Computing Game-Theoretic Solutions for Security

Vincent Conitzer

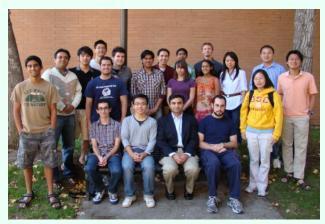
Dmytro Korzhyk

Joshua Letchford

Duke University

overview article: V. Conitzer. Computing Game-Theoretic Solutions and Applications to Security. *Proc. AAAI'12*.

Real-world security applications



Milind Tambe's TEAMCORE group (USC)

Airport security

• Where should checkpoints, canine units, etc. be deployed?

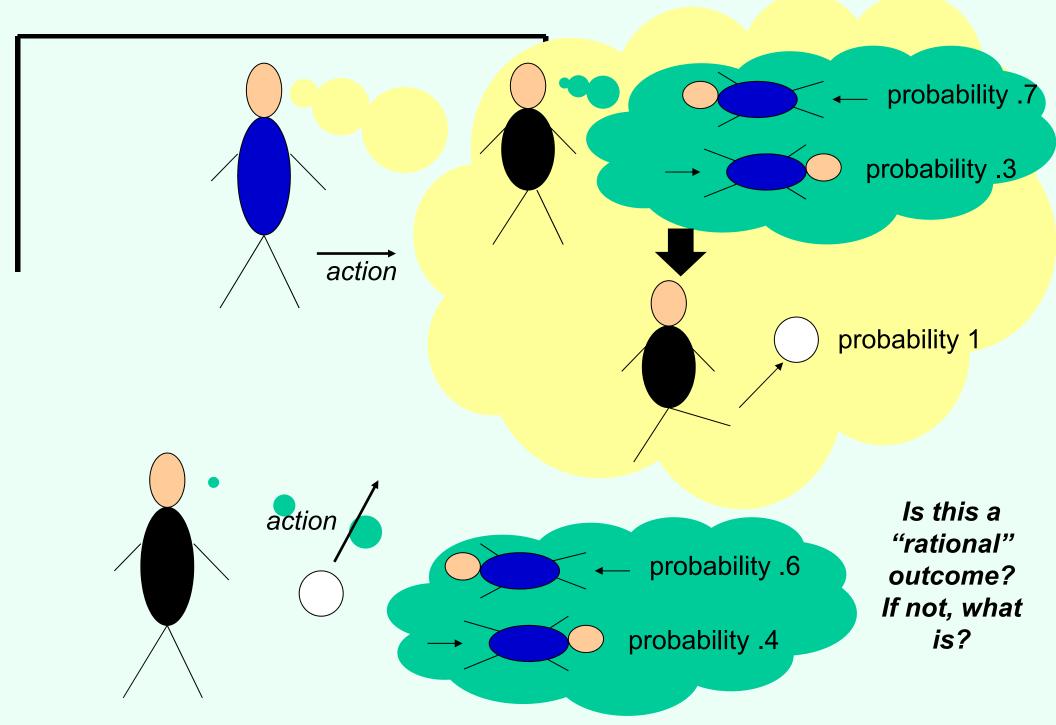
Federal Air Marshals

• Which flights get a FAM?

US Coast Guard

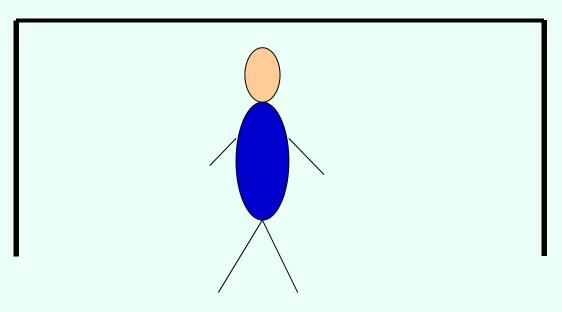
• Which patrol routes should be followed?

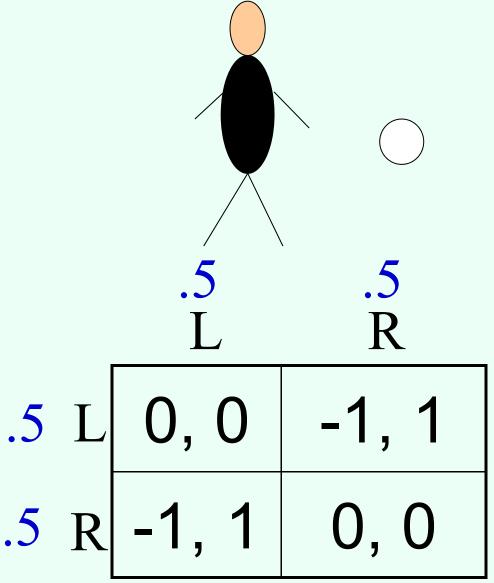
Penalty kick example



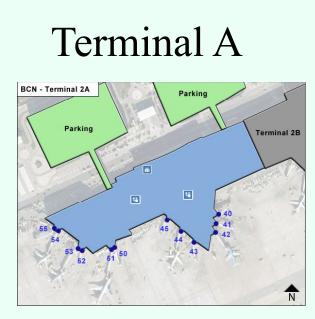
Penalty kick

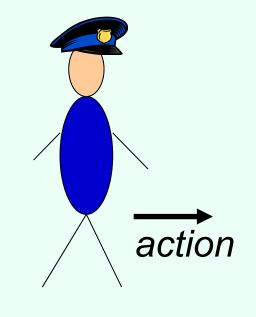
(also known as: matching pennies)





