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Machine Learning

Subfield of Al concerned with learning from data.

Broadly, using:
- Experience

* To Improve Performance
* On Some Task

(Tom Mitchell, 1997)




Unsupervised Learning

Input:
X ={xi,...,xn} INputs

Try to understand the
structure of the data.

E.g., how many types of cars?
How can they vary?




Clustering

One particular type of unsupervised learning:
- Split the data into discrete clusters.
- Assign new data points to each cluster.
» Clusters can be thought of as types.

Formal definition
Given:
» Data points X = {xi, ..., Xn},
Find:
* Number of clusters k
» Assignment function f(x) = {I, ..., k}
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k-Means

One approach:
» Pick k
* Place k points (“means”) in the data
- Assign new point to ith cluster if nearest to ith “mean”.



k-Means




k-Means

Major question:
- Where to put the “means™?

Very simple algorithm:
+ Place k“means” {{t1, ..., 4 } at random.

- Assign all points in the data to each “mean”
f(x;) =i such that d(x;, u;) < d(x;, )Vl # i

* Move “mean” to mean of assigned data.

Ly
i = Z \Cz\




k-Means
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k-Means

Remaining questions ...
How to choose k!
What about bad initializations?
Broadly:
+ Use a quality metric.

» Search through k.
- Random restart initial position.



Density Estimation

Clustering: can answer which cluster, but not does this belong?




Density Estimation

Estimate the distribution the data is drawn from.

This allows us to evaluate the probability that a new point is
drawn from the same distribution as the old data.

Formal definition
Given:
- Data points X = {xi, ..., Xn},
Find:
+ PDF P(X)




GMM

Simple approach:
 Model the data as a mixture of Gaussians.

Each Gaussian has its own mean and variance.
Each has its own weight (sum to ).

Weighted sum of Gaussians still a PDF.



GMM




GMM

Algorithm - broadly as before:

- Place k “means”{#1, .-, 4k } at random.
- Set variances to be high.

- Assign all points to highest probability distribution.
Ci = {z|N(zo|pi, 07) > N(@o|py, 05), Y5}

» Set mean, variance to match assigned data.

Ci

Ly
Hi = 07 = variance(C;) Wi =
2 1c, ) >, 105
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GMM

Major issue:
 How to decide between two GMMs!?

 How to choose k?

General statistical question: model selection.
Several good answers for this.

Simple example: Bayesian information criterion (BIC).
Trades off model complexity (k) with fit (likelihood).

21 DDA,
! # data
# parameters

likelihood points

in model



Dimensionality Reduction

X ={xi, ..., Xn}

If n is high, data can be hard to deal with.
- High-dimensional decision boundary.
* Need more data.
- But data is often not really high-dimensional.

Dimensionality reduction:
* Reduce or compress the data
* Try not to lose too much!
» Find intrinsic dimensionality



Dimensionality Reduction

For example, imagine if x| and x2 are meaningful features, and
X3 ... Xn are random noise.

What happens to k-nearest neighbors!?
What happens to a decision tree!
What happens to the perceptron algorithm?

What happens if you want to do clustering?



Dimensionality Reduction

Often can be phrased as a projection:
f: X—-X
where:

o /
X7 << [X]
» our goal: retain as much variance as possible.

Variance captures what varies within the data.



PCA

Principle Components Analysis.

Project data into a new space:
- Dimensions are linearly uncorrelated.
*  We have a measure of importance for each dimension.



PCA




PCA

Gather data X, ..., Xm.
Adjust data to be zero-mean:

XXZ—

Compute covariance matrix C.
Compute unit eigenvectors V; and eigenvalues v; of C.

Each Vi is a direction, and each v; is its importance - the amount
of the data’s variance it accounts for.

New data points:
X, =[Vi,..., V] X,




Eigenfaces

(courtesy ORL database)



ISOMAP

Another approach:
- Estimate intrinsic geometric dimensionality of data.
- Recover natural distance metric
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ISOMAP

Core idea: distance metric locally Euclidean
» Small radius r, connect each point to neighbors
*  Weight based on Euclidean distance
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ISOMAP

Solve all-points shortest pairs:
- Transforms local distance to global distance.

- Compute embedding.
7
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ISOMAP

Fig. 3. The "Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K = 7 and N =

geodesic distance along

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

From Tenenbaum, de Silva, and Langford, Science 290:2319-2323, December 2000.



Application: Novelty Detection

Intrusion detection - when is a user behaving unusually?

First proposed by Prof. Dorothy Denning in 1986.
(1995 ACM Fellow)




