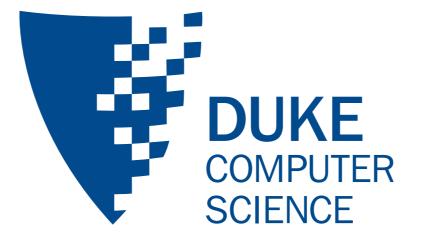
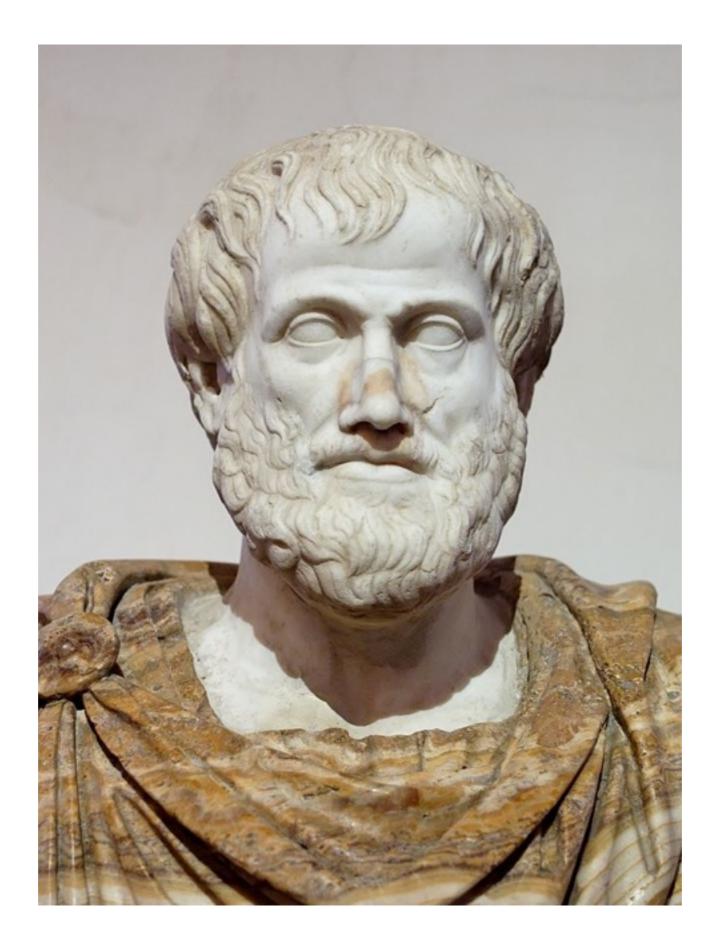
George Konidaris gdk@cs.duke.edu



Spring 2016



More sophisticated representation language.

World can be described by:

 $Color(\cdot)$ functions

 $\begin{array}{c} Adjacent(\cdot, \cdot)\\ IsApple(\cdot)\\ \textbf{relations} \end{array}$

objects

Objects:

- A "thing in the world"
 - Apples
 - Red
 - The Internet
 - Team Edward
 - Reddit
- A name that references something.
- Cf. a noun.

MyApple271 TheInternet CompSci270 Ennui

Functions:

- Operator that maps object(s) to single object.
 - $ColorOf(\cdot)$
 - $ObjectNextTo(\cdot)$
 - $SocialSecurityNumber(\cdot)$
 - $DateOfBirth(\cdot)$ $Spouse(\cdot)$

ColorOf(MyApple271) = Red

Relations (also called predicates):

Like a function, but returns True or False - holds or does not.

- $IsApple(\cdot)$
- $ParentOf(\cdot, \cdot)$
- $BiggerThan(\cdot, \cdot)$
- $HasA(\cdot, \cdot)$

These are like verbs or verb phrases.

We can build up complex sentences using logical connectives, as in propositional logic:

- $Fruit(X) \implies Sweet(X)$
- $Food(X) \implies (Savory(X) \lor Sweet(X))$
- $ParentOf(Bob, Alice) \land ParentOf(Alice, Humphrey)$
- $Fruit(X) \implies Tasty(X) \lor (IsTomato(X) \land \neg Tasty(X))$

Predicates can appear where a propositions appear in propositional logic, but *functions cannot*.

Models for First-Order Logic

Recall from Propositional Logic!

A model is a formalization of a "world":

- Set the value of every variable in the KB to True or False.
- 2^n models possible for *n* propositions.

Proposition	Value	Proposition	Value		Proposition	Value
Cold	False	Cold	True		Cold	True
Raining	False	Raining	False	• • •	Raining	True
Cloudy	False	Cloudy	False		Cloudy	True
Hot	False	Hot	False		Hot	True

Models for First-Order Logic

The situation is much more complex for FOL.

A model in FOL consists of:

- A set of objects.
- A set of functions + values for all inputs.
- A set of predicates + values for all inputs.

Consider:

Objects Orange Apple

Predicates $IsRed(\cdot)$ $HasVitaminC(\cdot)$

Functions $OppositeOf(\cdot)$

Example model:

Predicate	Argument	Value
IsRed	Orange	False
IsRed	Apple	True
HasVitaminC	Orange	True
HasVitaminC	Apple	True

Function	Argument	Return
<i>OppositeOf</i>	Orange	Apple
Opposite	Apple	Orange

Knowledge Bases in FOL

A KB is now:

- A set of objects.
- A set of predicates.
- A set of functions.
- A set of sentences using the predicates, functions, and objects, and asserted to be true.