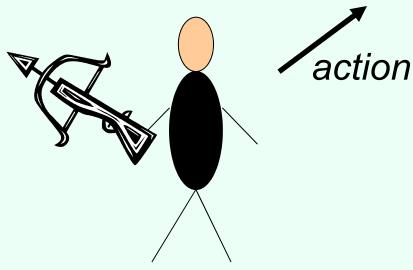
Security example



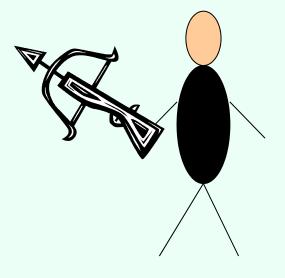


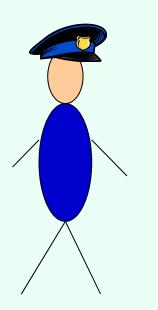
Terminal B



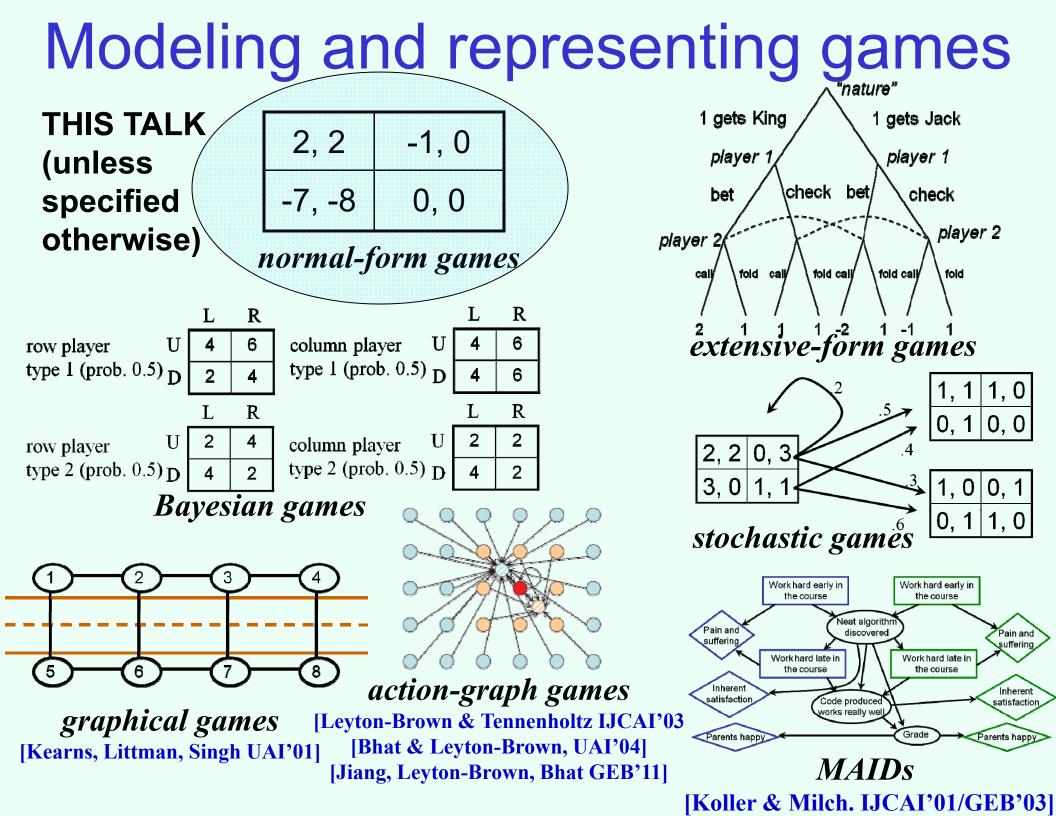


Security game



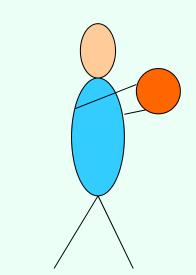


A		B
A	0, 0	-1, 2
В	-1, 1	0, 0

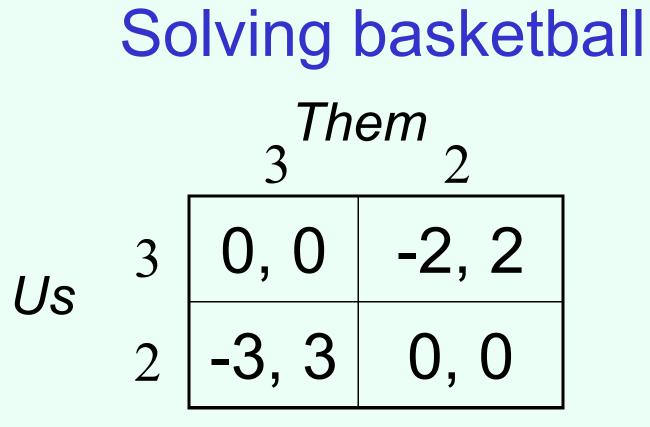


- Assume opponent knows our strategy...
 - hopeless?
- ... but we can use randomization
- If we play L 60%, R 40%...
- ... opponent will play R...
- ... we get .6*(-1) + .4*(0) = -.6
 - Better: L 50%, R 50% guarantees -.5 (optimal)

A locally more popular sport



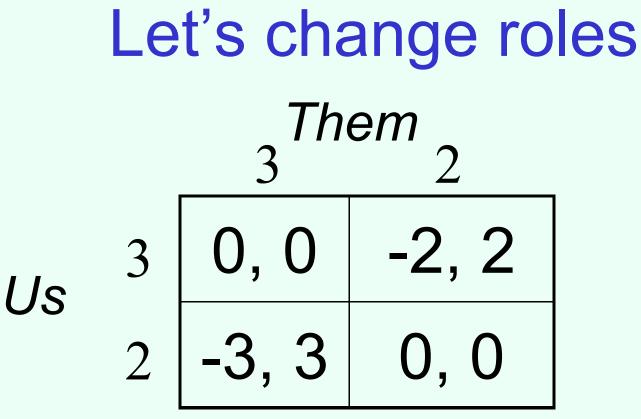
go for 3 go for 2 defend the 3 0, 0 -2, 2 defend the 2 -3, 3 0, 0



• If we 50% of the time defend the 3, opponent will shoot 3

- We get $.5^{*}(-3) + .5^{*}(0) = -1.5$

- Should defend the 3 more often: 60% of the time
- Opponent has choice between
 - Go for 3: gives them $.6^*(0) + .4^*(3) = 1.2$
 - Go for 2: gives them $.6^{*}(2) + .4^{*}(0) = 1.2$
- We get -1.2 (the maximin value)

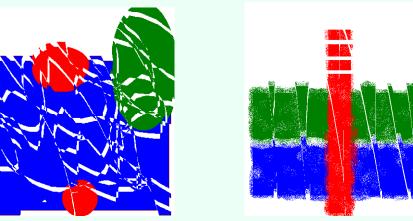


- If 50% of the time they go for 3, then we defend 3
 - We get $.5^*(0) + .5^*(-2) = -1$
- Optimal for them: 40% of the time go for 3
 - If we defend 3, we get $.4^{*}(0)+.6^{*}(-2) = -1.2$ (~ linear programming duality)
 - If we defend 2, we get $.4^{(-3)+.6^{(0)}} = -1.2$
- This is the minimax value

von Neumann's minimax theorem [1928]: maximin value = minimax value linear programming duality)

