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Search

Basic to problem solving:	
• How to take action to reach a goal?



Search
Specifically:	

• Problem can be in various states.	
• Start in an initial state.	
• Have some actions available.	
• Each action has a cost.	
• Want to reach some goal, minimizing cost.

Happens in simulation.
Not web search.



Formal Definition
Set of states	
!
Start state	
!
Set of actions     and action rules	
!
Goal test	
!
Cost function	
!
!
So a search problem is specified by a tuple,                     .	

S

s 2 S

A a(s) ! s0

g(s) ! {0, 1}

C(s, a, s0) ! R+

(S, s,A, g, C)



Problem Statement
Find a sequence of actions                 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)



Problem Statement
Find a sequence of actions                 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

start state



Problem Statement
Find a sequence of actions                 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

start state
legal moves



Problem Statement
Find a sequence of actions                 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

start state
legal moves
end at the goal



Problem Statement
Find a sequence of actions                 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

start state
legal moves
end at the goal

minimize sum of costs - rational agent



Example
Sudoku	
!
States: all legal Sudoku boards.	
!
Start state: a particular, partially filled-in, board.	
!
Actions: inserting a valid number into the board.	
!
Goal test: all cells filled and no collisions.	
!
Cost function: 1 per move.



Example
Flights - e.g., ITA Software.	
!
States: airports.	
!
Start state: RDU.	
!
Actions: available flights from each airport.	
!
Goal test: reached Tokyo.	
!
Cost function: time and/or money.	



The Search Tree
Classical conceptualization of search.

s0

s1 s2 s3 s4
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The Search Tree
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Important Quantities
Breadth (branching factor)

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

breadth



The Search Tree
Depth	
• min solution depth m

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

depth

leaves in a search tree of breadth b, depth d. O(bd)



The Search Tree
Expand the tree one node at a time.	
Frontier: set of nodes in tree, but not expanded.

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

Key to a search algorithm: 	
which node to expand next?



How to Expand?
Uninformed strategy: 	
• nothing known about likely solutions in the tree.	
!
What to do?	
• Expand deepest node (depth-first search)	
• Expand closest node (breadth-first search)	

!
Properties	
• Completeness	
• Optimality	
• Time Complexity (total number of nodes visited)	
• Space Complexity (size of frontier)



Depth-First Search

s0

s1

Expand deepest node



Depth-First Search
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Depth-First Search
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Depth-First Search

s0
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Expand deepest node



DFS: Time

…

worst case:	

solution on this branch

O(bd+1 � bd�m) = O(bd+1)



DFS: Space

…

worst case:	
search is here

b-1 nodes open	
at each level	

!
d levels

O((b� 1)d) = O(bd)
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Depth-First Search
Properties:	
• Completeness: Only for finite trees.	
• Optimality: No.	
• Time Complexity: 	
• Space Complexity: 	
!
Here m is depth of found solution (not necessarily min solution 
depth).	
!
The deepest node happens to be the one you most recently visited - 
easy to implement recursively OR manage frontier using LIFO 
queue.

O(bd+1)
O(bd)



Breadth-First Search

s0
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Expand shallowest node



Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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BFS: Time

…

O(bm+1)



BFS: Space

…

O(bm+1)



Breadth-First Search
Properties:	
• Completeness: Yes.	
• Optimality: Yes for constant cost.	
• Time Complexity: 	
• Space Complexity: 	
!
Better than depth-first search in all respects except memory 
cost - must maintain a large frontier.	
!
Manage frontier using FIFO queue.

O(bm+1)
O(bm+1)



Iterative Deepening Search
Combine these two strengths.	
!
The core problems in DFS are a) not optimal, and b) not 
complete … because it fails to explore other branches.	
!
Otherwise it’s a very nice algorithm!	
!
Iterative Deepening: 	
• Run DFS to a fixed depth z.	
• Start at z=1. If no solution, increment z and rerun.
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IDS
Optimal for constant cost! Proof?	
!
How can that be a good idea? 	
It duplicates work.	
!
Sure but:	
• Low memory requirement (equal to DFS).	
• Not many more nodes expanded than BFS. (About twice as 

many for binary tree.)



IDS

…

visited m + 1 times

visited m  times



IDS (Reprise)
mX

i=0

bi(m� i+ 1) =
b(bm+1 �m� 2) +m+ 1

(b� 1)2

# nodes at level i
# revisits

bm+1 � 1

b� 1
DFS worst case:



IDS
Key Insight:	
• Many more nodes at depth m+1 than at depth m.	
!
!
!
!
MAGIC.	
!
“In general, iterative deepening search is the preferred uninformed 
search method when the state space is large and the depth of the 
solution is unknown.” (R&N)



Next Week
Informed searches … what if you know something about the the 
solution? 	
!
What form should such knowledge take? 	
!
How should you use it? 	
!


