all reads, but
no writes. The handling of installed files is optimized by
using a smaller number of leases to cover these files,8 such
as one per major directory, and multicasting an extension
covering leases on installed files to all clients periodically,
eliminating the need for clients to request extensions of
these leases. Additionally, the server can simply eliminate
a lease from the multicast extension when a file covered
by the lease is to be modified. The write operation then
proceeds as soon as the lease has expired. This approach
eliminates the need forthe server to contact alarge number
of clients when an installed file is updated and the resulting
implosion of responses. Given the significant probability
of the server having to wait for lease timeout because one
of the many client machines is unreachable, write opera-
tions to installed files do not necessarily experience higher
delay as a result of this optimization. This optimization
also eliminates the need for the server to keep track of the
leaseholders for installed files. Finally, it eliminates added
delay at the client cache for reads of installed files because,
in the absence of writes to installed files, these leases do
not expire.

Finally, the server can set the lease term based on the
file access characteristics for the requested file as well as
the propagation delay to the client. In particular, a heavily
write-shared file might be given a lease term of zero. A
lease given to a distant client could be increased to com-
pensate for the amount the lease term is reduced by the
propagation delay and for the extra delay incurred by the
client to extend the lease. In general, a server can dynami-
cally pick lease terms on a per file and per client cache ba-
sis using the analytic model, assuming the necessary per-
formance parameters am monitored by the server.

5 Fault-Tolerance

Leases ensure consistency provided that the hosts and net-
work do not suffer certain Byzantine failures including
clock failure. More specifically, consistency is maintained
in spite of message loss (including partition), and client or
server failures (assuming writes are persistent at the server
across a crash). Moreover, availability is not reduced by
the caches because an unreachable client at most briefly
delays write access by other clients.

Leases depend on well-behaved clocks. In particular,

*Multiple files per lease can also result in a form of false sharing. We
ignore this effect with installed files because the rate of update is so low.

207

a server clock that advances too quickly can cause errors
because it may allow a write before the term of a lease
held by a previous client has expired at that client. Sim-
ilarly, if a client clock fails by advancing too slowly, it
may continue using a lease which the server regards as
having expired The opposite errors-a slow server clock
or fast client clock-do not result in inconsistencies, but
do generate extra traffic since a client will regard leases
to have expired before the server does, Such failures are
much less common than either crashes or commu.nication
failures; they can be detected quickly by either a synchro-
nization protocol or by including explicit timest.amps in
lease-related messages.

We also regard it as a reasonable assumption that clocks
at the nodes of a distributed system are synchronized
within E which is small relative to the lease terms of sev-
eral seconds. Synchronized time is required for other as-
pects of file access as well, such as the file-modifi.ed times
used by the Unix make facility. As a minimum, the cor-
rect functioning of leases requires only that c1ock.s have a
known bounded drift, in which case the lease term can be
communicated as its duration t .

6 Related work

Previous caching file systems that have guaranteed con-
sistency have mostly used either a zero term or an infinite
lease term. Sprite [16], RFS [l] and a prototype of the
Andrew file system [18] use a zero-term lease at the grau-
ularity of file opens; Sprite and RFS use an infinite term
while a file is open. The Andrew prototype experienced
excessive server load from consistency checks as the sys-
tem contiguration was scaled [lo]. Non-zero term leases
appear applicable to all three systems with significant per-
formance improvement over their current designs, espe-
cially with faster processors and larger network latency.

The later Andrew file system [lo, 111 basically uses
an infinite term, relying on the server to notify the client
when cached data is changed. If communication with a
client fails (at the transport level), the server allows up-
dates to proceed, possibly leaving the client operating on
stale data. The client does not learn of the error until
it next attempts to communicate with the server; polling
with a period of ten minutes is used to limit the interval
for which inconsistent data may be used. Andrew uses
a separate immutable volume for installed files to avoid
the cost of their update under the normal mechanism. Our
work suggests that a short-tern1 lease would be adequate
for Andrew, as opposed to the infinite term, allowing up-
dates to be deferred in the client failure case long enough
to avoid inconsistency. The other benefits of short leases
are then available as well, including the ability ‘to handle
installed files well within the same framework, using the

optimizations we have described.
Burrows’s MFS [2] and the Echo file system of Mann et

al. 1131 both use tokens, which can be regarded as limited-
term leases, but supporting non-write-through caches.
With extension, our analysis of performance could be
profitably applied to these systems.