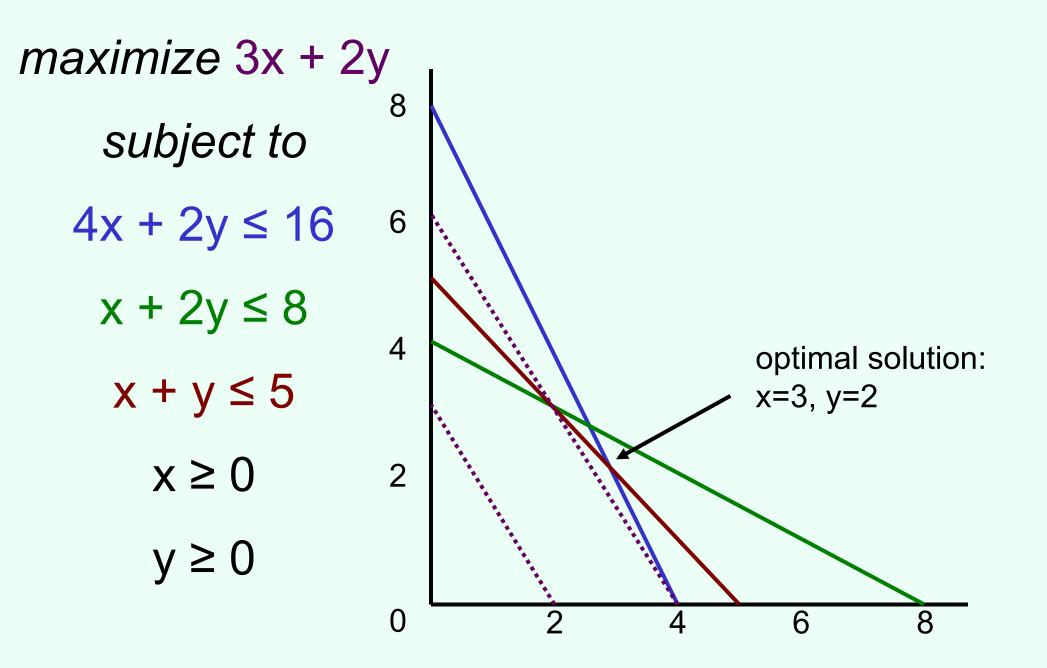
Example linear program

 We make reproductions of two paintings



- Painting 1 sells for \$3, painting 2 sells for \$2
- Painting 1 requires 4 units of blue, 1 green, 1 red
- Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red
- maximize 3x + 2y subject to $4x + 2y \le 16$ $x + 2y \le 8$ $x + y \leq 5$ $x \ge 0$ y ≥ 0

Solving the linear program graphically



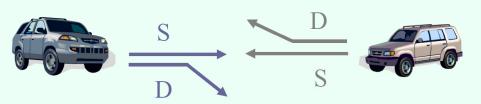
Solving for minimax strategies using linear programming

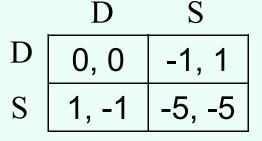
- maximize *u*
- subject to for any c, $\Sigma_r p_r u_R(r, c) \ge u$ $\Sigma_r p_r = 1$

Can also convert linear programs to two-player zero-sum games, so they are equivalent

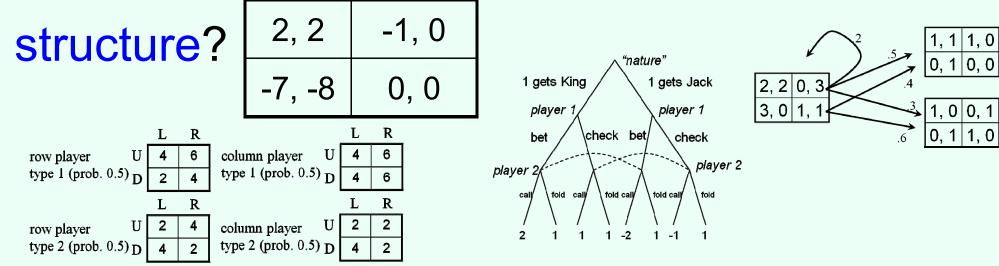
Some of the questions raised

• Equilibrium selection?



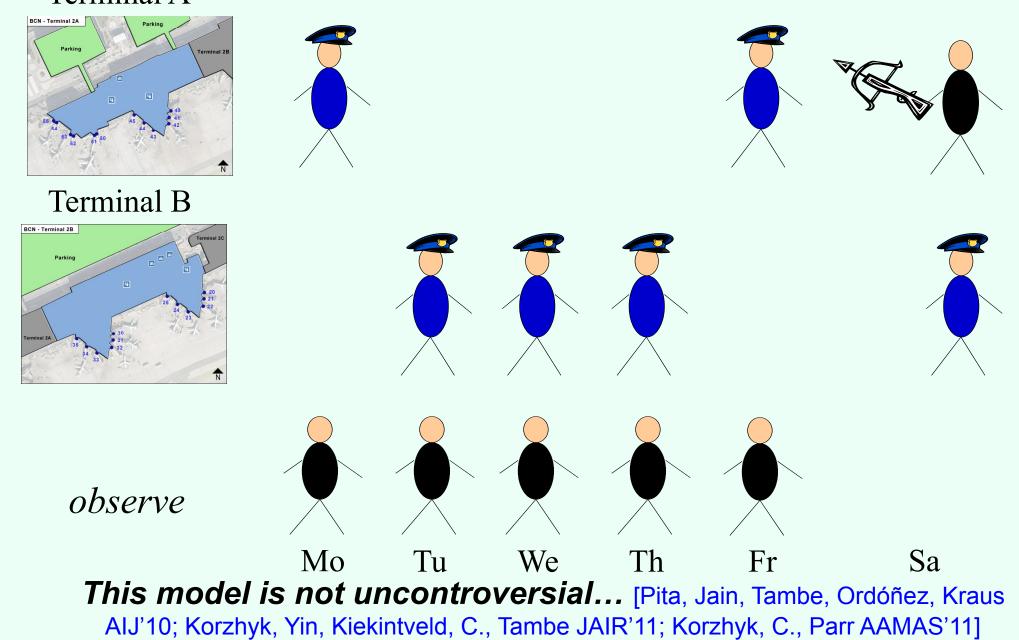


How should we model temporal / information

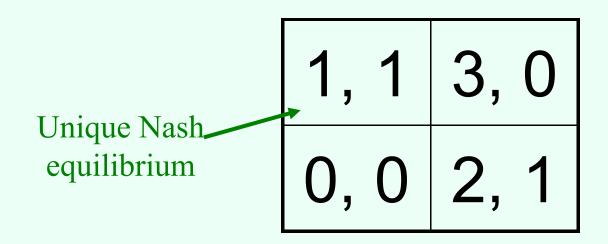


- What structure should utility functions have?
- Do our algorithms scale?

