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Abstract
Allowing applications to survive hardware failure is

an expensive undertaking, which generally involves re-
engineering software to include complicated recovery
logic as well as deploying special-purpose hardware; this
represents a severe barrier to improving the dependabil-
ity of large or legacy applications. We describe the con-
struction of a general and transparent high availability
service that allows existing, unmodified software to be
protected from the failure of the physical machine on
which it runs. Remus provides an extremely high degree
of fault tolerance, to the point that a running system can
transparently continue execution on an alternate physical
host in the face of failure with only seconds of down-
time, while completely preserving host state such as ac-
tive network connections. Our approach encapsulates
protected software in a virtual machine, asynchronously
propagates changed state to a backup host at frequencies
as high as forty times a second, and uses speculative ex-
ecution to concurrently run the active VM slightly ahead
of the replicated system state.

1 Introduction

Highly available systems are the purview of the very rich
and the very scared. However, the desire for reliability
is pervasive, even among system designers with modest
resources.

Unfortunately, high availability is hard — it requires
that systems be constructed with redundant components
that are capable of maintaining and switching to back-
ups in the face of failure. Commercial high availabil-
ity systems that aim to protect modern servers generally
use specialized hardware, customized software, or both
(e.g [12]). In each case, the ability to transparently sur-
vive failure is complex and expensive enough to prohibit
deployment on common servers.
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This paper describes Remus, a software system that
provides OS- and application-agnostic high availability
on commodity hardware. Our approach capitalizes on
the ability of virtualization to migrate running VMs be-
tween physical hosts [6], and extends the technique to
replicate snapshots of an entire running OS instance at
very high frequencies — as often as every 25ms — be-
tween a pair of physical machines. Using this technique,
our system discretizes the execution of a VM into a se-
ries of replicated snapshots. External output, specifically
transmitted network packets, is not released until the sys-
tem state that produced it has been replicated.

Virtualization makes it possible to create a copy of a
running machine, but it does not guarantee that the pro-
cess will be efficient. Propagating state synchronously
at every change is impractical: it effectively reduces the
throughput of memory to that of the network device per-
forming replication. Rather than running two hosts in
lock-step [4] we allow a single host to execute specula-
tively and then checkpoint and replicate its state asyn-
chronously. System state is not made externally visible
until the checkpoint is committed — we achieve high-
speed replicated performance by effectively running the
system tens of milliseconds in the past.

The contribution of this paper is a practical one.
Whole-system replication is a well-known approach to
providing high availability. However, it usually has
been considered to be significantly more expensive than
application-specific checkpointing techniques that only
replicate relevant data [15]. Our approach may be used
to bring HA “to the masses” as a platform service for
virtual machines. In spite of the hardware and software
constraints under which it operates, this system provides
protection equal to or better than expensive commercial
offerings. Many existing systems only actively mirror
persistent storage, requiring applications to perform re-
covery from crash-consistent persistent state. In contrast,
Remus ensures that regardless of the moment at which
the primary fails, no externally visible state is ever lost.
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1.1 Goals

Remus aims to make mission-critical availability acces-
sible to mid- and low-end systems. By simplifying provi-
sioning and allowing multiple servers to be consolidated
on a smaller number of physical hosts, virtualization has
made these systems more popular than ever. However,
the benefits of consolidation come with a hidden cost
in the form of increased exposure to hardware failure.
Remus addresses this by commodifying high availability
as a service offered by the virtualization platform itself,
providing administrators of individual VMs with a tool
to mitigate the risks associated with virtualization.

Remus’s design is based on the following high-level
goals:

Generality. It can be prohibitively expensive to cus-
tomize a single application to support high availability,
let alone the diverse range of software upon which an
organization may rely. To address this issue, high avail-
ability should be provided as a low-level service, with
common mechanisms that apply regardless of the appli-
cation being protected or the hardware on which it runs.

Transparency. The reality in many environments is
that OS and application source may not even be avail-
able to modify. To support the broadest possible range of
applications with the smallest possible barrier to entry,
high availability should not require that OS or applica-
tion code be modified to support facilities such as failure
detection or state recovery.

Seamless failure recovery. No externally visible state
should ever be lost in the case of single-host failure.
Furthermore, failure recovery should proceed rapidly
enough that it appears as nothing more than temporary
packet loss from the perspective of external users. Estab-
lished TCP connections should not be lost or reset.

These are lofty goals, entailing a degree of protec-
tion well beyond that provided by common HA systems,
which are based on asynchronous storage mirroring fol-
lowed by application-specific recovery code. Moreover,
the desire to implement this level of availability with-
out modifying the code within a VM necessitates a very
coarse-grained approach to the problem. A final and per-
vasive goal of the system is that it realize these goals
while providing deployable levels of performance even
in the face of SMP hardware that is common on today’s
server hardware.

1.2 Approach

Remus runs paired servers in an active-passive configura-
tion. We employ three major techniques in order to over-
come the difficulties traditionally associated with this ap-
proach. First, we base our system on a virtualized infras-
tructure to facilitate whole-system replication. Second,
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Figure 1: Speculative execution and asynchronous repli-
cation in Remus.

we increase system performance through speculative ex-
ecution, which decouples external output from synchro-
nization points. This allows the primary server to re-
main productive, while synchronization with the repli-
cated server is performed asynchronously. The basic
stages of operation in Remus are given in Figure 1.

VM-based whole-system replication. Hypervisors
have been used to build HA systems before [4]. In that
work, virtualization is used to run a pair of systems in
lock-step, and additional support has been added to en-
sure that VMs on a pair of physical hosts follow a deter-
ministic path of execution: external events are carefully
injected into both the primary and fallback VMs so that
they result in identical states. Enforcing such determin-
istic execution suffers from two fundamental problems.
First, it is highly architecture-specific, requiring that the
system have a comprehensive understanding of the in-
struction set being executed and the sources of external
events. Second, it results in an unacceptable overhead
when applied in multi-processor systems, where shared-
memory communication between processors must be ac-
curately tracked and propagated [8].

