Failure, replication, replicated state
machines (RSM), and consensus

Jeff Chase
Duke University

What is a distributed system?

"A distributed system is one in which the
failure of a computer you didn't even know
existed can render your own computer
unusable." -- Leslie Lamport

\WHERE Twe Heck

I1TS THERE, UP
(s MY JATAT

IN ToHe CLOUDS

TR 4

4 .h\%'“\.l |
Leslie Lamport

Bramstuck com

Just a peek, and a project (p3)

COINSEIISUS

deterministic state machine
state machine
byzantine

asynchronous
a reement
Cr as

replicated state b chine™ malonwavaﬂabllﬂ}}}’
ceh il CONSENsUs protocol failstop

consistency replication
r ehablhty qUOI‘ um fault-tolerance

From http://paxos.systems

A service

client

/ply

I. 1
h :if::::. 0t response

client

Client

Server

Server

Scaling a service

Dispatcher

/

many
many Requests
clients

Server cluster/farm/cloud/grid
Data center

Add interchangeable server “bricks” to partition (“shard”) and/or
replicate service functionality for scale and robustness. Issues: state
storage, server selection, request routing, etc.

What about failures? X

« Systems fail. Here's a reasonable set of assumptions
about failure properties for servers/bricks (or dISkS)
— Fail-stop or fail-fast fault model ‘
— Nodes either function correctly or remain silent
— A failed node may restart, or not
— Arestarted node loses its memory state, and recovers its
secondary (disk) state
o If failures are random/independent, the probability of
some failure is linear with the number of units.

— Higher scale - less reliable!

y not have en ave been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again

x The image cannot be displayed. Your computer

. “Failures are independent.” - Chase

The problem of network partitions

Partitions cause “split
A network partition is any event l brain syndrome”: part of

that blocks all message traffic the system can’t know
between some subsets of nodes. what the other is doing.

Distributed mutual exclusion

|t is often necessary to grant some node/process
the “right” to “own” some given data or function.

« Ownership rights often must be mutually exclusive.

— At most one owner at any given time.

« How to coordinate ownership?

ONE LANE
BRIDGE

One solution: lock service

—— acquire

release —

—

v
W
4

\4

\

acquire ———

grant —

x=x+1

«—— release

lock service

&

| O

A lock service in the real world

—— acquire
—— acquire ———
«— grant

Solution: leases (leased locks)

A lease is a grant of ownership or
control for a limited time.

e The owner/holder can renew or
extend the lease.

« If the owner fails, the lease expires
and is free again.

 The lease might end early.
— lock service may recall or evict
— holder may release or relinquish

&@

A lease service in the real world

—— acquire
——

-— grant — |e—

X [

acquire ———

 —grant —

x=x+1

«—— release

Leases and time

 The lease holder and lease service must agree when
a lease has expired.

— l.e., that its expiration time is in the past
— Even if they can’t communicate!

 We all have our clocks, but do they agree?
— synchronized clocks

 For leases, it is sufficient for the clocks to have a
known bound on clock drift.
- |T(C) -T(C)| <€

— Build in slack time > ¢ into the lease protocols as a safety
margin.

OK, fine, but...

« What if the A does not fail, but is instead
isolated by a network partition?

This condition is often called a “split brain” problem: literally, one part of the
system cannot know what the other part is doing, or even if it's up.

Never two kings at once

—— acquire
— acquire ———

; «—— grant —
| e | 72772

 —grant —

x=x+1

«—— release

OK, fine, but...

 What if the manager/master itself fails?

X

We can replace it, but the nodes must agree on
who the new master is: requires consensus.

The Answer

* Replicate the functions of the manager/master.
— Or other coordination service...

* Designate one of the replicas as a primary.
— Or master
 The other replicas are backup servers.

— Or standby or secondary

 If the primary fails, use a high-powered
consensus algorithm to designate and
initialize a new primary.

Consensus: abstraction

VI‘ P‘ |
I I

Unreliable Consensus
multicast algorithm

P, o \‘1»3
d

2 3
Step 1 Step 2
Propose. Decide.
Each P proposes a value to the others. All nonfaulty P agree on a value in

a bounded time.

DISTRIBUTED SYSTEMS

CONCEPTS AND DESIGN
George Coulouris Jean Dollimore Tim Kindber

& Coulouris and Dollimore

Coordination and Consensus

 The key to availability and scalability is to decentralize and
replicate functions and data.

 But how to coordinate the nodes?
— data consistency
— update propagation
— mutual exclusion
— consistent global states
— failure notification
— group membership (views)
— group communication
— event delivery and ordering

« All of these are consensus problems.

Fischer-Lynch-Patterson (1985)

No consensus can be guaranteed in an
asynchronous system in the presence of failures.

Intuition: a “failed” process may just be slow, and

can rise from the dead at exactly the wrong time.
Consensus may occur recognizably, rarely or often.