Other systems have avoided the consistency problem by
either not guaranteeing consistency, as done by NFS [21],
or by prohibiting write-sharing, as done in the Cedar file
system CFS [191. We believe that the simplicity and effi-
ciency of leasing together with the importance of consis-
tency and write-sharing make these solutions less attrac-
tive in the future. In particular, we note that the soft state
required for leasing is compatible with the so-called state-
less interface used in NFS.

The Xerox DFS [20] uses breakable locks with time-
outs, which are supeticially similar to leases. However,
the timeouts specify a minimum time before which a lock
can be broken to avoid an excessive rate of transaction
aborts. However, because clients do not use the lock time-
out value and they are not reliably notified when a lock is
broken, the scheme degenerates to leasing with a term of
zero.

Mirage [7] provides a consistent distributed shared
memory using infinite-term leases. Mirage augments this
with a timer that (in terms of the leasing fiarnework) speci-
fies a minimum time after acquiring a lease before a client
will relinquish it. This time can be increased to reduce
the amount of thrashing, just as the lock timeout in DFS
reduces the frequency of aborted transactions.

Time-based methods resembling leasing have also been
used in at least two distributed naming systems. Lamp-
son’s global directory service [12] has client caches that
discard entries at a server-specified time. Servers are for-
bidden from modifying an entry before it expires. This
condition is equivalent to our policy for leases over in-
stalled files. However, no provision is made for either
requesting approval of writes or for any extension of the
terms.

Name services more commonly use cached data as
hints, for which consistency need not be guaranteed. In
the Internet Domain Name Service [14], for example, a
name server specifies a time-to-live for the data it returns,
and clients cache the data for that period. However, the
data may be modified during that interval. Any inconsis-
tency that results must be detected and corrected by other
means. Terry [22,23] discusses in more detail the caching
of hints for name interpretation, including the use of on-
use and periodic checks as options in maintaining the ac-
curacy of the cache at the desired level.

Finally, the consistency work with caching shared
memory systems has ignored the problem of commu-
nication and cache failures to date. However, leasing
may represent a useful extension to consistency protocols

208

for large-scale multi-level shared memory multiproces-
sors [3].

7 Conclusions

Leasing is an efficient, fault-tolerant approach to main-
taining file cache consistency in distributed systems. In
this paper, we have analyzed its performance and evalu-
ated performance in the context of a real system, examined
its fault-tolerance properties, and considered its applica-
bility to other distributed systems, especially large-scale,
high-performance systems of the future.

Our simple analytical model estimates the server con-
sistency load and consistency-induced delay to cache re-
quests as a function of the lease term, the ratio of reads
to writes, the degree of sharing and message times. This
model provides a basis for a tie server setting lease terms
dynamically based on observed file access characteristics.
In particular, it indicates when leases with a non-zero term
reduce server load, given that high levels of write-sharing
can make file caching ineffective. A trace-driven simula-
tion using data from the V system provides (partial) vali-
dation of the analytic model.

A relatively short lease term is close to optimal with
file access characteristics expected in Unix-like systems
where the dominant file access is for software develop-
ment and document preparation. In particular, using pa-
rameter values from the V system with this model, a lease
term of 10 seconds results in a server load that is within
5 percent of that achievable with infinite term. We ar-
gued that the V file access characteristics are similar to
those observed with various Unix-like systems. Short-
term leases have a number of significant advantages over
longer leases, including lower write delays resulting from
client crashes, lower recovery delay from server crashes
and reduced false sharing.