Speculative execution. Replication may be achieved
either by copying the state of a system or by replaying
input deterministically. We believe the latter to be im-
practical for real-time operation, especially in a multi-
processor environment. Therefore, Remus does not at-
tempt to make computation deterministic — there is a
very real possibility that the output produced by a system
after a given checkpoint will be different if the system is
rolled back to that checkpoint and its input is replayed.
However, the state of the replica needs to be synchro-
nized with the primary only when the output of the pri-
mary has become externally visible. Instead of letting
the normal output stream dictate when synchronization
must occur, we can buffer output1 until a more conve-
nient time, performing computation speculatively ahead
of synchronization points. This allows a favorable trade-
off to be made between output latency and runtime over-
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head, the degree of which may be controlled by the ad-
ministrator.

Asynchronous replication. Buffering output at the
primary server allows replication to be performed asyn-
chronously. The primary host can resume execution at
the moment its machine state has been captured, without
waiting for acknowledgment from the remote end. Over-
lapping normal execution with the replication process
yields substantial performance benefits. This enables ef-
ficient operation even when checkpointing at intervals on
the order of tens of milliseconds.

2 Design and Implementation

Figure 2 shows a high-level view of our system. We be-
gin by encapsulating the machine to be protected within
a VM. Our implementation is based on the Xen virtual
machine monitor [2], and extends Xen’s support for live
migration to provide fine-grained checkpoints. An initial
subset of our checkpointing support has been accepted
into the upstream Xen source.

Remus achieves high availability by propagating fre-
quent checkpoints of an active VM to a backup physi-
cal host. On the backup, the VM image is resident in
memory and may begin execution immediately if fail-
ure of the active system is detected. Because the backup
is only periodically consistent with the primary, all net-
work output must be buffered until state is synchronized
on the backup. When a complete, consistent image of
the host has been received, this buffer is released to ex-
ternal clients. The checkpoint, buffer, and release cycle
happens very frequently – we include benchmark results
at frequencies up to forty times per second, representing
a whole-machine checkpoint including network and on-
disk state every 25 milliseconds.

Unlike transmitted network traffic, disk state is not ex-
ternally visible. It must, however, be propagated to the
remote host as part of a complete and consistent snap-
shot. To maintain disk replication, all writes to the pri-
mary disk are transmitted asynchronously to the backup,
where they are buffered in RAM until the corresponding
memory checkpoint has arrived. At that point, the com-
plete checkpoint is acknowledged to the primary, which
then releases outbound network traffic, and the buffered
disk writes are applied to the backup disk.

It is worth emphasizing that the virtual machine does
not actually execute on the backup host until a failure oc-
curs. It simply acts as a receptacle for checkpoints of the
active VM. This consumes a relatively small amount of
the backup host’s resources, allowing it to concurrently
protect VMs running on multiple physical hosts in an N-
to-1-style configuration. Such a configuration gives ad-
ministrators a high degree of freedom to balance the de-
gree of redundancy against resource costs.

2.1 Failure model

Remus provides the following properties:

1. The fail-stop failure of any single host is tolerable.

2. Should both the primary and backup hosts fail con-
currently, the protected system’s data will be left in
a crash-consistent state.

3. No output will be made externally visible until the
associated system state has been committed to the
replica.

Our goal is to provide completely transparent recov-
ery from fail-stop failures of a single physical host. The
compelling aspect of this system is that high availability
may be easily retrofitted onto existing software running
on commodity hardware. It uses a pair of commodity
host machines, connected over redundant gigabit Ether-
net connections, and survives the failure of any one of
these components. By incorporating block devices into
its state replication protocol, it avoids requiring expen-
sive, shared network-attached storage for disk images.

We do not aim to recover from software errors or non-
fail-stop conditions. As observed in [5], this class of ap-
proach provides complete system state capture and repli-
cation, and as such will propagate application errors to
the backup. This is a necessary consequence of provid-
ing both transparency and generality.

Our failure model is identical to that of commercial
HA products, which provide protection for virtual ma-
chines today [31, 30]. However, the degree of protection
offered by these products is substantially less than that
provided by Remus: existing commercial products re-
spond to the failure of a physical host by simply reboot-
ing the VM on another host from its crash-consistent disk
state. Our approach survives failure on time frames simi-
lar to those of live migration, and leaves the VM running
and network connections intact. Exposed state is not lost
and disks are not corrupted.

2.2 Pipelined Checkpoints

Checkpointing a running virtual machine many times per
second places extreme demands on the host system. Re-
mus addresses this by aggressively pipelining the check-
point operation. We use an epoch-based system in which
execution of the active VM is bounded by brief pauses in
execution in which changed state is atomically captured,
and external output is released when that state has been
propagated to the backup. Referring back to Figure 1,
this procedure can be divided into four stages: (1) Once
per epoch, pause the running VM and copy any changed
state into a buffer. This process is effectively the stop-
and-copy stage of live migration [6], but as described
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Figure 2: Remus: High-Level Architecture

later in this section it has been dramatically optimized
for high-frequency checkpoints. With state changes pre-
served in a buffer, the VM is unpaused and speculative
execution resumes. (2) Buffered state is transmitted and
stored in memory on the backup host. (3) Once the com-
plete set of state has been received, the checkpoint is ac-
knowledged to the primary. Finally, (4) buffered network
output is released.

The result of this approach is that execution is effec-
tively discretized at checkpoint boundaries; the acknowl-
edgment of a completed checkpoint by the backup trig-
gers the release of network traffic that has been buffered
and represents an atomic transition into the new epoch.