OH
—— e, e
- 0
31924
R

Network partition Split brain

Jull u”E”E The Network is Reliable

An informal survey of real-world communications failures

Peter Bailis, UC Berkeley
Kyle Kingsbury, Jepsen Networks

The celebrated FLP impossibility result demonstrates the inability to guarantee consensus in an
asynchronous network (i.e., one facing indefinite communication partitions between processes) with
one faulty process. This means that, in the presence of unreliable (untimely) message delivery, basic
operations such as modifying the set of machines in a cluster (i.e., maintaining group membership, as
systems such as Zookeeper are tasked with today) are not guaranteed to complete in the event of
both network asynchrony and individual server failures.

Therefore, the degree of reliability in deployment environments is critical in robust systems design
and directly determines the kinds of operations that systems can reliably perform without waiting.
Unfortunately, the degree to which networks are actually reliable in the real world is the subject

of considerable and evolving debate.

CONCLUSIONS: WHERE DO WE GO FROM HERE?

This article is meant as a reference point—to illustrate that, according to a wide range of (often informal)
accounts, communication failures occur in many real-world environments. Processes, servers, NICs,
switches, and local and wide area networks can all fail, with real economic consequences. Network
outages can suddenly occur in systems that have been stable for months at a time, during routine
upgrades, or as a result of emergency maintenance. The consequences of these outages range from
increased latency and temporary unavailability to inconsistency, corruption, and data loss. Split-brain is not

an academic concern: it happens to all kinds of systems—sometimes for days on end. Partitions deserve
serious consideration.

“CAP theorem”

consistency

C

Dr. Eric Brewer

CA: available, and CP: always consistent, even
consistent, unless in a partition, but a reachable
there is a partition. C-A-P replica may deny service if it
is unable to agree with the

“choose others (e.g., quorum).
two”

A

o AP: a reachable replica P
Availability

orovides service evenin Fartition-resilience
a partition, but may be
inconsistent.

Paxos: voting among groups of nodes

Self-appoint Wait for majority Wait for majority

“V?” “O K”

“V! 7

L
NN
N\ N\ N\ N
N2 NS N
1a 1b 2a 2b 3
log log safe
Propose Promise Accept Ack Commit

You will see references to Paxos state machine: it refers to a
group of nodes that cooperate using the Paxos algorithm to keep
a system with replicated state safe and available (to the extent
possible under prevailing conditions). We will discuss it later.

“CAP theorem”

consistency

C

Dr. Eric Brewer

CA: available, and CP: always consistent, even
consistent, unless in a partition, but a reachable
there is a partition. C-A-P replica may deny service if it
is unable to agree with the

“choose others (e.g., quorum).
two”

A

o AP: a reachable replica P
Availability

orovides service evenin Fartition-resilience
a partition, but may be
inconsistent.

Properties for Correct Consensus

Termination: All correct processes eventually decide.

Agreement: All correct processes select the same d..

— Or...(stronger) all processes that do decide select the same
d,, even if they later fail.

Consensus “must be” both safe and live.

FLP and CAP say that a consensus algorithm
can be safe or live, but not both.

Now what?

« We must build practical, scalable, efficient distributed
systems that really work in the real world.

« But the theory says it is impossible to build reliable
computer systems from unreliable components.

« So what are we to do?

Recap: replicated lock service

—— acquire

>
J——

«— grant

x=x+1

release —

acquire ———
P

 —grant —_

x=x+1

«—— release
\

How to handle failure of the
lock server? Replicate it.

&

i

Coordination services and consensus

It is common to build cloud service apps around a
coordination service.

— Locking, failure detection, atomic/consistent update to small file-
like objects in a consistent global name space.

« Fundamental building block for scalable services.
— Chubby (Google)
— Zookeeper (Yahoo! / Apache)
— Centrifuge (Microsoft)

« They have the same consensus algorithm at their core
(with minor variations): Paxos/VR/Raft

« For p3 we use Raft for State Machine Replication.

Finite State Machine (FSM)
Dogs and Cats

/ wails

— 99(‘5 pe
T

Sees]squirrels gl Petfed

doesn't give a
crop about You ‘W

on event
E’vER‘

http://learnyousomeerlang.com/finite-state-machines

FSM Basics

It's a useful formal model for thinking about programs.

* Finite set of states and actions (inputs)

« Deterministic transition function: F(state, input) - state
« State determines behavior (e.g., also emit an output).
We can think of servers as FSMs.

« States: all possible combinations of internal data values.
* |Inputs: client requests change data + generate output.
« F(state, input) = (state, output)

Lock server as an FSM

acquire()

release()

It's an FSM, but we also have to represent waiters, and
actions like waking up a waiter on a state transition.

An FSM for two locks

A(1)

A1) |AQ) | R2)

A(2)

v

It gets complicated fast. But the point is that, formally, a
lock server with N locks may be viewed as an FSM.

Why bother with FSMs?

« We can represent any server as an FSM — theoretically.

« The point is that if we are going to replicate servers, we
want all the replicas to give the same responses.

« And that just means that they must be in the same state.

« And that will happen if they receive exactly the same
iInputs (requests) in exactly the same order.

« That is what we mean when we say we view a set of
server replicas as a replicated state machine (RSM).