Observing the defender's distribution in security



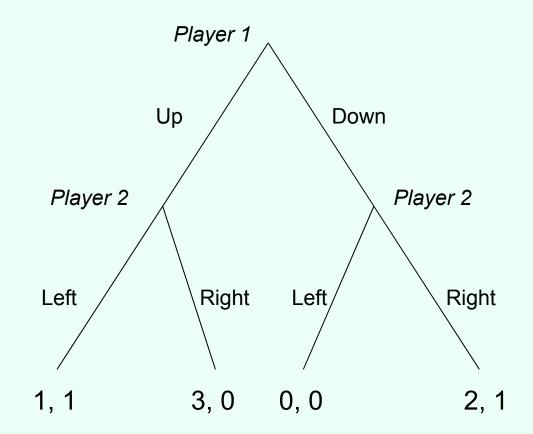
Commitment



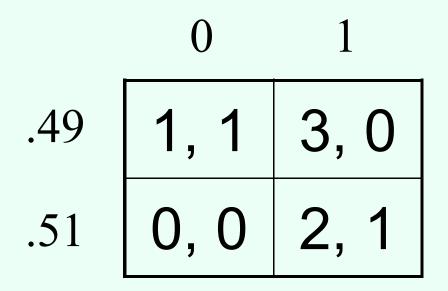
- von Stackelberg
- Suppose the game is played as follows:
 - Player 1 commits to playing one of the rows,
 - Player 2 observes the commitment and then chooses a column
- Optimal strategy for player 1: commit to Down

Commitment as an extensive-form game

• For the case of committing to a pure strategy:



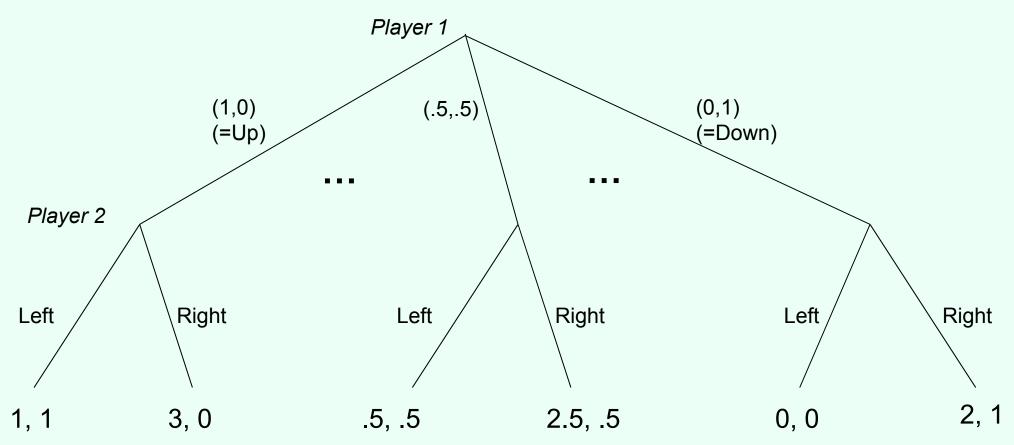
Commitment to mixed strategies



- Sometimes also called a Stackelberg (mixed) strategy

Commitment as an extensive-form game...

• ... for the case of committing to a mixed strategy:



- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters

Computing the optimal mixed strategy to commit to

[C. & Sandholm EC'06, von Stengel & Zamir GEB'10]

• Separate LP for every column c*:

maximize $\Sigma_r p_r u_R(r, c^*)$ leader utility subject to

for all c, $\Sigma_r p_r u_c(r, c^*) \ge \Sigma_r p_r u_c(r, c)$ follower optimality