2.3 Memory and CPU

Checkpointing is implemented above Xen’s existing ma-
chinery for performing live migration [6]. Live migration
is a technique by which a virtual machine is relocated
to another physical host with only slight interruption in
service. To accomplish this, memory is copied to the
new location while the VM continues to run at the old
location. During migration, writes to memory are inter-
cepted, and dirtied pages are copied to the new location
in rounds. After a specified number of intervals, or when
no forward progress is being made because the virtual
machine is writing to memory at least as fast as the mi-
gration process can copy it out, the guest is suspended
and the remaining dirty memory is copied out along with
the current CPU state. At this point the image on the
new location is activated. Total downtime depends on
the amount of memory remaining to be copied when the
guest is suspended, but is typically under 100ms. Total
migration time is a function of the amount of memory in
use by the guest, and its writable working set [6], which

is the set of pages changed repeatedly during guest exe-
cution.

Xen provides the ability to track guest writes to mem-
ory using a mechanism called shadow page tables. When
this mode of operation is enabled, the VMM maintains a
private (“shadow”) version of the guest’s page tables and
exposes these to the hardware MMU. Page protection is
used to trap guest access to its internal version of page
tables, allowing the hypervisor to track updates, which
are propagated to the shadow versions as appropriate.

For live migration, this technique is extended to trans-
parently (to the guest) mark all VM memory as read only.
The hypervisor is then able to trap all writes that a VM
makes to memory and maintain a map of pages that have
been dirtied since the previous round. Each round, the
migration process atomically reads and resets this map,
and the iterative migration process involves chasing dirty
pages until progress can no longer be made. As men-
tioned above, the live migration process eventually sus-
pends execution of the VM and enters a final “stop-and-
copy” round, where any remaining pages are transmitted
and execution resumes on the destination host.

Remus implements checkpointing as repeated execu-
tions of the final stage of live migration: each epoch, the
guest is paused while changed memory and CPU state
is copied to a buffer. The guest then resumes execution
on the current host, rather than on the destination. Sev-
eral modifications to the migration process are required
in order to provide sufficient performance and to ensure
that a consistent image is always available at the remote
location. These are described below.

Migration enhancements. In live migration, guest
memory is iteratively copied over a number of rounds
and may consume minutes of execution time; the brief
service interruption caused by the singular stop-and-copy
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phase is not a significant overhead. This is not the case
when capturing frequent VM checkpoints: every check-
point is just the final stop-and-copy phase of migration,
and so this represents a critical point of optimization
in reducing checkpoint overheads. An examination of
Xen’s checkpoint code revealed that the majority of the
time spent while the guest is in the suspended state is lost
to scheduling, largely due to inefficiencies in the imple-
mentation of the xenstore daemon that provides admin-
istrative communication between guest virtual machines
and domain 0.

Remus optimizes checkpoint signaling in two ways:
First, it reduces the number of inter-process requests re-
quired to suspend and resume the guest domain. Second,
it entirely removes xenstore from the suspend/resume
process. In the original code, when the migration process
desired to suspend a VM it sent a message to xend, the
VM management daemon. Xend in turn wrote a message
to xenstore, which alerted the guest by an event channel
(a virtual interrupt) that it should suspend execution. The
guest’s final act before suspending was to make a hyper-
call2 which descheduled the domain and caused Xen to
send a notification to xenstore, which then sent an inter-
rupt to xend, which finally returned control to the migra-
tion process. This convoluted process could take a nearly
arbitrary amount of time — typical measured latency was
in the range of 30 to 40ms, but we saw delays as long as
500ms in some cases.

Remus’s optimized suspend code streamlines this pro-
cess by creating an event channel in the guest specifically
for receiving suspend requests, which the migration pro-
cess can invoke directly. Additionally, a new hypercall is
provided to allow processes to register an event channel
for callbacks notifying them of the completion of VM
suspension. In concert, these two notification mecha-
nisms reduce the time required to suspend a VM to about
one hundred microseconds – an improvement of two or-
ders of magnitude over the previous implementation.

In addition to these signaling changes, we have in-
creased the efficiency of the memory copying process.
First, we quickly filter out clean pages from the mem-
ory scan, because at high checkpoint frequencies most
memory is unchanged between rounds. Second, we
map the guest domain’s entire physical memory into the
replication process when it begins, rather than mapping
and unmapping dirty pages at every epoch — we found
that mapping foreign pages took approximately the same
time as copying them.

Checkpoint support. Providing checkpoint support
in Xen required two primary changes to the existing
suspend-to-disk and live migration code. First, support
was added for resuming execution of a domain after it
had been suspended; Xen previously did not allow “live
checkpoints” and instead destroyed the VM after writ-

ing its state out. Second, the suspend program was con-
verted from a one-shot procedure into a daemon process.
This allows checkpoint rounds after the first to copy only
newly-dirty memory.

Supporting resumption requires two basic changes.
The first is a new hypercall to mark the domain as
schedulable again (Xen removes suspended domains
from scheduling consideration, because previously they
were always destroyed after their state had been repli-
cated). A similar operation is necessary in order to re-
arm watches in xenstore.

Asynchronous transmission. To allow the guest to
resume operation as quickly as possible, the migration
process was modified to copy touched pages to a staging
buffer rather than delivering them directly to the network
while the domain is paused. This results in a signifi-
cant throughput increase: the time required for the kernel
build benchmark discussed in Section 3.3 was reduced by
approximately 10% at 20 checkpoints per second.

Guest modifications. As discussed above, paravirtual
guests in Xen contain a suspend handler that cleans up
device state upon receipt of a suspend request. In addi-
tion to the notification optimizations described earlier in
this section, the suspend request handler has also been
modified to reduce the amount of work done prior to sus-
pension. In the original code, suspension entailed dis-
connecting all devices and unplugging all but one CPU.
This work was deferred until the domain was restored on
the other host. These modifications are available in Xen
as of version 3.1.0.

These changes are not strictly required for correctness,
but they do improve the performance of the checkpoint
considerably, and involve very local modifications to the
guest kernel. Total changes were under 100 lines of code
in the paravirtual suspend handler. As mentioned earlier,
these modifications are not necessary in the case of non-
paravirtualized VMs.