State machines

What is a state? Should think of as a set of named variables and their values

State machines

Clients can ask a machine about its current state.

What is your
state?

State machines

What is an action? Command that updates named variables’ values

State machines

Is an action’s effect deterministic? For our purposes, yes. Given a state and an action,
we can determine next state w/ 100% certainty.

State machines

Is the effect of a sequence of actions deterministic? Yes, given a state and a
sequence of actions, can be
100% certain of end state

Replicated state machines

Each state machine should compute same state, even if some fail.
Client

What is @ @ What is
the state? the state?

B
Client

Replicated state machines

What has to be true of the actions that clients submit? Applied in same order
Client

action a. . action c.

Client Apply

. 3
Client

State machines

How should a machine make sure it applies action in same order across reboots?
Store them in a log!

uonoy
uonoY
uonoY

Replicated state machines

Can reduce problem of consistent, replicated states to consistent, replicated logs

Replicated state machines

How to make sure that logs are consistent? Two-phase commit? ...

Replicated state machines

What is the heart of the matter? Have to agree on the leader, outside of the logs.
Leader=L Leader=L

Apply
action a.

Client

RSM and consensus

 In this setting, consensus means that all replicas agree
on a sequence (or log) of actions (requests, inputs, ops).

« This strong ordering condition is necessary to ensure
that all replicas converge (in the general case).

— In more specific cases, we might be able to relax it. E.g., for a file
service that executes reads/writes on distinct files.

 And it is also a sufficient condition for convergence.

— Presuming the server program (“service code” or “server state
machine”) is in fact deterministic.

 So now we have a clear goal!

Goal: Replicated Log

ijiji?ijiji?ij

(Consensus Consensus Con nsus S\ate \
Module achine Module achine o ule Ma ine

add | jmp mov add | jmp mov
VAN

Servers

_ AN

e Replicated log => replicated state machine
= All servers execute same commands in same order

e Consensus module ensures proper log replication
e System makes progress as long as any majority of servers are up

e Failure model: fail-stop (not Byzantine), delayed/lost messages

March 3, 2013 Raft Consensus Algorithm Slide 47

Consensus: the classic paper

ACM TOCS:

— Transactions on Computer Systems

Submitted: 1990. Accepted: 1998

Introduced: I"'wvda is the new cheese inspector

The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned
despite the peripatetic propensity of its part-time legislators. The legislators maintained
consistent copies of the parliamentary record, despite their frequent forays from the chamber
and the forgetfulness of their messengers. The Paxon parliament’s protocol provides a new
way of implementing the state machine approach to the design of distributed systems.

1. THE PROBLEM

1.1 The Island of Paxos

Early in this millennium, the Aegean island of Paxos was a thriving
mercantile center.! Wealth led to political sophistication, and the Paxons
replaced their ancient theocracy with a parliamentary form of government.
But trade came before civic duty, and no one in Paxos was willing to devote
his life to Parliament. The Paxon Parliament had to function even though
legislators continually wandered in and out of the parliamentary Chamber.

The problem of governing with a part-time parliament bears a remark-
able correspondence to the problem faced by today’s fault-tolerant distrib-
uted systems, where legislators correspond to processes, and leaving the
Chamber corresponds to failing. The Paxons’ solution may therefore be of
some interest to computer scientists. I present here a short history of the

Veiis Paxos beaches
Haramij W Monodendri & resorts

Loggos beach
Marmari Click on a location to

Kipadi explore some of the
Kaka Lagada beaches & resorts
o of Paxos

' » Gaios
Paxos’ . .
beaches

‘ resorts

Vrika

For more information r . ,
about exploring Paxos Youtoumi
see the Top Trips page

You can also purchase Anti PGXOS

maps, trails & DVDs from
the Travel Shop

strict and was rejecting perfectly good cheese. Parliament then replaced
him by passing the decree

1375: I'wvda is the new cheese inspector

But AikoTpa did not pay close attention to what Parliament did, so he did
not learn of this decree right away. There was a period of confusion in the
cheese market when both AikoTpa and I'wvda were inspecting cheese and
making conflicting decisions.

To prevent such confusion, the Paxons had to guarantee that a position

could be held by at most one bureaucrat at any time.J['o do this, a president
included as part of each decree the time and date when it was proposed. A

decree making AikoTpa the cheese inspector might read

2716: 8:30 15 Jan 72 — Aiwkotpa is cheese inspector for 3 months

P97

v2.0 Paxos Made Simple

Leslie Lamport

01 Nov 2001
Abstract

The Paxos algorithm, when presented in plain English, is very simple.

1 Introduction

The Paxos algorithm for implementing a fault-tolerant distributed system
has been regarded as difficult to understand, perhaps because the original
presentation was Greek to many readers [5]. In fact, it is among the sim-
plest and most obvious of distributed algorithms. At its heart is a consensus
algorithm—the “synod” algorithm of [5]. The next section shows that this
consensus algorithm follows almost unavoidably from the properties we want
it to satisfy. The last section explains the complete Paxos algorithm, which
is obtained by the straightforward application of consensus to the state ma-
chine approach for building a distributed system—an approach that should
be well-known, since it is the subject of what is probably the most often-cited
article on the theory of distributed systems [4].