Leases appear well-suited to large-scale distributed sys-
tems. The improvement in response time that they offer
is more significant for the faster processors and higher-
delay networks. In this setting, the round-trip time to the
client becomes a significant cost and potentially affects
the choice of lease term. The lease overhead of handling
large numbers of clients can be reduced by distinguishing
different classes of files based on access characteristics.
In particular, installedfrIes-those with a high-degree of
sharing and read access but low degree of writing--can
be handled efficiently using multicast extensions from the
server to extend the leases on directories of these files and
delayed update to avoid the overhead of explicit lease in-
validation.

Leases provide strict consistency in spite of non-
Byzantine failures, including partitions. Failures result
only in reduced performance, with their effect minimized

by short lease terms. A key assumption is that clocks are
reasonably accurate, at least in terms of drift if not mutual
synchronization, We have argued that synchronized phys-
ical clocks are important in general in a system where files
are shared in the manner supported by leases.

There are several limitations to this work. First, we
have used a simplified model of file sharing and focused
our evaluation on relatively low degrees of sharing. How-
ever, low degrees of sharing appear common in most
systems. Exceptions that warrant further investigation
include distributed transaction processing systems, dis-
tributed parallel programming systems and possibly sys-
tems that make extensive use of remote execution. Sec-
ond, our analysis of performance is only approximate,
since it ignores important factors such as queueing delays;
nonetheless, our easily computed estimates are useful. Fi-
nally, there is limited experience with the use of leases in
actual system operation. We are presently extending and
tuning the tile caching service within V, using the mea-
surements of this service to further refine our model of per-
formance and to gain further experience. We also plan to
explore adaptive policies that vary the coverage and term
of leases in response to system behavior in place of static,
administratively set policies.

Leases have other applications besides file cache con-
sistency. In particular, leases may also be applicable to
large-scale shared memory multiprocessors. However, the
benefits will have to be evaluated relative to the costs of
timers on memory and cache lines, and the ability of the
software to handle failures.

The lease approach is an example of a communica-
tion and coordination mechanism and reasoning based on
(real) time, the availability of clocks that measure the pas-
sage of time with modest accuracy, and the ability to draw
conclusions after a passage of time, possibly in the ab-
sence of communication. We are applying this general
approach to other areas as well, including a distributed
transaction management protogo and a transport proto-
col. We see this use of time as a fundamental aspect of
distributed systems with potential for significant extension
beyond that described here.

Acknowledgements. These ideas have benefited from
discussions with many members of the Distributed Sys-
tems Group, of whom Joe Pallas has been especially help-
ful. The comments of the SOSP referees, and especially
the more detailed reviews by Marvin Theimer and Doug
Terry, have helped to improve the quality of this paper.
The name “lease” was suggested by Marry Katz.

References

[l] BACH, M. J., LXJPPI, M. W., MELAMED, A. S., AND

209

PI

;31

141

PI

WI

[71

181

PI

WI

WI

WI

Cl31

YUEH, K. A remote-tile cache for RFS. In Proceed-
ings of the Summer 1987 Usenix Conference (June
1987), Usenix Association, pp. 273-279.

BURROWS, M. Efficient data sharing. Tech. Rep.
No. 153, Computer Laboratory, University of Cam-
bridge, Dec. 1988. The author’s PhD thesis.

CI-IEIUTON, D., GoosEN, H., AND BOYLE, F! Multi-
level shared caching techniques for scalability in
VMP-MC. In Proc. 16th Int. Symp. on Computer
Architecture (May 1989).

&ERITON, D. R. The V distributed system. Com-
mun. ACM 31,3 (Mar. 1988), 314-333.

CHERITON, D. R., AND DEERING, S. E. Host groups:
A multicast extension for datagram internetworks. In
Proc. 9th Data Communications Symposium (Sept.
1985), ACM/IEEE, pp. 172179.

cJ3m.ITON, D. R., AND ZWAEMPOEX., W. Distributed
process groups in the V kernel. ACMTrans. Comput.
Syst. 3,2 (May 1985), 77-107.

FLEISCH, B. D., AND POPEK, G. J. Mirage: A coher-
ent distributed shared memory design. In Proceed-
ings of the Twelfth ACM Symposium on Operating
Systems Principles (Dec. 1989), ACM.

