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Machine Learning
Subfield of AI concerned with learning from data.	
!
!
Broadly, using:	

• Experience 
• To Improve Performance	
• On Some Task	

!
(Tom Mitchell, 1997)	

!



Unsupervised Learning
Input:	
 X = {x1, …, xn}	
!
Try to understand the	
structure of the data.	
!
!
!
E.g., how many types of cars?	
How can they vary?

inputs



Clustering
One particular type of unsupervised learning:	

• Split the data into discrete clusters.	
• Assign new data points to each cluster.	
• Clusters can be thought of as types.	

!
!

Formal definition 
	 Given:	

• Data points X = {x1, …, xn},	
	 Find:	

• Number of clusters k	
• Assignment function f(x) = {1, …, k}	



Clustering



k-Means
One approach:	

• Pick k	
• Place k points (“means”) in the data	
• Assign new point to ith cluster if nearest to ith “mean”.	

!



k-Means



k-Means
Major question:	
• Where to put the “means”?	
!
Very simple algorithm:	

• Place k “means”                    at random.	
• Assign all points in the data to each “mean”	

!
!

• Move “mean” to mean of assigned data.	
!

{µ1, ..., µk}

f(xj) = i such that d(xj , µi)  d(xj , µl)8l 6= i

µi =
X

v2Ci

xv

|Ci|



k-Means



k-Means



k-Means



k-Means



k-Means
Remaining questions …	
!
How to choose k?	
!
What about bad initializations?	
!
Broadly:	

• Use a quality metric.	
• Search through k.	
• Random restart initial position.



Density Estimation
Clustering: can answer which cluster, but not does this belong?



Density Estimation
Estimate the distribution the data is drawn from.	
!
This allows us to evaluate the probability that a new point is 
drawn from the same distribution as the old data.	
!

Formal definition 
	 Given:	

• Data points X = {x1, …, xn},	
	 Find:	

• PDF P(X)	



GMM
Simple approach:	

• Model the data as a mixture of Gaussians.	
!
Each Gaussian has its own mean and variance.	
Each has its own weight (sum to 1).	
!

Weighted sum of Gaussians still a PDF.



GMM



GMM
Algorithm - broadly as before:	
!
!
!

• Place k “means”                    at random.	
• Set variances to be high.	

!
• Assign all points to highest probability distribution.	

!
!

• Set mean, variance to match assigned data.	
!

{µ1, ..., µk}

µi =
X

v2Ci

xv

|Ci|

Ci = {xv|N(xv|µi,�
2
i ) > N(xv|µj ,�

2
j ), 8j}

�2
i = variance(Ci) wi =

|Ci|P
j |Cj |



GMM
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GMM
Major issue:	

• How to decide between two GMMs?	
• How to choose k?	

!
General statistical question: model selection.	
Several good answers for this.	
!

Simple example: Bayesian information criterion (BIC).	
Trades off model complexity (k) with fit (likelihood).	

�2 logL+ k log n

likelihood
# parameters	

in model

# data	
points



Dimensionality Reduction
X = {x1, …, xn}	
!
If n is high, data can be hard to deal with.	

• High-dimensional decision boundary.	
• Need more data.	
• But data is often not really high-dimensional.	

!
!

Dimensionality reduction: 
• Reduce or compress the data	
• Try not to lose too much!	
• Find intrinsic dimensionality



Dimensionality Reduction
For example, imagine if x1 and x2 are meaningful features, and 
x3 … xn are random noise.	
!
What happens to k-nearest neighbors?	
!
What happens to a decision tree?	
!
What happens to the perceptron algorithm?	
!
What happens if you want to do clustering?



Dimensionality Reduction
Often can be phrased as a projection:	
!
!
!
where:	

•   	
•  our goal: retain as much variance as possible.	

!
!

Variance captures what varies within the data.

f : X ! X 0

|X 0| << |X|



PCA
Principle Components Analysis. 
!
Project data into a new space:	

• Dimensions are linearly uncorrelated.	
• We have a measure of importance for each dimension.	

!
!



PCA



PCA
• Gather data X1, …, Xm.	
• Adjust data to be zero-mean:	

!
!

• Compute covariance matrix C.	
• Compute unit eigenvectors Vi and eigenvalues vi of C.	

!
Each Vi is a direction, and each vi is its importance - the amount 
of the data’s variance it accounts for.	
!
New data points: 

Xi = Xi �
X

j

Xj

m

X̂i = [V1, ..., Vp]Xi



Eigenfaces

(courtesy ORL database)



ISOMAP
Another approach:	

• Estimate intrinsic geometric dimensionality of data.	
• Recover natural distance metric



ISOMAP
Core idea: distance metric locally Euclidean	
• Small radius r, connect each point to neighbors	
• Weight based on Euclidean distance



ISOMAP
Solve all-points shortest pairs:	

• Transforms local distance to global distance.	
• Compute embedding.



ISOMAP

From Tenenbaum, de Silva, and Langford, Science 290:2319-2323, December 2000.



Application: Novelty Detection
Intrusion detection - when is a user behaving unusually?	
!
First proposed by Prof. Dorothy Denning in 1986.	
(1995 ACM Fellow)