“Other” consensus algorithms

* Viewstamped Replication (VR)
— Barbara Liskov / Brian Oki 1988
— Chapter on “Replication”, 2010

« Raft
— Diego Ongaro, John Ousterhout et. al., 2014

VR is the same as Paxos, but explained more
directly. It was ahead of its time, and its
significance was not recognized.

“‘Everything | know about systems | learned from Barbara Liskov.”

Raft is the same as VR, but uses different vocabulary and minor
differences to the message protocol and leader election.

Systems and terminology, and p3

 Raft, VR, and Paxos are “the same”.

» These slides mix graphics and terms from all
three of these consensus presentations.

 What is said applies to Raft and the lab p3.

« For p3, we focus on two parts of Raft: leader
election and log repair.

* For p3, there are no clients and no new requests
to the service. ltis “just as if’ the servers all
restart after a series of failures, and they must
agree on the history of actions.

VR CLIENT 1 CLIENT n

User Code User Code

VR Proxy VR Proxy

¢ ¢
v v v

VR Code VR Code VR Code
Service Code Service Code Service Code
REPLICA REPLICA REPLICA

Figure 1: VR Architecture; the figure shows the configu-
ration when f = 1.

In VR, the leader is chosen from among the replicas; the non-leader
replicas (2f of them) serve as backup servers to tolerate up to f
concurrent failures.

VR: proxy

CLIENT 1 CLIENT n

User Code User Code

) ey) o

* VR proxy code runs in each client.
— Discover/track the leader and send requests to it.

— Tag requests with a monotonic sequence number.
— Suppress duplicate replies.

 The user code forms the requests: VR is independent of
the application, so we say nothing more about it.

Service Code

VR Code VR Code VR Code
‘ Service Code Service Code Service Code
REPLICA REPLICA REPLICA

« Each replica runs a copy of the application-defined
Service Code, which maintains the application state.

« The Service Code receives a sequence of commands/
operations and executes them in order (RSM).

VR Code

‘ VR Code VR Code VR Code

Service Code Service Code Service Code

REPLICA REPLICA REPLICA

 The VR code accepts requests and sequences them.

 When a requested operation has committed, the VR
code passes it to the the Service Code (RSM) to execute.

« Once the Service Code receives an operation, you can't
take it back! It is committed for all time!

|t maintains operation history as an append-only log.

Goal: Replicated Log

ijiji?ijiji?ij

(Consensus Consensus Con nsus S\ate \
Module achine Module achine o ule Ma ine

add | jmp [mov add | jmp [mov
AN

Servers

_ AN

e Replicated log => replicated state machine
= All servers execute same commands in same order

e Consensus module ensures proper log replication
e System makes progress as long as any majority of servers are up

e Failure model: fail-stop (not Byzantine), delayed/lost messages

March 3, 2013 Raft Consensus Algorithm Slide 58

The operation log / sequence

The committed operation log has a sequence of entries.
— Paxos: slots

— VR: op-numbers

— Raft: log entry / log index

« Goal: agree on an action/op/command for each index.

« Each replica maintains its log: a sequence of actions
that it has accepted (agreed to).

— Note: each replica might keep its log in memory, or on stable storage
(“disk”), as it chooses. There is no requirement that any part of the log
on any replica survives restarts—if our failure assumption is true: a
majority of replicas are up, at any time, always, no matter what.

« Let us suppose that each protocol round is concerned
only with choosing an action for the “next” log entry.

How to agree on the next entry?

 This is not rocket science: we can make it sound hard,
but let’s try to make it sound easy.

« |tis easy:

Pick a leader (primary) from among the replicas.
The leader receives requests/commands/actions from clients.

The leader picks a sequence for the actions, and tells the other
replicas (the secondary replicas).

Once a majority of replicas have heard and agreed on each
(index, action) pair, the action is committed for that index.

The leader responds to the clients after commit.
All replicas apply committed actions in the agreed commit order.
-> All replicas converge to the same state.

Leader / primary

The players

NS
\“ }}'\ a5

Become leader.
Rewrite history.

Dictate the future.

Stay leader forever.

If deposed goto step 1.

SIE S A e

Acceptor / secondary

Adopt leader.

Tell it your history.

Accept whatever the leader says.
Write it all down.

If a new leader appears, goto step 1.

s wh =

VR: Reaching consensus
« It's easy if you have a leader and everybody follows!

Request Prepare PrepareOk Reply
.(propose) . (accept) -

Client

Primary :

: - Majority accepted?
Replica 1 \/ — Commit!
Replica 2

Figure 3: Normal case processing in VR for a configura-
tion with f = 1.

The easy part: a stable view

Prepare PrepareOk Reply PrepareOk Reply PrepareOk Reply
client - ; ommi ; mm| ommi
primary: f f

:\/ TR

- prepare - - prepare - - prepare
notify notify notify

A leader may send multiple ops to accepters in each
prepare message (e.g., as in Raft AppendRPCs).

