
Search

George Konidaris	
gdk@cs.duke.edu

Spring 2016
(pictures: Wikipedia)

mailto:gdk@cs.duke.edu

Search

Basic to problem solving:	
• How to take action to reach a goal?

Search
Specifically:	

• Problem can be in various states.	
• Start in an initial state.	
• Have some actions available.	
• Each action has a cost.	
• Want to reach some goal, minimizing cost.

Happens in simulation.
Not web search.

Formal Definition
Set of states	
!
Start state	
!
Set of actions and action rules	
!
Goal test	
!
Cost function	
!
!
So a search problem is specified by a tuple, .	

S

s 2 S

A a(s) ! s0

g(s) ! {0, 1}

C(s, a, s0) ! R+

(S, s,A, g, C)

Problem Statement
Find a sequence of actions 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

Problem Statement
Find a sequence of actions 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

start state

Problem Statement
Find a sequence of actions 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

start state
legal moves

Problem Statement
Find a sequence of actions 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

start state
legal moves
end at the goal

Problem Statement
Find a sequence of actions 	
and corresponding states 	
!
 … such that:	
!
!
!
!
while minimizing:

a1, ..., an
s1, ..., sn

si = ai(si�1), i = 1, ..., n
s0 = s

g(sn) = 1

nX

i=1

C(si�1, a, si)

start state
legal moves
end at the goal

minimize sum of costs - rational agent

Example
Sudoku	
!
States: all legal Sudoku boards.	
!
Start state: a particular, partially filled-in, board.	
!
Actions: inserting a valid number into the board.	
!
Goal test: all cells filled and no collisions.	
!
Cost function: 1 per move.

Example
Flights - e.g., ITA Software.	
!
States: airports.	
!
Start state: RDU.	
!
Actions: available flights from each airport.	
!
Goal test: reached Tokyo.	
!
Cost function: time and/or money.	

The Search Tree
Classical conceptualization of search.

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

The Search Tree

3

3 5

1
6

9

8 3

1
4

Important Quantities
Breadth (branching factor)

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

breadth

The Search Tree
Depth	
• min solution depth m

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

depth

leaves in a search tree of breadth b, depth d. O(bd)

The Search Tree
Expand the tree one node at a time.	
Frontier: set of nodes in tree, but not expanded.

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

Key to a search algorithm: 	
which node to expand next?

How to Expand?
Uninformed strategy: 	
• nothing known about likely solutions in the tree.	
!
What to do?	
• Expand deepest node (depth-first search)	
• Expand closest node (breadth-first search)	

!
Properties	
• Completeness	
• Optimality	
• Time Complexity (total number of nodes visited)	
• Space Complexity (size of frontier)

Depth-First Search

s0

s1

Expand deepest node

Depth-First Search

s0

s1

s2

Expand deepest node

Depth-First Search

s0

s1

s2

X

Expand deepest node

Depth-First Search

s0

s1

s2

X s3

Expand deepest node

DFS: Time

…

worst case:	

solution on this branch

O(bd+1 � bd�m) = O(bd+1)

DFS: Space

…

worst case:	
search is here

b-1 nodes open	
at each level	

!
d levels

O((b� 1)d) = O(bd)

DFS: Space

…

worst case:	
search is here

b-1 nodes open	
at each level	

!
d levels

O((b� 1)d) = O(bd)

DFS: Space

…

worst case:	
search is here

b-1 nodes open	
at each level	

!
d levels

O((b� 1)d) = O(bd)

DFS: Space

…

worst case:	
search is here

b-1 nodes open	
at each level	

!
d levels

O((b� 1)d) = O(bd)

DFS: Space

…

worst case:	
search is here

b-1 nodes open	
at each level	

!
d levels

O((b� 1)d) = O(bd)

Depth-First Search
Properties:	
• Completeness: Only for finite trees.	
• Optimality: No.	
• Time Complexity: 	
• Space Complexity: 	
!
Here m is depth of found solution (not necessarily min solution
depth).	
!
The deepest node happens to be the one you most recently visited -
easy to implement recursively OR manage frontier using LIFO
queue.

O(bd+1)
O(bd)

Breadth-First Search

s0

s1

Expand shallowest node

Breadth-First Search

s0

s1 s2

Expand shallowest node

Breadth-First Search

s0

s1 s2

s3

Expand shallowest node

Breadth-First Search

s0

s1 s2

s3 s4

Expand shallowest node

Breadth-First Search

s0

s1 s2

s3 s4 s5

Expand shallowest node

BFS: Time

…

O(bm+1)

BFS: Space

…

O(bm+1)

Breadth-First Search
Properties:	
• Completeness: Yes.	
• Optimality: Yes for constant cost.	
• Time Complexity: 	
• Space Complexity: 	
!
Better than depth-first search in all respects except memory
cost - must maintain a large frontier.	
!
Manage frontier using FIFO queue.

O(bm+1)
O(bm+1)

Iterative Deepening Search
Combine these two strengths.	
!
The core problems in DFS are a) not optimal, and b) not
complete … because it fails to explore other branches.	
!
Otherwise it’s a very nice algorithm!	
!
Iterative Deepening: 	
• Run DFS to a fixed depth z.	
• Start at z=1. If no solution, increment z and rerun.

IDS

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

run DFS 	
to this depth

IDS

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

run DFS 	
to this depth

IDS

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

run DFS 	
to this depth

IDS

s0

s1 s2 s3 s4

s5 s6

s8s7

s10s9

run DFS 	
to this depth

IDS
Optimal for constant cost! Proof?	
!
How can that be a good idea? 	
It duplicates work.	
!
Sure but:	
• Low memory requirement (equal to DFS).	
• Not many more nodes expanded than BFS. (About twice as

many for binary tree.)

IDS

…

visited m + 1 times

visited m times

IDS (Reprise)
mX

i=0

bi(m� i+ 1) =
b(bm+1 �m� 2) +m+ 1

(b� 1)2

nodes at level i
revisits

bm+1 � 1

b� 1
DFS worst case:

IDS
Key Insight:	
• Many more nodes at depth m+1 than at depth m.	
!
!
!
!
MAGIC.	
!
“In general, iterative deepening search is the preferred uninformed
search method when the state space is large and the depth of the
solution is unknown.” (R&N)

Next Week
Informed searches … what if you know something about the the
solution? 	
!
What form should such knowledge take? 	
!
How should you use it? 	
!