2.4 Network buffering

Most networks cannot be counted on for reliable data
delivery. Therefore, networked applications must ei-
ther accept packet loss, duplication and reordering, or
use a high-level protocol such as TCP which provides
stronger service guarantees. This fact simplifies the net-
work buffering problem considerably: transmitted pack-
ets do not require replication, since their loss will appear
as a transient network failure and will not affect the cor-
rectness of the protected state. However, it is crucial that
packets queued for transmission be held until the check-
pointed state of the epoch in which they were generated
is committed to the backup; if the primary fails, these
generated packets reflect speculative state that has been
lost.
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Figure 3 depicts the mechanism by which we prevent
the release of speculative network state. Inbound traf-
fic is delivered to the protected host immediately, but
outbound packets generated since the previous check-
point are queued until the current state has been check-
pointed and that checkpoint has been acknowledged by
the backup site. We have implemented this buffer as a
linux queuing discipline applied to the guest domain’s
network device in domain 0, which responds to two RT-
netlink messages. Before the guest is allowed to resume
execution after a checkpoint, the network buffer receives
a CHECKPOINTmessage, which causes it to insert a bar-
rier into the outbound queue preventing any subsequent
packets from being released until a corresponding re-
lease message is received. When a guest checkpoint has
been acknowledged by the backup, the buffer receives a
RELEASE message, at which point it begins dequeueing
traffic up to the barrier.

There are two minor wrinkles in this implementation.
The first is that in linux, queueing disciplines only op-
erate on outgoing traffic. Under Xen, guest network in-
terfaces consist of a frontend device in the guest, and a
corresponding backend device in domain 0. Outbound
traffic from the guest appears as inbound traffic on the
backend device in domain 0. Therefore in order to queue
the traffic, we convert the inbound traffic to outbound by
routing it through a special device called an intermediate
queueing device [16]. This module is designed to work
at the IP layer via iptables [27], but it was not difficult to
extend it to work at the bridging layer we use to provide
VM network access in our implementation.

The second wrinkle is due to the implementation of the
Xen virtual network device. For performance, the mem-
ory used by outbound networking traffic is not copied
between guest domains and domain 0, but shared. How-
ever, only a small number of pages may be shared at any
one time. If messages are in transit between a guest and
domain 0 for only a brief time, this limitation is not no-
ticeable. Unfortunately, the network output buffer can
result in messages being in flight for a significant amount
of time, which results in the guest network device block-
ing after a very small amount of traffic has been sent.
Therefore when queueing messages, we first copy them
into local memory and then release the local mappings to
shared data.

2.5 Disk buffering

Disks present a rather different challenge than network
interfaces, largely because they are expected to provide
much stronger reliability guarantees. In particular, when
a write has been acknowledged by a disk, an applica-
tion (or file system) expects to be able to recover that
data even in the event of a power failure immediately fol-

Buffer

Client

Primary Host

VM

Figure 3: Network buffering in Remus.

lowing the acknowledgment. While Remus is designed
to recover from a single host failure, it must preserve
crash consistency even if both hosts fail. Moreover, the
goal of providing a general-purpose system precludes the
use of expensive mirrored storage hardware designed for
HA applications. Therefore Remus maintains a complete
mirror of the active VM’s disks on the backup host. Prior
to engaging the protection system, the current state of
the disk on the primary is mirrored to the backup host.
Once protection has been engaged, writes to persistent
storage are tracked and checkpointed similarly to updates
to memory. Figure 4 gives a high-level overview of the
disk replication mechanism

As with the memory replication subsystem described
in Section 2.3, writes to disk from the active VM are
treated as write-through: they are immediately applied to
the primary disk image, and asynchronously mirrored to
an in-memory buffer on the backup. This approach pro-
vides two direct benefits: First, it ensures that the active
disk image remains crash consistent at all times; in the
case of both hosts failing, the active disk will reflect the
crashed state of the externally visible VM at the time of
failure (the externally visible VM resides on the primary
host if the primary host has not failed or if the backup
also fails before it has been activated, otherwise it re-
sides on the backup). Second, writing directly to disk
accurately accounts for the latency and throughput char-
acteristics of the physical device. This obvious-seeming
property is of considerable value: accurately character-
izing disk responsiveness is a subtle problem, as we our-
selves experienced in an earlier version of the disk buffer
which held write requests in memory on the primary
VM until checkpoint commit. Such an approach either
buffers writes, under-representing the time required to
commit data to disk and allowing the speculating VM to
race ahead in execution, or conservatively over-estimates
write latencies resulting in a loss of performance. Model-
ing disk access time is notoriously challenging [28], but
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our implementation avoids the problem by preserving di-
rect feedback from the disk to its client VM.

At the time that the backup acknowledges that a check-
point has been received, disk updates reside completely
in memory. No on-disk state may be changed until the
entire checkpoint has been received, as this would pre-
vent the backup from rolling back to the most recent
complete checkpoint. Once the checkpoint is acknowl-
edged, the disk request buffer may be applied to disk. In
the event of a failure, Remus will wait until all buffered
writes have been applied before resuming execution. Al-
though the backup could begin execution immediately
using the request buffer as an overlay on the physical
disk, this would violate the disk semantics presented to
the protected VM: if the backup fails after activation but
before data is completely flushed to disk, its on-disk state
might not be crash consistent.

Only one of the two disk mirrors managed by Remus
is actually valid at any given time. This point is crit-
ical in recovering from multi-host crashes. This prop-
erty is achieved by the use of an activation record on the
backup disk, which is written after the most recent disk
buffer has been completely flushed to disk and before the
backup VM begins execution. In recovering from multi-
ple host failures, this record may be used to identify the
valid, crash consistent version of the disk.

The disk buffer is implemented as a Xen block tap
module [32]. The block tap is a device which allows
a process in the privileged domain to efficiently inter-
pose itself between the frontend disk device presented
to a guest VM and the backend device which actually
services requests. The buffer module logs disk write re-
quests from the protected VM and mirrors them to a cor-
responding module on the backup, which executes the
checkpoint protocol described above and then removes
itself from the disk request path before the backup be-
gins execution in the case of failure at the primary.

