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Real-world security 
applications

Airport sec rit

Milind Tambe’s TEAMCORE group (USC)

Airport security
• Where should checkpoints, canine units, etc. be 

deployed?deployed?

Federal Air Marshals
Whi h fli ht t FAM?

US Coast Guard

• Which flights get a FAM?

US Coast Guard
• Which patrol routes should be followed?



Penalty kick example

probability .7

probability .3

action

probability 1

Is this a action

probability .6
“rational” 
outcome?  
If not, what 

action

probability .4 is?



Penalty kick
(also known as: matching pennies)
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Security example

Terminal A Terminal B

actionaction

action



Security gamey g

A B

0, 0 -1, 2A

-1, 1 0, 0B



Modeling and representing games
2, 2 -1, 0

-7 -8 0 0

THIS TALK
(unless 
specified -7, -8 0, 0

normal-form games

specified 
otherwise)

extensive-form games

Bayesian gamesBayesian games
stochastic games

hi l
action-graph games

[L B & T h l IJCAI’03graphical games
[Kearns, Littman, Singh UAI’01]

[Leyton-Brown & Tennenholtz IJCAI’03
[Bhat & Leyton-Brown, UAI’04]

[Jiang, Leyton-Brown, Bhat GEB’11] MAIDs 
[Koller & Milch. IJCAI’01/GEB’03]



How to defend penalties

L R
Them

0, 0 -1, 1L
Us

-1, 1 0, 0R
Us

• Assume opponent knows our strategy…
– hopeless?

• … but we can use randomization

• If we play L 60% R 40%If we play L 60%, R 40%...

• … opponent will play R…

t 6*( 1) 4*(0) 6• … we get .6*(-1) + .4*(0) = -.6

• Better: L 50%, R 50% guarantees -.5 (optimal)



A locally more popular sport

go for 3 go for 2

0, 0 -2, 2defend the 3 

go for 3 go for 2

, ,

-3 3 0 0defend the 2 3, 3 0, 0defend the 2



Solving basketball

3 2
Them

0, 0 -2, 23
Us

-3, 3 0, 02
Us

• If we 50% of the time defend the 3, opponent will shoot 3

– We get .5*(-3) + .5*(0) = -1.5g ( ) ( )

• Should defend the 3 more often: 60% of the time

• Opponent has choice between• Opponent has choice between

– Go for 3: gives them .6*(0) + .4*(3) = 1.2

G f 2 i th 6*(2) 4*(0) 1 2– Go for 2: gives them .6*(2) + .4*(0) = 1.2

• We get -1.2 (the maximin value)



Let’s change roles

3 2
Them

0, 0 -2, 23
Us

-3, 3 0, 02
Us

• Suppose we know their strategy

• If 50% of the time they go for 3, then we defend 3y g ,

– We get .5*(0)+.5*(-2) = -1

• Optimal for them: 40% of the time go for 3
von Neumann’s minimax
theorem [1928]: maximinOptimal for them: 40% of the time go for 3

– If we defend 3, we get .4*(0)+.6*(-2) = -1.2

If we defend 2 we get 4*( 3)+ 6*(0) = 1 2

value = minimax value
(~ linear programming duality)

– If we defend 2, we get .4 (-3)+.6 (0) = -1.2

• This is the minimax value



Example linear program
W k d ti f

maximize 3x + 2y
• We make reproductions of 

two paintings y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5
• Painting 1 sells for $3, painting 2 

sells for $2 x + y ≤ 5

x ≥ 0

sells for $2
• Painting 1 requires 4 units of 

blue, 1 green, 1 red x  0

y ≥ 0

, g ,
• Painting 2 requires 2 blue, 2 

green, 1 redg ,
• We have 16 units blue, 8 green, 

5 red



Solving the linear program graphically

maximize 3x + 2yy

subject to
8

4x + 2y ≤ 16 6

x + 2y ≤ 8

x + y ≤ 5
4 optimal solution: 

3 2x + y ≤ 5

x ≥ 0 2

x=3, y=2

x  0

y ≥ 0
0 2 4 6 8



Solving for minimax strategies 
using linear programming

• maximize u
• subject to• subject to 

for any c, Σr pr uR(r, c) ≥ u
Σr pr = 1

Can also convert linear programs to two-player
zero-sum games, so they are equivalentg y q



Some of the questions raised
• Equilibrium selection?

0 0 -1 1D
D S

• How should we model temporal / information

0, 0 -1, 1
1, -1 -5, -5S

• How should we model temporal / information 
structure? 2, 2 -1, 0

-7, -8 0, 0

• What structure should utility functions have?