Safety: All majority-accepted operations must survive into
future views, even if failure strikes and nobody knows that
they have committed. (“First writer wins forever.”)

VR: Learning of commitment

Request Prepare PrepareOk Reply Prepare PrepareOk Reply

. +notify

Client

Primary

Replica 1

At some point after the operation has committed, the primary informs the
other replicas about the commit. This need not be done immediately. A
good time to send this information is on the next PREPARE message, as
piggy-backed information; only the op-number of the most recent
committed operation needs to be sent.

Replica 2

When a non-primary replica learns of a commit, it waits until it has
executed all earlier operations and until it has the request in its /og. Then
it executes the operation by performing the upcall to the service code.

Does this algorithm work?

That's really all there is to it, if we have good leaders:

1. Leaders rule only with consent of the governed: they
rule only if a majority of acceptors adopt and follow.

2. Leaders don't fight: if somebody else is leading, then
they follow or get out of the way.

3. Leaders accept and promulgate the consensus view of
history. They don’t try to change the past.

4. Leaders decide and apply their decisions consistently.

Also: acceptors may fail and forget, but they do not lie.

Why Is consensus hard?

OK, maybe it is rocket science...
« What if the leader fails?

« What if the network is partitioned? Could there are
leaders on either side of the partition?

« Or it there appear to be failures and partitions because
the network is slow?

« What if a partition heals, so now there are two leaders?

« What if replicas stall, or fail and then recover? How do
they get back up to date?
Answer: establish clear rules for who the leader is, for every

contingency. Keep the leader up to date. The leader keeps others up
to date. And vote: majority rules.

Recap: an RSM replica group

Request Prepare PrepareOk Reply
.(propose) . (accept) -

Client

Primary
Maijority accepted?

Replica 1 \/ - Commit!

Replica 2

Each replica is a copy of the application server, with all
of its state. Replicas keep a log of operations (at least
in memory) and apply them in order to their state. The
consensus protocol ensures that their states converge.
We assume that only that the app is deterministic and
that always some majority is functioning correctly; faulty
replicas just stop, and may restart “empty” and resync.

Consensus

oversimplified

o

ok wh =

. If leader appears failed and now is a

good time to run, declare candidacy.
Become leader by majority vote.
Discover and affirm history.

Propose values for new log slots in
order; notify others if majority accepts.

Adopt leader.

Tell it your history.

Accept whatever the leader says.
Write it all down.

If a new leader appears, goto step 1.

Raft in normal operation

AppendEntries @i AppendEntries @i+2
entries: [v1,v2] entries: [v3,v4]
, committed=i “OK” committed=i+2 “OK”
b . 7 eader
\\\\ fﬁ/ \\\Qfé/ Followers
~ N o
log [v1,v2] log [v3,v4] “%

commit [v1,v2]

Followers accept whatever the leader proposes.
Accept everything, even if it overwrites log history.

\

1. Network partition: leader L1 survives with minority.
— How to make progress where we can do it safely?

A nasty scenario...

— How to avoid accepting requests where it might be unsafe?

2. Partition heals - L1 and L2 both try to lead.

— How to establish which leader is “current”, so L1 steps down?
— How to reconcile conflicting histories in the logs?

A happy group Oops, network partition. L2 is elected on Partition heals.
of 5 replicas. Leader L1 survives on majority side; L1 L1 hears L2 and
minority side. struggles on. steps down.

A nasty scenario...

\

1. Network partition: leader survives in minority side.

How to make progress where we can do it safely?
How to avoid accepting requests where it might be unsafe?

Answer: majority rules. Leader requires a majority vote
(quorum). Majority side elects new leader (L2) and continues.

No requests can commit under L1: no majority. But they try!

2. Partition heals - L1 and L2 both try to lead.

How to establish which leader is “current”, so L1 steps down?
How to reconcile conflicting histories in the logs?

Answer: monotonically increasing terms / views. Everyone can see
that L1 is an old expired leader from an earlier term. L1 steps down
and yields to L2. Uncommitted log entries written under L1 are
overwritten with L2’s history.

C

* In order to lead and serve client requests, a leader L1 must
continually receive votes from a majority of the group (a quorum).

The importance of majority (quorum)

P

« The quorum rule protects consistency (C) in a network partition: at
most subgroup commits to the log, so it does not diverge.

« But it sacrifices availability (A). If a majority of replicas fail, it would
be safe for the survivors to serve clients. But they must not,
because this case is indistinguishable from a network partition.

L1 and F1 cannot commit

: . L2 can gain a quorum
log entries because they from the other followers,
do not have a quorum. So F1 so they can continue to
they cannot serve clients serve requests together
= no Availability if the L1 L2 inclose cooperation.

majority had merely failed.

The quorum rule protects Consistency of the shared log in a partition. At most
one side of a partition makes progress: there cannot be two disjoint majorities.

Rejecting a leader from the past

« The protocol runs as a sequence of views or terms.