2.6 Detecting Failure

Remus’s focus is on demonstrating that it is possible to
provide advanced high availability in a general and trans-
parent way using commodity hardware and without mod-
ifying the protected applications. We currently use a
simple failure detector that is directly integrated in the
checkpointing stream: a timeout of the backup respond-
ing to commit requests will result in the primary assum-
ing that the backup has crashed and disabling protection.
Similarly, a timeout of new checkpoints being transmit-
ted from the primary will result in the backup assum-
ing that the primary has crashed and resuming execution
from the most recent checkpoint.

The system is configured to use a pair of bonded net-
work interfaces, and the two physical hosts are connected
using a pair of Ethernet crossover cables (or independent
switches) on the protection NICs. Should both of these
network paths fail, Remus does not currently provide
mechanism to fence execution. Traditional techniques
for resolving partitioning (i.e., quorum protocols) are no-
toriously difficult to apply in two host configurations. We
feel that in this case, we have designed Remus to the edge
of what is possible with commodity hardware.

3 Evaluation

Remus has been designed with the primary objective of
making high availability sufficiently generic and trans-
parent that it may be deployed on today’s commodity
hardware. In this section, we characterize the overheads
resulting from our approach for a variety of different
workloads, in order two answer two questions: (1) Is this
system practically deployable? (2) What kinds of work-
loads are most amenable to our approach?

Before measuring the performance impact, we must
establish that the system functions correctly. We accom-
plish this by injecting network failures at each phase of
the replication protocol, while putting substantial disk,
network and CPU load on the protected system. We find
that the backup takes over for the lost primary within ap-
proximately one second in every case, preserving all ex-
ternally visible state, including active network connec-
tions.

We then evaluate the overhead of the system on appli-
cation performance across very different workloads. We
find that a general-purpose task such as kernel compi-
lation incurs approximately a 50% performance penalty
when checkpointed 20 times per second, while network-
dependent workloads as represented by SPECweb per-
form at somewhat more than one quarter native speed.
The additional overhead in this case is largely due to
output-commit delay on the network interface.

Based on this analysis, we conclude that although Re-
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mus is efficient at state replication, it does introduce sig-
nificant network delay, particularly for applications that
exhibit poor locality in memory writes. Thus, appli-
cations that are very sensitive to network latency may
not be well suited to this type of high availability ser-
vice (although there are a number of optimizations which
have the potential to noticeably reduce network delay,
some of which we discuss in more detail following the
benchmark results). We feel that we have been conser-
vative in our evaluation, using benchmark-driven work-
loads which are significantly more intensive than would
be expected in a typical virtualized system; the consol-
idation opportunities such an environment presents are
particularly attractive because system load is variable.

3.1 Test environment

Unless otherwise stated, all tests were run on IBM eS-
erver x306 servers, consisting of one 3.2 GHz Pentium 4
processor with hyperthreading enabled, 1 GB of RAM, 3
Intel e1000 GbE network interfaces, and an 80 GB SATA
hard drive. The hypervisor was Xen 3.1.2, modified as
described in Section 2.3, and the operating system for all
virtual machines was linux 2.6.18 as distributed in Xen
3.1.2, with the modifications described in Section 2.3.
The protected VM was allocated 512 MB of total RAM.
To minimize scheduling effects from the VMM, domain
0’s VCPU was pinned to the first hyperthread. One phys-
ical network interface was bridged to the guest virtual in-
terface and used for application traffic, one was used for
administrative access, and the last was used for replica-
tion (we did not bond interfaces for replication, but this is
immaterial to the tests we performed). Virtual disks were
provided by disk images on the SATA drive, exported to
the guest using the tapdisk AIO driver.

3.2 Correctness verification

As discussed in Section 2.2, Remus’s replication pro-
tocol operates in four distinct phases: (1) checkpoint
changed state and increment the epoch of network and
disk request streams, (2) replicate system state, (3) when
the complete memory checkpoint and corresponding set
of disk requests has been received, send a checkpoint ac-
knowledgement from the backup, and (4) upon receipt of
the acknowledgement, release outbound network packets
queued during the previous epoch. To verify that our sys-
tem functions as intended, we tested deliberately induced
network failure at each stage. For each test, the protected
system executed a kernel compilation process in order
to generate disk, memory and CPU load. To verify the
network buffer, we simultaneously executed a graphics-
intensive X11 client (glxgears) attached to an external
X11 server. Remus was configured to take checkpoints
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Figure 5: Checkpoint time relative to pages dirtied.

every 25 milliseconds throughout. Each individual test
was repeated twice.

At every failure point, the backup successfully took
over execution of the protected system, with only mi-
nor network delay (about one second) noticeable while
the backup detected the failure and activated the repli-
cated system. The glxgears client continued to run after
a brief pause, and the kernel compilation task continued
to successful completion. We then gracefully shut down
the VM and executed a forced file system check on the
backup disk image, which reported no inconsistencies.

3.3 Benchmarks

In the following section, we evaluate the performance of
our system using a variety of macrobenchmarks which
are meant to be representative of a range of real-world
workload mixtures. The primary workloads we run are a
kernel compilation test, the SPECweb2005 benchmark,
and the Postmark disk benchmark. Kernel compilation is
a balanced workload which stresses the virtual memory
system, the disk and the CPU, SPECweb primarily exer-
cises networking performance and memory throughput,
and Postmark focuses on disk performance.

To better understand the following measurements, we
performed a microbenchmark measuring the time spent
copying guest state (while the guest was suspended) and
the time spent sending that data to the backup relative to
the number of pages changed since the previous check-
point. We wrote an application to repeatedly change the
first byte of a set number of pages and measured times
over 1000 iterations. Figure 5 presents the average, min-
imum and maximum recorded times spent in the check-
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Figure 6: Kernel build time by checkpoint frequency.

point and replication stages, within a 95% confidence in-
terval. It shows that the bottleneck for checkpoint fre-
quency is replication time.