• Do our algorithms scale?• Do our algorithms scale?



Observing the defender’s 
distribution in security

Terminal A

Terminal B

observe
Mo Tu We Th Fr Sa

This model is not uncontroversial… [Pita, Jain, Tambe, Ordóñez, Kraus 
AIJ’10; Korzhyk, Yin, Kiekintveld, C., Tambe JAIR’11; Korzhyk, C., Parr AAMAS’11]



CommitmentCommitment

1, 1 3, 0
U i N h

0, 0 2, 1
Unique Nash 
equilibrium

• Suppose the game is played as follows: von Stackelberg

– Player 1 commits to playing one of the rows,

– Player 2 observes the commitment and then chooses a columnPlayer 2 observes the commitment and then chooses a column

• Optimal strategy for player 1: commit to Down



Commitment as an 
i fextensive-form game

Player 1

• For the case of committing to a pure strategy:

Player 1

Up Down

Player 2 Player 2

Left Left RightRight

1, 1 3, 0 0, 0 2, 1



Commitment to mixed strategiesg

0 1

1, 1 3, 0.49 , ,

0, 0 2, 1.51

– Sometimes also called a Stackelberg (mixed) strategy



Commitment as an 
i fextensive-form game…

• for the case of committing to a mixed strategy:
Player 1

… for the case of committing to a mixed strategy:

(1,0) 
(=Up)

(0,1) 
(=Down)

(.5,.5)

… …
Player 2

Left Left RightRight Left Right

1, 1 3, 0 0, 0 2, 1.5, .5 2.5, .5

• Economist: Just an extensive form game nothing new here• Economist: Just an extensive-form game, nothing new here

• Computer scientist: Infinite-size game!  Representation matters



Computing the optimal mixed 
strategy to commit to

[C & Sandholm EC’06 von Stengel & Zamir GEB’10][C. & Sandholm EC 06, von Stengel & Zamir GEB 10]

• Separate LP for every column c*:p y

maximize Σr pr uR(r, c*)

subject to

leader utility

subject to

for all c, Σr pr uC(r, c*) ≥ Σr pr uC(r, c) follower optimality

Σr pr = 1 distributional constraint

Slide 7



applied to the previous game… applied to the previous game

1, 1 3, 0p

0, 0 2, 1q

maximize 1p + 0q

subject to

maximize 3p + 2q

subject tosubject to

1p + 0q ≥ 0p + 1q

subject to

0p + 1q ≥ 1p + 0q

p + q = 1

p ≥ 0

p + q = 1

p ≥ 0

Slide 7

p ≥ 0

q ≥ 0

p ≥ 0

q ≥ 0



VisualizationVisualization

L C RL C R

U 0,1 1,0 0,0 (0,1,0) = M
M 4,0 0,1 0,0
D 0,0 1,0 1,1

( , , )

C

RL R

(1,0,0) = U (0,0,1) = D



Other nice properties of 
commitment to mixed strategies

0, 0 -1, 1

• Agrees w. Nash in zero-sum games
0, 0 1, 1

-1, 1 0, 0

• Leader’s payoff at least as good as p y g
any Nash eq. or even correlated eq. 
(von Stengel & Zamir [GEB ‘10]; see also C

≥
(von Stengel & Zamir [GEB 10]; see also C. 
& Korzhyk [AAAI ‘11], Letchford, Korzhyk, C. 

[JAAMAS ’14])
• No equilibrium selection problem

[JAAMAS 14])
0, 0 -1, 1

1, -1 -5, -5

More discussion: V. Conitzer. On Stackelberg Mixed Strategies. 
[Synthese, to appear.] 



Example security game
• 3 airport terminals to defend (A, B, C)

• Defender can place checkpoints at 2 of them

Att k tt k 1 t i l• Attacker can attack any 1 terminal

A B C

0 1 0 1 2 3{A B}

A B C

0, -1 0, -1 -2, 3
0 1 1 1 0 0

{A, B}

{A, C} 0, -1 -1, 1 0, 0
1 1 0 1 0 0

{A, C}

{B, C} -1, 1 0, -1 0, 0{ , }



Security resource allocation games

• Set of targets T

[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS’09]

g

• Set of security resources available to the defender (leader)

• Set of schedules• Set of schedules

• Resource  can be assigned to one of the schedules in

• Attacker (follower) chooses one target to attack

• Utilities:                       if the attacked target is defended, 

otherwise

• s
t1

1

s1

s2

t2
t3

2
2

s3

t5t4



Game-theoretic properties of security resource 
allocation games [Korzhyk, Yin, Kiekintveld, C., Tambe JAIR’11]

For the defender:• For the defender: 
Stackelberg strategies are 
also Nash strategies
– minor assumption needed

– not true with multiple attacks

• Interchangeability property for• Interchangeability property for 
Nash equilibria (“solvable”) 1, 2 1, 0 2, 2
• no equilibrium selection problem

• still true with multiple attacks 
1, 1 1, 0 2, 1

[Korzhyk, C., Parr IJCAI’11] 0, 1 0, 0 0, 1



Compact LPCo pac
• Cf. ERASER-C algorithm by Kiekintveld et al. [2009]

• Separate LP for every possible t* attacked:

f d iliDefender utility

Marginal probability

Distributional constraints

Marginal probability 
of t* being defended (?)