* A new view/term begins when some participant (e.g., L2) declares
an election (e.g., because L2 does not hear the old leader L1).

« Winning requires a quorum -> at most one leader per view/term.

« Nobody pays attention to a leader/candidate L1 from the past, and
L1 steps down if L1 learns of a term later than its own.

. FZ.
L1 L2 L1 Lo B .

During the partition, L2 declares candidacy in a new term and wins a quorum. When the
partition heals, F2 rejects messages from L1, whose term has expired. F1 learns of the
new term and defects to L2, also rejecting L1. L1 learns of the new term and steps down.

Terms

Term 1 Term2 Term 3 Term 4 Term 5

v/ N/

Elections Split Vote Normal Operation

e Time divided into terms:
= Election
= Normal operation under a single leader

e At most 1 leader per term

e Some terms have no leader (failed election)

e Each server maintains current term value

e Key role of terms: identify obsolete information

March 3, 2013 Raft Consensus Algorithm Slide 74

Spelling it out: views/terms

* |n general, a participant P may leave a group temporarily
due to loss of connectivity or failure/restart.

« The group moves on, and when P rejoins the group, P’s
state is seen to be stale: P can't participate correctly.

— E.g., in consensus, P’s log has diverged or has missing entries,
P’s view of the identity of the group’s leader is no longer correct.

« Consensus (and other distributed protocols) need some
way to detect stale participants and reintegrate them.
« Consensus uses view/term for this purpose.

— Tag messages with the view/term, tag state with the view/term,
and compare tags to detect staleness.

Numbering the views (terms)

« Every message in the protocol carries the sender’s
current view# (term).

 If the receiver has a higher view# than the sender, it
ignores and rejects the message.
— Stale participants can do no damage.

 If a participant learns of a view# v higher than its own, it

sets its view# to v.

— The view# is an example of a logical clock, a foundational
concept in distributed systems.

 When a participant learns it is stale, it comes up to date.

— E.g., in the “nasty scenario” example, L1 steps down, and L1
and F1 accept updates from new leader L2 to repair their logs.

Server States

e At any given time, each server is either:

= |Leader: handles all client interactions, log replication
e At most 1 viable leader at a time

= Follower: completely passive (issues no RPCs, responds to
incoming RPCs)

= (Candidate: used to elect a new leader

e Normal operation: 1 leader, N-1 followers

_ timeout, _
timeout, new election receive votes from
start start election m majority of servers

“step
down”

FoIIower) (Candldate> (Leader)
& .

discover server with

: higher term
dISCOVGI’_ current server Raft Consensus Algorithm J Slide 77
or higher term

Log Structure

term
1 1 1 1 R 3 3 3 3
add [cmp]| ret mov | jmp | div | shl | sub

command j

add |cmp]| ret mov | jmp

add|cmp]| ret mov | jmp | div | shl | sub

>
1 1
add |cmp
1 1 1 P 3 3 3
add [cmp]| ret mov | jmp | div | shl
- . .
& > committed entries

e Log entry = index, term, command

e Every entry is tagged with a term. These tags are used to
detect stale entries, and in leader election and log repair.

March 3, 2013 Raft Consensus Algorithm Slide 78

Nasty scenario: getting nastier

* A bare majority of replicas commit new entries under L2.

The minority writes new uncommitted entries under L1.
Then L2 and a follower (F3) fail, and the minority rejoins.

Progress is possible, but the replicas have divergent
logs. All committed updates must be preserved.

How to recognize the lone survivor (F2) who knows the
committed history, and who can pass it to the others?

. F2 F2
F1
F3
L1 L2 L1 L2 L1

Nasty scenario: getting nastier

 Answer: look at the terms in the log entries.
— Every entry is tagged with a view#/term.
— This is the key to the log repair protocol.

* F2rejects L1 because F2 knows a higher term than L1.
L1 learns its term has expired, and L1 steps down.

« A new election is declared - new term and new leader.

* F2 has log entries from a higher term than the others.
Higher terms dominate - the others accept F2's entries.

F2
In Raft, F2 wins because

./ its log is most advanced
(higher terms). F2’s log is

used to repair the others.

And the group continues.

F2 rejects L1.

L1 steps down.

A new term begins.
An election starts. | 4

High level of consistency between logs:

Log Consistency

e If log entries on different servers have same index

and term:
= They store the same command
= The logs are identical in all preceding entries

e If a given entry is committed, all preceding entries
are also committed

March 3, 2013

1 2 3 4) 6
1 1 1 2 3 3
add [cmp]| ret |mov| jmp | div
1 1 1 2 3 4
add |cmp| ret [mov| jmp | sub

Raft Consensus Algorithm

Slide 81

Log Inconsistencies

Leader changes can result in log inconsistencies:

March 3, 2013

111(1p p 6 b | |

_____ |5|5< ~ T Missing
1111} 5/ Entries
1{1|1p b BB P P BiB E

S——tm
1111k B 6 b b i 7 |
|5 |5 —— — '~ Extraneous

111 BB

———————————————————————————————

Raft Consensus Algorithm

/ Entries

Slide 82

1 2 3 45 6 7 8 9101112 log index

1[1[1[4]4]5]5]6]6]6 eader for
@ [1[1[1[a[4]5]5]6]6)
o [1[1]1]4
© [I[1[1[4]4]5]5]6]6]6]6 }Dossib,e
@ [I[1]1[a]4]5]5][6]6][6]7]7] [™"ower
@ [I[1[1]a]a]a]2
o [ANREREEEEE

Figure 7: When the leader at the top comes to power, it is
possible that any of scenarios (a—f) could occur in follower
logs. Each box represents one log entry; the number in the
box is its term. A follower may be missing entries (a-b), may
have extra uncommitted entries (c—d), or both (e—f). For ex-
ample, scenario (f) could occur if that server was the leader
for term 2, added several entries to its log, then crashed before
committing any of them; it restarted quickly, became leader
for term 3, and added a few more entries to its log; before any
of the entries in either term 2 or term 3 were committed, the
server crashed again and remained down for several terms.

Raft in normal operation (stable term)

AppendEntries @i AppendEntries @i+2

term=t term=t

last=(t, i) last=(t, i+2)

entries: [v1,v2] entries: [v3,v4]

~ committed=i "OK” committed=i+2 "OK”
NS S oz eader
\\\\ ;é/ \\\Qfé/ Followers
~ N o

check (t.) check (ti+2) ‘&.9»
log [v1,v2] log [v3,v4] —

commit [v1,v2]

Followers accept whatever the leader proposes.

But first: validate that (term, index) are “in sync”.

Leader’s term is behind? - reject proposal: “I won't follow you!”
Leader’s last=(t,i) is ahead? - reject proposal: “Catch me up!”
Once in sync, accept everything, even if it overwrites log history.

Raft: log repair

To bring a follower’s log into consistency with its own, the leader must find the
latest log entry where the two logs agree, delete any entries in the follower’s log
after that point, and send the follower all of the leader’s entries after that point.

All of these actions happen in response to the consistency check performed by
AppendEntries RPCs. The leader maintains a nextindex for each follower, which is
the index of the next log entry the leader will send to that follower. When a leader
first comes to power, it initializes all nextindex values to the index just after the last
one in its log (11 in Figure 7). If a follower’s log is inconsistent with the leader’s,
the AppendEntries consistency check will fail in the next AppendEntries RPC.

After a rejection, the leader decrements nextindex and retries the AppendEntries
RPC. Eventually nextindex will reach a point where the leader and follower logs
match. When this happens, AppendEntries will succeed, which removes any
conflicting entries in the follower’s log and appends entries from the leader’s log (if

any).

Once AppendEntries succeeds, the follower’s log is consistent with the leader’s,
and it will remain that way for the rest of the term.

Raft: leadership safety condition

« Elections choose a sufficiently up-to-date leader:
— Leader’s last(term) is at least as high as all its voters.
— Leader’s last(index) is at least as high as all its voters with the
same last(term).

— Candidates/leaders step down when they see a better (more up-
to-date) candidate/leader.

« Safety property: a new leader has already seen (and
remembers) at least all committed entries.

— The new leader L won a majority, and so L is at least as up to
date as a majority of replicas. Since any committed entry e was
accepted by a majority of replicas, at least one of the voters v
for L must have entry e, and since L is at least as up to date as

v, L must have e as well.

Picking the Best Leader

e Can’t tell which entries are committed!
1 2 3 4 5

——————

11111b iz §<— committed?

1 1 1P
f1112 2 unavailable during
! i~ |leader transition

e During elections, choose candidate with log that
contains all committed entries

= Candidates include log info in RequestVote RPCs
(index & term of last log entry)

= Voting server V denies vote if its log is “more complete”
(lastTerm,, > lastTerm) ||
(lastTerm,, == lastTerm;) && (lastindex,, > lastindex;)

March 3, 2013 Raft Consensus Algorithm Slide 87

RequestVote RPC

Invoked by candidates to gather votes (§5.2).

Arguments:
term candidate’s term
candidateld candidate requesting vote

lastLogIndex index of candidate’s last log entry (§5.4)
lastLogTerm term of candidate’s last log entry (§5.4)

Results:

term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)

2. If votedFor is null or candidateld, and candidate’s log is at
least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

Note

» Leader election is the key difference of Raft from
VR and Paxos. It leads to a little more thrashing
around to pick a leader, but it avoids the need
for new mechanisms to update the leader’s

state.

Safety: committed entries always survive

« |In an earlier scenario, one replica (F2) survives to propagate
committed log entries into a new term.

. F2 F2
F1 ./
(1) (2) (3) (4)

« |n fact: for any committed log entry e, at least one replica who
knows of e survives into any new term, always.

« Why? It requires a quorum to commit entries or elect a new leader,
and any two quorums must intersect.

— It is not possible to have two disjoint majorities! This is the key to the
proof that Consensus is safe and consistent.