Kernel compilation. The kernel compile test mea-
sures the wall-clock time required to build linux kernel
version 2.6.18 using the default configuration and the bz-
Image target. Compilation uses GCC version 4.1.2, and
make version 3.81. This is a balanced workload that tests
CPU, memory and disk performance.

Figure 6 shows protection overhead when configured
to checkpoint at rates of 10, 20, 30 and 40 times per sec-
ond, compared to a baseline compilation in an unpro-
tected virtual machine. Total measured overhead at each
of these frequencies was 31%, 52%, 80% and 103%, re-
spectively. Overhead scales linearly with checkpoint fre-
quency within the rates we tested. We believe that the
overhead measured in this set of tests is reasonable for a
general-purpose system, even at a checkpoint frequency
of 40 times per second.

SPECweb2005. The SPECweb benchmark is com-
posed of at least three separate systems: a web server,
an application server, and one or more web client sim-
ulators. We configure these as three VMs on distinct
physical machines. The application server and the client
are configured with 640 MB out of 1024 MB total avail-
able RAM. The web server and backup are provisioned
with 2048 MB of RAM, of which 1024 is allocated
to the web server VM, which is the system under test.
The SPECweb scores we mention in this section are
the highest results we achieved with the SPECweb “e-
commerce” test maintaining 95% “good” and 99% “tol-
erable” times.
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Figure 7: SPECweb scores by checkpoint frequency (na-
tive score: 305)

Figure 7 shows SPECweb performance at various
checkpoint frequencies relative to an unprotected server.
These scores are primarily a function of the delay im-
posed by the network buffer between the server and
the client. Although they are configured for a range of
frequencies, SPECweb touches memory rapidly enough
that the time required to propagate the memory dirtied
between checkpoints sometimes exceeds 100ms, regard-
less of checkpoint frequency. Because the network buffer
cannot be released until checkpointed state has been ac-
knowledged, the effective network delay can be higher
than the configured checkpoint interval. Remus does en-
sure that the VM is suspended at the start of every epoch,
but it cannot currently ensure that the total amount of
state to be replicated per epoch does not exceed the band-
width available during the configured epoch length. Be-
cause the effective checkpoint frequency is lower than
the configured rate, and network latency dominates the
SPECweb score, performance is relatively flat across the
range of configured frequencies. At configured rates of
10, 20, 30 and 40 checkpoints per second, the average
checkpoint rates achieved were 9.98, 16.38, 20.25 and
23.34 respectively, or average latencies of 100ms, 61ms,
49ms and 43ms respectively.

SPECweb is a RAM-hungry workload which is also
very sensitive to network latency. This makes it a poor
fit for our current implementation, which trades network
delay for memory throughput. Figure 8 demonstrates the
dramatic effect delay between the client VM and the web
server has on SPECweb. We used the Linux netem [19]
queueing discipline to add varying degrees of delay to
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Figure 8: The effect of network delay on SPECweb per-
formance.

the outbound link from the web server (virtualized but
not running under Remus). For comparison, Figure 7
also shows protection overhead when network buffer-
ing is disabled, to better isolate network latency from
other forms of checkpoint overhead (again, the flat pro-
file is due to the effective checkpoint rate falling short
of the configured rate). Deadline scheduling and page
compression, discussed in Section 3.4 are two possible
techniques for reducing checkpoint latency and transmis-
sion time. Either or both would reduce checkpoint la-
tency, and therefore be likely to increase SPECweb per-
formance considerably.

Postmark. The previous sections characterize net-
work and memory performance under protection, but the
benchmarks used put only moderate load on the disk
subsystem. In order to better understand the effects of
the disk buffering mechanism, we ran the Postmark disk
benchmark (version 1.51). This benchmark is sensitive
to both throughput and disk response time. To isolate the
cost of disk replication, we did not engage memory or
network protection during these tests. Configuration was
identical to an unprotected system, with the exception
that the virtual disk was provided by the tapdisk replica-
tion module. Figure 9 shows the total time required to
perform 10000 postmark transactions with no disk repli-
cation, and with a replicated disk committing at frequen-
cies of 10, 20, 30 and 40 times per second. The results
indicate that replication has no significant impact on disk
performance.
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Figure 9: The effect of disk replication of Postmark per-
formance.

3.4 Potential optimizations

Although we believe the performance overheads shown
earlier in this section are reasonable for what they pro-
vide, we are eager to reduce them further, particularly for
latency-sensitive workloads. In addition to more care-
ful tuning of the existing code, we believe the following
techniques have the potential to greatly increase perfor-
mance.

Deadline scheduling. The amount of time required
to perform a checkpoint is currently variable, depend-
ing on the amount of memory to be copied. Although
Remus ensures that the protected VM is suspended at
the start of each epoch, it currently makes no attempt
to control the amount of state which may change be-
tween epochs. To provide stricter scheduling guaran-
tees, the rate at which the guest operates could be delib-
erately slowed [10] between checkpoints, depending on
the number of pages dirtied. Applications which prior-
itize latency over throughput, such as those modeled by
the SPECweb benchmark discussed in Section 3.3, may
enable this throttling for improved performance. To per-
form such an operation, the shadow page table handler
could be extended to invoke a callback when the number
of dirty pages exceeds some high water mark, or it may
be configured to pause the virtual machine directly.

Page compression. It has been observed that disk
writes typically only alter 5–20% of a data block [35].
If a similar property holds for RAM, we may exploit it in
order to reduce the amount of state requiring replication,
by sending only the delta from a previous transmission
of the same page.
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Figure 10: Comparison of bandwidth requirements using
various compression schemes.

To evaluate the potential benefits of compressing the
replication stream, we have prototyped a basic compres-
sion engine. Before transmitting a page, this system
checks for its presence in an address-indexed LRU cache
of previously transmitted pages. On a cache hit, the page
is XORed with the previous version and the differences
are run-length encoded. This provides significant com-
pression when page writes do not change the majority
of the page. Although this is true for much of the data
stream, there remains a significant fraction of pages that
have been modified to the point where XOR compres-
sion is not effective. In these cases, a general-purpose
algorithm such as that used by gzip may achieve a higher
degree of compression.