Distributional constraints

Attacker optimality

Slide 11



Counter-example to the compact LP
2

.5 .5

5 tt

1

.5 tt

.5 t t

• LP suggests that we can cover every 
target with probability 1…

b t in fact e can co er at most 3• … but in fact we can cover at most 3 
targets at a time

Slide 12



Birkhoff-von Neumann theorem
• Every doubly stochastic n x n matrix can be 

represented as a convex combination of n x n 
permutation matrices .1 .4 .5

.3 .5 .2

.6 .1 .3

1 0 0
0 0 1= .1

0 1 0
0 0 1+.1

0 0 1
0 1 0+.5

0 1 0
1 0 0+.3

• Decomposition can be found in polynomial time O(n4.5)

0 1 0 1 0 0 1 0 0 0 0 1

Decomposition can be found in polynomial time O(n ), 
and the size is O(n2) [Dulmage and Halperin, 1955]

C b t d d t t l d bl b t h ti• Can be extended to rectangular doubly substochastic
matrices Slide 14



Schedules of size 1 using BvNSchedules of size 1 using BvN

1 t1
.7

.1 .2 t1 t2 t3

2
t2

.7

.3 1 .7 .2 .1

2 0 .3 .7

t3

.1 .2.2 .5
0 0 1
0 1 0

0 1 0
0 0 1

1 0 0
0 1 0

1 0 0
0 0 1



Algorithms & complexityg p y
[Korzhyk, C., Parr AAAI’10]

Homogeneous
R

Heterogeneous
Resources resources

Size 1 P P
(BvN theorem)

du
le

s

(BvN theorem)

Size ≤2, bipartite P
(BvN theorem)

NP-hard
(SAT)

Sc
he Size ≤2 P

(constraint generation)
NP-hard

NP hard
Size ≥3 NP-hardNP-hard

(3-COVER)

Slide 16

Also: security games on graphs
[Letchford, C. AAAI’13]



Security games with multiple attacks
[Korzhyk, Yin, Kiekintveld, C., Tambe JAIR’11]

• The attacker can choose multiple targets to attack• The attacker can choose multiple targets to attack

• The utilities are added over all attacked targets• The utilities are added over all attacked targets

• Stackelberg NP-hard; Nash polytime-solvable and 
interchangeable [Korzhyk, C., Parr IJCAI‘11]

• Algorithm generalizes ORIGAMI algorithm for single attack• Algorithm generalizes ORIGAMI algorithm for single attack 
[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS’09]



Actual Security Schedules: Before vs. After
Boston, Coast Guard – “PROTECT” algorithm, g

slide courtesy of Milind Tambe
Before PROTECT After PROTECTBefore PROTECT After PROTECT

C
ou

nt

C
ou

nt

D 1 D 2 D 3 D 4 D 5 D 6 D 7Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Industry port partners comment:
“The Coast Guard seems to be everywhere, all the time." 



Data from LAX checkpoints
before and after “ARMOR” algorithm

slide courtesy of 
Milind Tambe

before and after ARMOR  algorithm
slide 

140

(pre)4/17/06 to 7/31/07 

120

1/1/08 to 12/31/08 not a controlled 
experiment!

80

100
1/1/09 to 12/31/09

experiment!

60

80
1/1/10 to 12/31/10

40

60

20

0
Firearm Violations Drug Related Offenses Miscellaneous Total



Placing checkpoints in a city
[T i Yi K k K Ki ki t ld T b AAAI’10 J i K h k[Tsai, Yin, Kwak, Kempe, Kiekintveld, Tambe AAAI’10; Jain, Korzhyk, 

Vaněk, C., Pěchouček, Tambe AAMAS’11; Jain, C., Tambe AAMAS’13]



In summary: CS pushing at some of the 
boundaries of game theory

learning in games

behavioral 
(humans 

game theory

playing 
games)

CS work in game theory

computation

representation
conceptual

(e.g., equilibrium selection)

representation