Raft: safety

AppendEntries
RPCs from S1
a (term T)

R RV }:----- ReqauestVote
> "\4 ?P S f{ﬁm S5
..................... term
55 M time —

Figure 9: If S1 (leader for term T) commits a new log entry
from its term, and S5 is elected leader for a later term U, then
there must be at least one server (S3) that accepted the log
entry and also voted for S5.

Note: when a new leader L propagates older entries into a new term, L does not
and cannot (always) know if those entries committed or not in the old term. But it
does not matter: the set of “most up to date” entries is guaranteed to include all
committed entries, so all committed entries survive into the new term. And once
L propagates them to a quorum, they are known to have committed.

12 2 3
s1 [1]2] 2[4
s2 [1]2 2[4]
s3 |1 2 4]
s4 [1

S5 |1 3

(a) (b) (c) (d) (e)
Figure 8: A time sequence showing why a leader cannot de-
termine commitment using log entries from older terms. In
(a) S1 is leader and partially replicates the log entry at index
2. In (b) S1 crashes; S5 is elected leader for term 3 with votes
from S3, S4, and itself, and accepts a different entry at log
index 2. In (¢) S5 crashes; S1 restarts, is elected leader, and
continues replication. At this point, the log entry from term 2
has been replicated on a majority of the servers, but it is not
committed. If S1 crashes as in (d), S5 could be elected leader
(with votes from S2, S3, and S4) and overwrite the entry with
its own entry from term 3. However, if S1 replicates an en-
try from its current term on a majority of the servers before
crashing, as in (e), then this entry is committed (S5 cannot
win an election). At this point all preceding entries in the log
are committed as well.

Election Safety: at most one leader can be elected in a
given term. §5.2

Leader Append-Only: a leader never overwrites or deletes
entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same
index and term, then the logs are identical in all entries
up through the given index. §5.3

Leader Completeness: if a log entry is committed in a
given term, then that entry will be present in the logs
of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry
at a given index to its state machine, no other server

will ever apply a different log entry for the same index.
§5.4.3

Figure 3: Raft guarantees that each of these properties is true
at all times. The section numbers indicate where each prop-
erty is discussed.

Summary

 Leader/master coordinates, dictates consensus

View the service as a deterministic state machine.
Master (also called “primary”) dictates order of client operations.
—> All non-faulty replicas reach the same state.

« Remaining problem: who is the leader?

Leader itself might fail or be isolated by a network partition.
Requires a scheme for “leader election” to choose a new leader.

Consensus is safe but not live: in the worst case (multiple
repeated failures) it might not terminate.

But in practice Consensus gets the job done...if it can be done.

Raft is one variant of Consensus, with minor differences from
older variants (VR and Paxos).

Liveness timeouts

« All consensus systems rely on careful timeouts for
liveness, because an election or view change disrupts any
CONSEeNsus in progress.

— Contending leaders can “livelock” the consensus algorithm.

* VR: “More generally liveness depends on properly setting the
timeouts used to determine whether the primary is faulty so as to
avoid unnecessary view changes.”

— Note: also want fast failover times - tight timeouts!

— Must balance these competing considerations.

« Raft: randomized timeouts to avoid contending leaders.

Consensus in Practice

 Lampson: “Since general consensus is expensive,
practical systems reserve it for emergencies.”

— e.g., to select a primary/master, e.g., a lock server.
« Zookeeper
« Google Chubby service (“Paxos Made Live”)

* Pick a primary with Paxos. Do it rarely; do it rlght

— Primary holds a “master lease” with a timeout. yh
- Renew by consensus with primary as leader. =&~
— Primary is “czar” as long as it holds the lease.

— Master lease expires? Fall back to Paxos.
— (Or BFT.)

How to Build a Highly Available System
Using Consensus

Butler W. Lampson!

Microsoft
180 Lake View Av., Cambridge, MA 02138

Abstract. Lamport showed that a replicated deterministic state machine is a
general way to implement a highly available system, given a consensus algo-
rithm that the replicas can use to agree on each input. His Paxos algorithm is the
most fault-tolerant way to get consensus without real-time guarantees. Because
general consensus is expensive, practical systems reserve it for emergencies and
use leases (locks that time out) for most of the computing. This paper explains
the general scheme for efficient highly available computing, gives a general
method for understanding concurrent and fault-tolerant programs, and derives

the Paxos algorithm as an example of the method.
[Lampson 1995]

Butler W. Lampson

http://research.microsoft.com/en-us/um/people/blampson

Butler Lampson is a Technical Fellow at Microsoft Corporation and an Adjunct Professor at
MIT.....He was one of the designers of the SDS 940 time-sharing system, the Alto personal
distributed computing system, the Xerox 9700 laser printer, two-phase commit protocols, the
Autonet LAN, the SPKI system for network security, the Microsoft Tablet PC software, the
Microsoft Palladium high-assurance stack, and several programming languages. He received
the ACM Software Systems Award in 1984 for his work on the Alto, the IEEE Computer
Pioneer award in 1996 and von Neumann Medal in 2001, the Turing Award in 1992, and the
NAE’s Draper Prize in 2004.