distributional constraint

 $\Sigma_r p_r = 1$

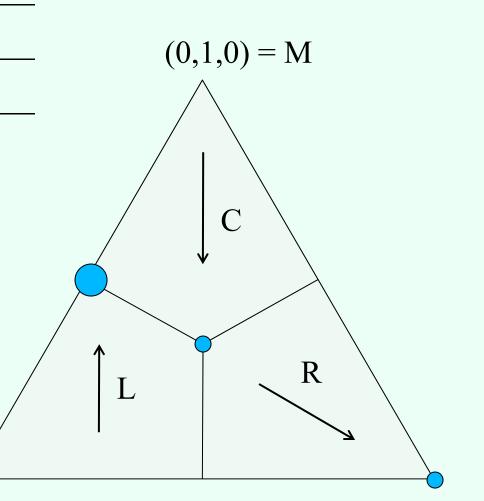
... applied to the previous game

maximize 1p + 0qsubject to $1p + 0q \ge 0p + 1q$ p + q = 1 $p \ge 0$ $q \ge 0$

maximize 3p + 2qsubject to $0p + 1q \ge 1p + 0q$ p + q = 1 $p \ge 0$ $q \ge 0$

Visualization

	L	С	R	
U	0,1	1,0	0,0	
Μ	4,0	0,1	0,0	
D	0,0	1,0	1,1	



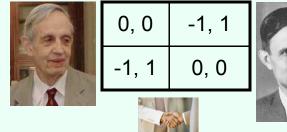
(1,0,0) = U (0,0,1) = D

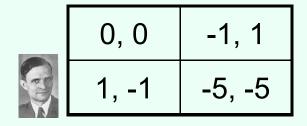
Other nice properties of commitment to mixed strategies

• Agrees w. Nash in zero-sum games

- Leader's payoff at least as good as any Nash eq. or even correlated eq. (von Stengel & Zamir [GEB '10]; see also C. & Korzhyk [AAAI '11], Letchford, Korzhyk, C. [JAAMAS '14])
- No equilibrium selection problem

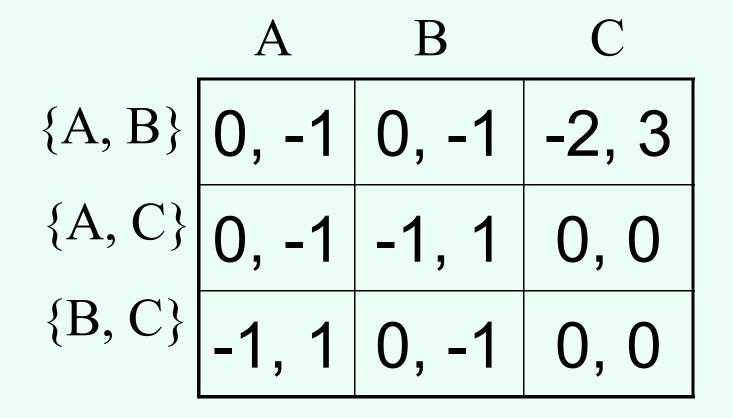
More discussion: V. Conitzer. On Stackelberg Mixed Strategies. [Synthese, to appear.]





Example security game

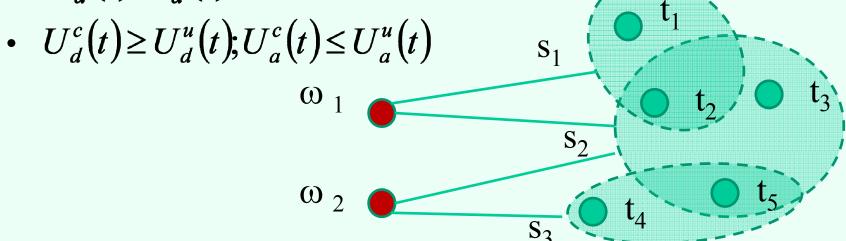
- 3 airport terminals to defend (A, B, C)
- Defender can place checkpoints at 2 of them
- Attacker can attack any 1 terminal



Security resource allocation games

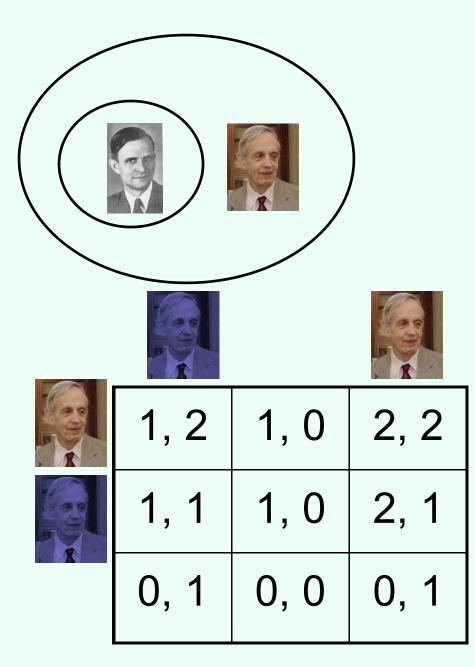
[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09]

- Set of targets T
- Set of security resources Ω available to the defender (leader)
- Set of schedules $S \subseteq 2^T$
- Resource ω can be assigned to one of the schedules in $A(\omega) \subseteq S$
- Attacker (follower) chooses one target to attack
- Utilities: $U_d^c(t), U_a^c(t)$ if the attacked target is defended, $U_d^u(t), U_a^u(t)$ otherwise



Game-theoretic properties of security resource allocation games [Korzhyk, Yin, Kiekintveld, C., Tambe JAIR'11]