FLOYD, R. Short-term file reference patterns in a
UNIX environment. Tech. Rep. TR 177, Univer-
sity of Rochester, Department of Computer Science,
Mar 1986.

GRAY, C. G. Pevormance and Fault-Tolerance in
a Cache for Distributed File Service. PhD thesis,
Stanford University, Department of Computer Sci-
ence, 1989. In preparation.

HOWARD, J. H., K&Y&, M. L., MENEES, S. G.,
NICXOLS, D. A., SATYANARAYANAN, h4, SLDE-
BOTHAM, R. N., AND WE-ST, M. J. Scale and per-
formance in a distributed file system. ACM Trans.
Comput. Syst. 6, 1 (Feb. 1988), 51-81.

KAZAR, M. L. Synchronization and caching issues
in the Andrew file system. Tech. Rep. CMU-XTC-
058, Information Technology Center, Carnegie Mel-
lon University, June 1987.

LAMPSON, B. W. Designing a global name service.
In Proceedings of the Fifth Annual ACM Symposium
on th.e Principles of Distributed Computing (Aug.
1986), ACM, pp. l-10.

MANN, T., HISGEN, A., AND SWART, G. An algo-
rithm for data replication. Research Report 46, DEC
Systems Research Center, 1989.

v41

WI

1161

Cl71

WI

[I91

[201

WI

WI

r231

r241

MOCKAPETRIS, P. Domain names - concepts and
facilities. Request for Comments 1034, Network
Information Center, SRI International, Menlo Park,
CA, Nov. 1987.

MONTGOMERY, W. Measurements of sharing in
h4SJLIXS. In Proc. of Sixth. ACM Symposium on
Operating Systems Principles (1977), ACM, pp. 85-
90.

NELSON, M. N., WELCH, B. B., AND OUSTERHOUT,
J. K. Caching in the Sprite network file system. ACM
Trans. Comput. Syst. 6, 1 (Feb. 1988), 134-154.

0us~E1U-Iom, J. K., COSTA, H. D., -SON, D.,
KUNZE, J. A., KUPFER, M., ANDTHOMPSON, J. G. A
trace-driven analysis of the UNIX 4.2BSD file sys-
tem. In Proceedings of the Tenth ACM Symposium
on Operating Systems Principles (Dec. 1985), ACM,
pp. 15-24. Published as Operating Systems Review
19,5.

SATYANARAYANAN, M., HOWARD, J. H., NICHOLS,
D. A., SJDEBOTHAM, R. N., SPEDOR, A. Z., AND
WEST, M. J. The ITC distributed file system: Prin-
ciples and design. In Proceedings of the Tenth ACM
Symposium on Operating Systems Principles (Dec.
1985), ACM, pp. 35-50. Published as Operating
Systems Review 19, 5.

SCHROEDER, M. D., GIFFORD, D. K., AND NEED-
HAM, R. M. A caching tie system for a program-
mer’s workstation. In Proceedings of the Tenth ACM
Symposium on Operating Systems Principles (Dec.
1985), ACM, pp. 25-34. Published as Operating
Systems Review 19,5.

%I’UGIS, H., MlKHELL, J., AND ISRAEL, J. Issues in
the design and use of a distributed file system. Op-
erating Systems Review 14,3 (July 1980), 55-69.

SUN MICROSYSTEMS, INC. SunOS Reference Man-
ual, 1988.

TERRY, D. B. Distributed name servers: Naming
and caching in large distributed computing environ-
ments. Tech. Rep. UCB/CSD 85/228, Computer
Science Division (EECS), University of California,
Mar. 1985. The author’s PhD thesis.

TERRY, D. B. Caching hints in distributed systems.
IEEE Trans. Softw. Eng. SE-13, 1 (Jan. 1987), 48-
54.

THOMPSON, J. G. Eticient analysis of caching sys-
tems. Tech. Rep. UCB/CSD 87/374, Computer Sci-
ence Division (EECS), University of California, Oct.
1987. The author’s PhD thesis.

210