We found that by using a hybrid approach, in which
each page is preferentially XOR-compressed, but falls
back to gzip compression if the XOR compression ra-
tio falls below 5:1 or the previous page is not present in
the cache, we could observe a typical compression ratio
of 10:1 on the replication stream. Figure 10 shows the
bandwidth consumed in MBps for a 60-second period
of the kernel compilation benchmark described in Sec-
tion 3.3. The cache size was 8192 pages and the average
cache hit rate was 99%.

Compressing the replication stream can consume ad-
ditional memory and CPU resources on the replicating
host, but lightweight schemes such as the XOR compres-
sion technique should pay for themselves through the re-
duction in bandwidth required for replication and conse-
quent reduction in network buffering delay.

Copy-on-write checkpoints. The current implemen-

tation pauses the domain at each checkpoint for an
amount of time linear in the number of pages which have
been dirtied since the last checkpoint. This overhead
could be mitigated by marking dirty pages as copy-on-
write and resuming the domain immediately. This would
reduce the time during which the domain must be paused
to a fixed small cost proportional to the total amount
of RAM available to the guest. We intend to imple-
ment copy-on-write by supplying the Xen shadow pag-
ing system with a userspace-mapped buffer into which
it could copy touched pages before restoring read-write
access. The replication process could then extract any
pages marked as copied from the COW buffer instead of
reading them directly from the guest. When it had fin-
ished replicating pages, their space in the buffer could be
marked for reuse by the Xen COW module. If the buffer
were to become full, the guest could simply be paused,
resulting in a graceful degradation of service from COW
to stop-and-copy operation.

4 Related Work

State replication may be performed at several levels, each
of which balances efficiency and generality differently.
At the lowest level, hardware-based replication is poten-
tially the most robust solution. Hardware, however, is
much more expensive to develop than software and thus
hardware replication is at a significant economic disad-
vantage. Replication at the virtualization layer has many
of the advantages of the hardware approach, but comes
at lower cost because it is implemented in software. Like
hardware, however, the virtualization layer has no se-
mantic understanding of the operating-system and appli-
cation state it replicates. As a result it can be less flexi-
ble than process checkpointing in the operating system,
in application libraries or in applications themselves, be-
cause it must replicate the entire system instead of indi-
vidual processes. It can also be less efficient, because it
may replicate unnecessary state. The challenge for these
higher-level approaches, however, is that interdependen-
cies among state elements that comprise a checkpoint are
insidiously difficult to identify and untangle from the rest
of the system and thus these checkpointing mechanisms
are significantly more complex than checkpointing in the
virtualization layer.

Virtual machine migration. As described earlier, Re-
mus is built on top of the Xen support for live migra-
tion [6], extended significantly to support frequent, re-
mote checkpointing. Bradford et al. extended Xen’s live
migration support in another direction: migrating persis-
tent state along with the migrating guest so that it can be
restarted on a remote node that does not share network
storage with the originating system[3].

Like Remus, other projects have used virtual machines
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to provide high availability. The closest to our work is
Bressoud and Schneider’s [4]. They use the virtual ma-
chine monitor to forward the input events seen by a pri-
mary system to a backup system where they are deter-
ministically replayed to replicate the primary’s state. De-
terministic replay requires much stricter constraints on
the target architecture than simple virtualization and it
requires an architecture- specific implementation in the
VMM.

Another significant drawback of deterministic replay
as exemplified by Bressoud and Schneider’s work is that
it does not easily extend to multi-core CPUs. The prob-
lem is that it is necessary, but difficult, to determine the
order in which cores access shared memory. There have
been some attempts to address this problem. For ex-
ample, Flight Data Recorder [34] is a hardware module
that sniffs cache coherency traffic in order to record the
order in which multiple processors access shared mem-
ory. Similarly, Dunlap introduces a software approach in
which the CREW protocol (concurrent read, exclusive
write) is imposed on shared memory via page protec-
tion [8]. While these approaches do make SMP deter-
ministic replay possible, it is not clear if they make it
feasible due to their high overhead, which increases at
least linearly with the degree of concurrency. Our work
sidesteps this problem entirely because it does not re-
quire deterministic replay.

Virtual machine logging and replay. Virtual ma-
chine logging has been used for purposes other than high
availability. For example, in ReVirt [9], virtualization is
used to provide a secure layer for logging state changes
in the target system in order to provide better forensic ev-
idence for intrusion detection systems. The replayed sys-
tem is a read-only copy of the original system, which is
not meant to be run except in order to recreate the events
involved in a system compromise. Logging has also been
used to build a time-travelling debugger [13] that, like
ReVirt, replays the system for forensics only.

Operating system replication. There are many op-
erating systems, such as Accent [25], Amoeba [18],
MOSIX [1] and Sprite [23], which support process mi-
gration, mainly for load balancing. The main challenge
with using process migration for failure recovery is that
migrated processes typically leave residual dependencies
to the system from which they were migrated. Eliminat-
ing these dependencies is necessary to tolerate the failure
of the primary host, but the solution is elusive due to the
complexity of the system and the structure of these de-
pendencies.

Some attempts have been made to replicate applica-
tions at the operating system level. Zap [22] attempts
to introduce a virtualization layer within the linux ker-
nel. This approach must be rebuilt for every operating
system, and carefully maintained across versions.

Library approaches. Some application libraries pro-
vide support for process migration and checkpointing.
This support is commonly for parallel application frame-
works such as CoCheck [29]. Typically process migra-
tion is used for load balancing and checkpointing is used
to recover an entire distributed application in the event of
failure.

Replicated storage. There has also been a large
amount of work on checkpointable storage for disaster
recovery as well as forensics. The Linux Logical Vol-
ume Manager [14] provides a limited form of copy-on-
write snapshots of a block store. Parallax [33] signif-
icantly improves on this design by providing limitless
lightweight copy-on-write snapshots at the block level.
The Andrew File System [11] allows one snapshot at a
time to exist for a given volume. Other approaches in-
clude RSnapshot, which runs on top of a file system to
create snapshots via a series of hardlinks, and a wide va-
riety of backup software. DRBD [26] is a software ab-
straction over a block device which transparently repli-
cates it to another server.