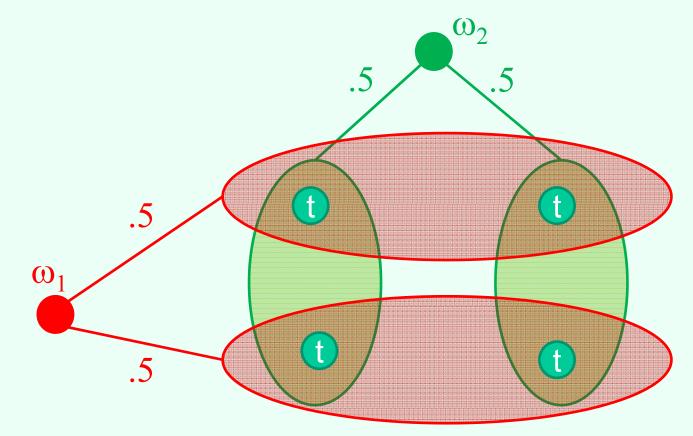
- For the defender:
 Stackelberg strategies are also Nash strategies
 - minor assumption needed
 - not true with multiple attacks
- Interchangeability property for Nash equilibria ("solvable")
 - no equilibrium selection problem
 - still true with multiple attacks [Korzhyk, C., Parr IJCAI'11]



Compact LP

- Cf. ERASER-C algorithm by Kiekintveld et al. [2009]
- Separate LP for every possible t* attacked:

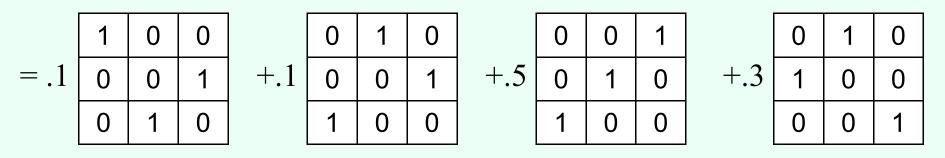
Counter-example to the compact LP



- LP suggests that we can cover every target with probability 1...
- ... but in fact we can cover at most 3 targets at a time

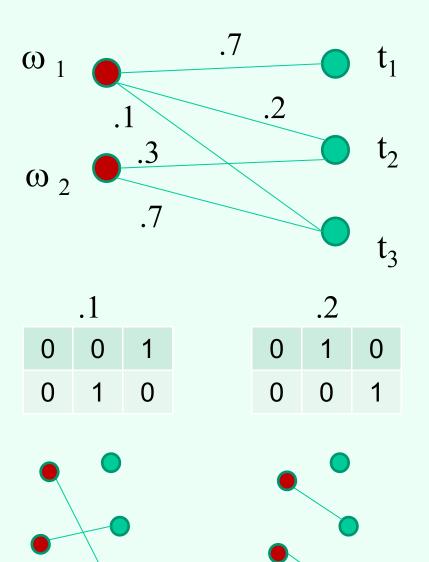
Birkhoff-von Neumann theorem

Every *doubly stochastic n x n* matrix can be represented as a convex combination of *n x n* permutation matrices
 .1



- Decomposition can be found in polynomial time O(n^{4.5}), and the size is O(n²) [Dulmage and Halperin, 1955]
- Can be extended to *rectangular* doubly *substochastic* matrices

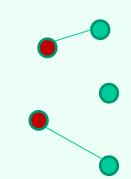
Schedules of size 1 using BvN



	t ₁	t ₂	t ₃
ω ₁	.7	.2	.1
00 ₂	0	.3	.7

.2 1 0 0 0 1 0

.5 1 0 0 0 0 1



Algorithms & complexity

[Korzhyk, C., Parr AAAI'10]

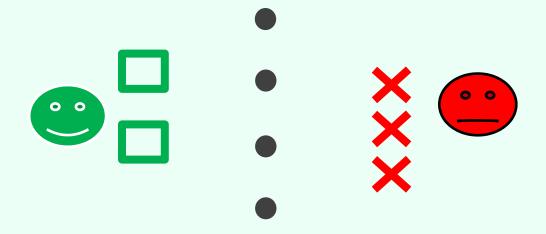
		Homogeneous Resources	Heterogeneous resources
Schedules	Size 1	P	P (BvN theorem)
	Size ≤2, bipartite	P (BvN theorem)	NP-hard (SAT)
	Size ≤2	P (constraint generation)	NP-hard
	Size ≥3	NP-hard (3-COVER)	NP-hard

Also: security games on graphs [Letchford, C. AAAI'13]

Security games with multiple attacks

[Korzhyk, Yin, Kiekintveld, C., Tambe JAIR'11]