Objects Orange Apple

Predicates $IsRed(\cdot)$ $HasVitaminC(\cdot)$

Functions $OppositeOf(\cdot)$

IsRed(Apple)HasVitaminC(Orange)

Knowledge Bases in FOL

Listing everything is tedious ...

• Especially when general relationships hold.

We would like a way to say more general things about the world than explicitly listing truth values for each object.

New weapon:

• Quantifiers.

Quantifiers allow us to make generic statements about properties that hold for the *entire collection of objects* in our KB.

Natural way to say things like:

- All fish have fins.
- All books have pages.
- There is a textbook about AI.

Key idea: variable + binding rule.

Existential Quantifiers

There exists object(s) such that a sentence holds.

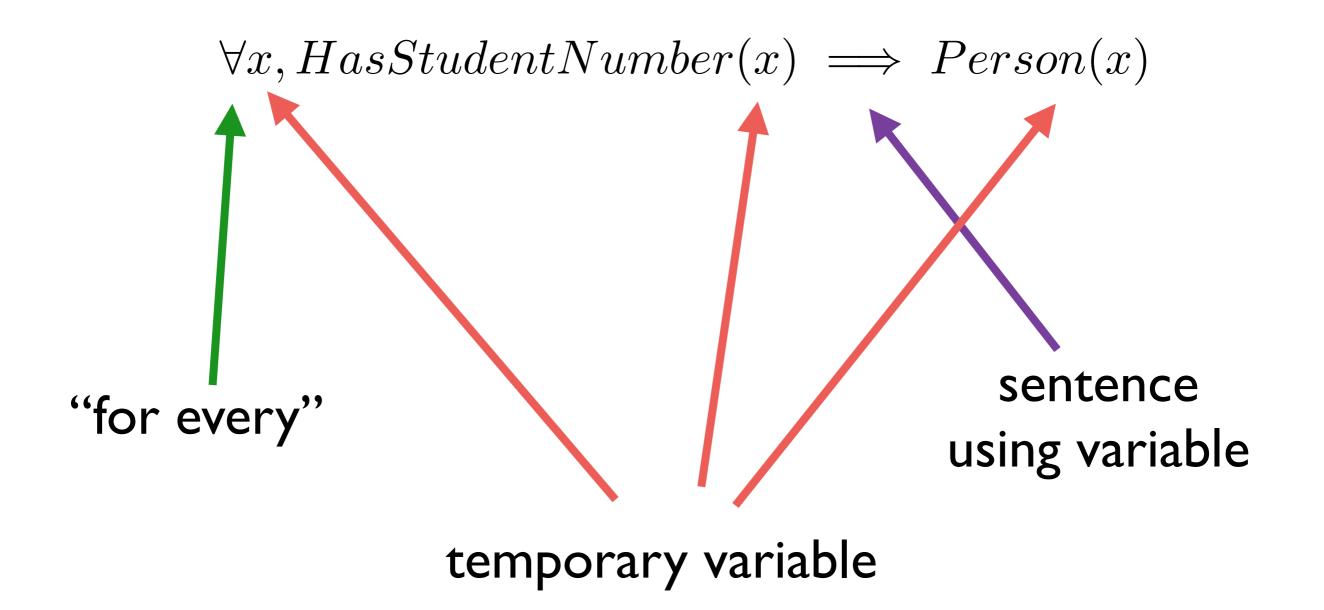


Existential Quantifiers

Examples:

- $\exists x, Person(x) \land Name(x, George)$
- $\exists x, Car(x) \land ParkedIn(x, E23)$
- $\exists x, Course(x) \land Prerequisite(x, CS270)$

A sentence holds for all object(s).



Universal Quantifiers

Examples

- $\forall x, Fruit(x) \implies Tasty(x)$
- $\forall x, Bird(x) \implies Feathered(x)$

 $\forall x, Book(x) \rightarrow HasAuthor(x)$

Quantifiers

Difference in strength:

- Universal quantifier is very strong.
 - So use weak sentence.

 $\forall x, Bird(x) \implies Feathered(x)$

- Existential quantifier is very weak.
 - So use strong sentence.

 $\exists x, Car(x) \land ParkedIn(x, E23)$

Compound Quantifiers

$\forall x, \exists y, Person(x) \implies Name(x, y)$

"every person has a name"

$\forall x, Bird(x) \land Feathered(x)$

Common Pitfalls

$\exists x, Car(x) \implies ParkedIn(x, E23)$

. . .

Ground term, or literal - an actual object:

MyApple12

vs.a variable:

If you have only ground terms, you can convert to a propositional representation and proceed from there.

IsTasty(Apple): IsTastyApple

Instantiation

 $Fruit(TheSky) \implies Tasty(TheSky)$

Getting rid of variables: instantiate a variable to a literal.

Universally quantified:
 $\forall x, Fruit(x) \implies Tasty(x)$ $Fruit(Apple) \implies Tasty(Apple)$ $\forall ruit(Orange) \implies Tasty(Orange)$ $Fruit(MyCar) \implies Tasty(MyCar)$

For every object in the KB, just write out the rule with the variables substituted.

Instantiation

Existentially quantified:

• Invent a new name (Skolem constant)

$$\exists x, Car(x) \land ParkedIn(x, E23)$$

 $Car(C) \wedge ParkedIn(C, E23)$

- Name cannot be one you've already used.
- Rule can then be discarded.

PROLOG

PROgramming in LOGic (Colmerauer, 1970s)

- General-purpose AI programming language
- Based on First-Order Logic
- Declarative
- Use centered in Europe and Japan
- Fifth-Generation Computer Project
- Some parts of Watson (pattern matching over NLP)
- Often used as component of a system.