Speculative execution. Using speculative execution
to isolate I/O processing from computation has been ex-
plored by other systems. In particular, SpecNFS [20] and
Rethink the Sync [21] use speculation in a manner sim-
ilar to us in order to make I/O processing asynchronous.
Remus is different from these systems in that the se-
mantics of block I/O from the guest remain entirely un-
changed: they are applied immediately to the local phys-
ical disk. Instead, our system buffers generated network
traffic to isolate the externally visible effects of specu-
lative execution until the associated state has been com-
pletely replicated.

5 Future work

This section briefly discusses a number of directions that
we intend to explore in order to improve and extend Re-
mus. As we have demonstrated in the previous section,
the overhead imposed by our high availability service
is not unreasonable. However, the implementation de-
scribed in this paper is quite young. Several potential
areas of optimization remain to be explored. Upon com-
pletion of the targeted optimizations discussed in Sec-
tion 3.4, we intend to investigate more general extensions
such as those described below.

Introspection optimizations. Remus currently prop-
agates more state than is strictly necessary. For example,
buffer cache pages do not need to be replicated, since
they can simply be read in from persistent storage on the
backup. To leverage this, the virtual disk device could
log the addresses of buffers provided to it for disk reads,
along with the associated disk addresses. The memory-
copying process could then skip over these pages if they
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had not been modified after the completion of the disk
read. The remote end would be responsible for reissuing
the reads from its copy of the disk in order to fill in the
missing pages. For disk-heavy workloads, this should re-
sult in a substantial reduction in state propagation time.

Hardware virtualization support. Due to the lack
of equipment supporting hardware virtualization in our
laboratory at the time of development, we have only im-
plemented support for paravirtualized guest virtual ma-
chines. But we have examined the code required to sup-
port fully virtualized environments, and the outlook is
quite promising. In fact, it may be somewhat simpler
than the paravirtual implementation due to the better en-
capsulation provided by virtualization-aware hardware.

Cluster replication. It would be useful to extend the
system to protect multiple interconnected hosts. While
each host can be protected independently, coordinated
protection would make it possible for internal network
communication to proceed without buffering. This has
the potential to dramatically improve the throughput of
distributed applications, including the three-tiered web
application configuration prevalent in managed hosting
environments. Support for cluster replication could be
provided by a distributed checkpointing protocol such
as that which is described in our colleague Gang Peng’s
master’s thesis [24], which used an early version of the
checkpointing infrastructure provided by Remus.

Disaster recovery. Remus is a product of the Second-
Site [7] project, whose aim was to provide geographi-
cally diverse mirrors of running systems in order survive
physical disaster. We are in the process of planning a
multi-site deployment of Remus in order to experiment
with this sort of configuration. In a long distance de-
ployment, network delay will be an even larger concern.
Additionally, network reconfigurations will be required
to redirect Internet traffic accordingly.

Log-structured datacenters. We are extending Re-
mus to capture and preserve the complete execution his-
tory of protected VMs, rather than just the most re-
cent checkpoint. By mapping guest memory into Par-
allax [17], our virtual block store designed for high-
frequency snapshots, we hope to be able to efficiently
store large amounts of both persistent and transient state
at very fine granularity. This data should be very use-
ful in building advanced debugging and forensics tools.
It may also provide a convenient mechanism for recover-
ing from state corruption whether introduced by operator
error or by malicious agents (viruses and so forth).

6 Conclusion

Remus is a novel system for retrofitting high availability
onto existing software running on commodity hardware.
The system uses virtualization to encapsulate a protected

VM, and performs frequent whole-system checkpoints
to asynchronously replicate the state of a single specu-
latively executing virtual machine.

Providing high availability is a challenging task and
one that has traditionally required considerable cost and
engineering effort. Remus commodifies high availabil-
ity by presenting it as a service at the virtualization plat-
form layer: HA may simply be “switched on” for spe-
cific virtual machines. As with any HA system, protec-
tion does not come without a cost: The network buffer-
ing required to ensure consistent replication imposes a
performance overhead on applications that require very
low latency. Administrators must also deploy additional
hardware, which may be used in N-to-1 configurations
with a single backup protecting a number of active hosts.
In exchange for this overhead, Remus completely elim-
inates the task of modifying individual applications in
order to provide HA facilities, and it does so without re-
quiring special-purpose hardware.

Remus represents a previously unexplored point in the
design space of HA for modern servers. The system al-
lows protection to be simply and dynamically provided
to running VMs at the push of a button. We feel that
this model is particularly attractive for hosting providers,
who desire to offer differentiated services to customers.

Acknowledgments

The authors would like to thank their paper shepherd,
Arun Venkataramani, and the anonymous reviewers for
their insightful and encouraging feedback. We are also
indebted to Anoop Karollil for his aid in the evaluation
process. This work is supported by grants from Intel
Research and the National Science and Engineering Re-
search Council of Canada.

References

[1] BARAK, A., AND WHEELER, R. Mosix: an integrated multipro-
cessor unix. 41–53.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In SOSP
’03: Proceedings of the nineteenth ACM symposium on Operat-
ing systems principles (New York, NY, USA, 2003), ACM Press,
pp. 164–177.

[3] BRADFORD, R., KOTSOVINOS, E., FELDMANN, A., AND
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Notes
1Remus buffers network and disk output. Other devices, such as

the console or the serial port, are presumed to be used for local admin-
istration and therefore would not require buffering. However, nothing
prevents these devices from being buffered as well.

2Paravirtual Xen guests contain code specifically for suspend re-
quests that are responsible for cleaning up Xen-related state such as
shared memory mappings used by virtual devices. In the case of hard-
ware virtualized (e.g., Windows) VMs, this state is completely encap-
sulated by Xen’s device model, and these in-guest changes are unnec-
essary.
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