• The attacker can choose multiple targets to attack

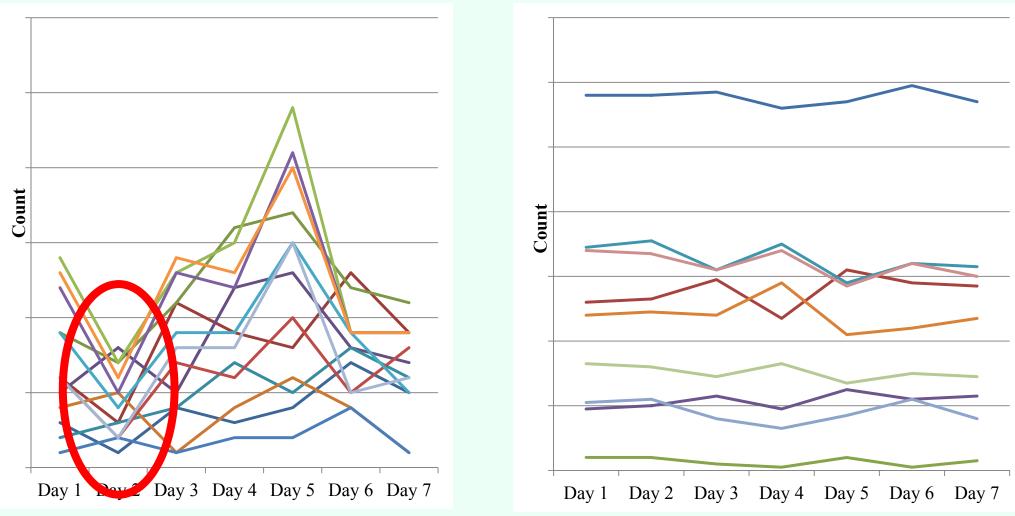


- The utilities are added over all attacked targets
- Stackelberg NP-hard; Nash polytime-solvable and interchangeable [Korzhyk, C., Parr IJCAI'11]
 - Algorithm generalizes ORIGAMI algorithm for single attack [Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS'09]

Actual Security Schedules: Before vs. After Boston, Coast Guard – "PROTECT" algorithm slide courtesy of Milind Tambe

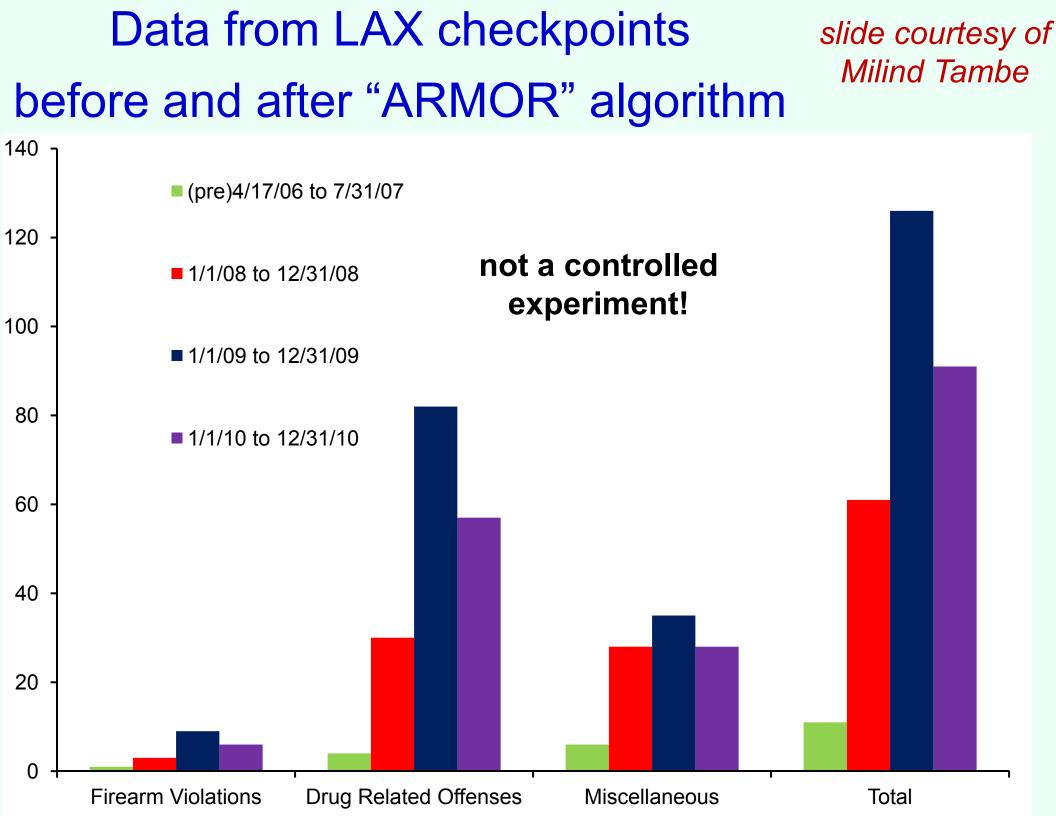
Before PROTECT

After PROTECT



Industry port partners comment:

"The Coast Guard seems to be everywhere, all the time."



Placing checkpoints in a city

[Tsai, Yin, Kwak, Kempe, Kiekintveld, Tambe AAAI'10; Jain, Korzhyk, Vaněk, C., Pěchouček, Tambe AAMAS'11; Jain, C., Tambe AAMAS'13]

