
D u k e  S y s t e m s 

Services	and	Scale	

Jeff	Chase	
Duke	University	



A simple, familiar example 

“GET /images/fish.gif HTTP/1.1” 

sd = socket(…); 
connect(sd, name); 
write(sd, request…); 
read(sd, reply…); 
close(sd); 

s = socket(…); 
bind(s, name); 
sd = accept(s); 
read(sd, request…); 
write(sd, reply…); 
close(sd); 

request 

reply 

client (initiator) server 



A service Client 

Store 

Web 
Server 

App 
Server 

DB 
Server 

request 

reply client 
server 



The Steve Yegge rant, part 1 
Products vs. Platforms 
Selectively quoted/clarified from http://steverant.pen.io/, emphasis added.  
This is an internal google memorandum that ”escaped”.  Yegge had moved 
to Google from Amazon.  His goal was to promote service-oriented software 
structures within Google. 

 

So one day Jeff Bezos [CEO of Amazon] issued a mandate....[to the 
developers in his company]: 

His Big Mandate went something along these lines: 

1) All teams will henceforth expose their data and functionality through 
service interfaces. 
2) Teams must communicate with each other through these interfaces. 

3) There will be no other form of interprocess communication allowed: 
no direct linking, no direct reads of another team's data store, no shared-
memory model, no back-doors whatsoever. The only communication allowed 
is via service interface calls over the network. 



4) It doesn't matter what technology they use. HTTP, Corba, PubSub, 
custom protocols -- doesn't matter. Bezos doesn't care. 
5) All service interfaces, without exception, must be designed from the 
ground up to be externalizable. That is to say, the team must plan and 
design to be able to expose the interface to developers in the outside 
world. No exceptions. 
6) Anyone who doesn't do this will be fired. 
7) Thank you; have a nice day! 

The Steve Yegge rant, part 2 
Products vs. Platforms 



SaaS platforms 

•  A study of SaaS application 
frameworks is a topic in itself. 

•  Rests on material in this course 
•  We’ll cover the basics 

–  Internet/web systems and core 
distributed systems material 

•  But we skip the practical details on 
specific frameworks. 
–  Ruby on Rails, Django, etc. 

•  Recommended: Berkeley MOOC 
–  Fundamentals of Web systems and cloud-

based service deployment. 
–  Examples with Ruby on Rails 

Web/SaaS/cloud 
http://saasbook.info 

New! 
$10! 



Server performance 

•  How many clients can the server handle? 
•  What happens to performance as we 

increase the number of clients? 
•  What do we do when there are too many 

clients? 



Service 
Center 

offered load 
request stream @  

arrival rate λ 
Request == task == job 

Handle request: task 
occupies center for 
D time units (its 
service demand). 

Understanding performance: queues 

Note: real systems are networks of centers and queues. To 
maximize overall utilization/throughput, we must think about how 
the centers interact.  (For example, go back and look again at 
multi-level feedback queue with priority boosts for I/O bound jobs.)  
 
 
 
 
 
 
But we can also “squint” and think of the entire network as a single 
queueing center (e.g., a server), and we won’t go too far astray. 

CPU 

Disk 



Queuing Theory for Busy People 

•  Big Assumptions (at least for this summary) 
–  Single service center (e.g., one core), with no concurrency. 
–  Queue is First-Come-First-Served (FIFO, FCFS). 
–  Independent request arrivals at mean rate λ (poisson arrivals). 
–  Requests have independent service demands at the center. 
–  i.e., arrival interval (1/λ) and service demand (D) are 

exponentially distributed (noted as “M”) around their means. 
–  These assumptions are rarely exactly true for real systems, but they 

give a rough (“back of napkin”) understanding of queue behavior. 

“M/M/1” Service Center 

offered load 
request stream @  

arrival rate λ 
(requests/time) 

Requests wait here 
in FIFO queue Handle request: task 

occupies center for 
mean service demand 

D time units 



Ideal throughput: cartoon version 

Ideal throughput 

Request arrival rate (offered load) 

Response 
rate 

(throughput) 
 

i.e., request 
completion 

rate 

saturation 

peak rate 

throughput == arrival rate 
The center is not saturated: it 
completes requests at the rate 
requests are submitted. 

throughput == peak rate 
The center is saturated.  It can’t 
go any faster, no matter how 
many requests are submitted. 

This graph shows 
throughput (e.g., of a 
server) as a function 
of offered load.  It is 
idealized: your 
mileage may vary. 



Throughput: reality 

Request arrival rate (offered load) 

Response 
rate 

(throughput) 
 

i.e., request 
completion 

rate 

saturation 

peak rate 

Thrashing, also called congestion collapse 
Real servers/devices often have some pathological behaviors at 
saturation.  E.g., they abort requests after investing work in them 
(thrashing), which wastes work, reducing throughput. 

delivered 
throughput 
(“goodput”) 

Illustration only 
Saturation behavior is 
highly sensitive to 
implementation 
choices and quality. 



Utilization 

•  What is the probability that the center is busy? 
–  Answer: some number between 0 and 1. 

•  What percentage of the time is the center busy? 
–  Answer: some number between 0 and 100 

•  These are interchangeable: called utilization U  
•  The probability that the service center is idle is 1-U 



Utilization: cartoon version 

saturated 

Request arrival rate (offered load) 

Utilization 
(also called 
load factor) 

saturation 

peak rate 

U = XD 
X = throughput 
D = service demand, i.e., how 
much time/work to complete 
each request (on average). 

U = 1 = 100% 
The server is saturated.  It has 
no spare capacity.  It is busy all 
the time. 

This graph shows 
utilization (e.g., of a 
server) as a function of 
offered load.  It is 
idealized: each request 
works for D time units 
on a single service 
center (e.g., a single 
CPU core). 

1 == 100% 



The Utilization “Law” 

•  If the center is not saturated then: 
–  U = λD = (arrivals/time) * service demand 

•  Reminder: that’s a rough average estimate for a mix of 
arrivals with average service demand D. 

•  If you actually measure utilization at the center, it may 
vary from this estimate. 
–  But not by much. 



It just makes sense 
The thing about all these laws is that they just make sense.  So you can always let 
your intuition guide you by working a simple example. 
   
If it takes 0.1 seconds for a center to handle a request, then peak throughput is 10 
requests per second.  So let's say the offered load λ is 5 requests per second. 
 
Then U = λ*D = 5 * 0.1 = 0.5 = 50%. 
  
It just makes sense: the center is busy half the time (on average) because it is 
servicing requests at half its peak rate.  It spends the other half of its time twiddling 
its thumbs.  The probability that it is busy at any random moment is 0.5. 
  
Note that the key is to choose units that are compatible.   If I had said it takes 
100 milliseconds to handle a request, it changes nothing. But U = 5*100 = 500 is not 
meaningful as a percentage or a probability.  U is a number between 0 and 1.  So 
you have to do what makes sense.  Our treatment of the topic in this class is all 
about formalizing the intuition you have anyway because it just makes sense.  Try it 
yourself for other values of λ and D. 
 



Understanding utilization and throughput 

•  Throughput/utilization are “easy” to understand for a single service 
center that stays busy whenever there is work to do. 

•  It is more complex for a network of centers/queues that interact, and 
where each task/job/request visits multiple centers. 

•  And that’s what real computer systems look like. 
–  E.g., CPU, disk, network, and mutexes… 
–  Other synchronization objects 

•  The centers can service requests concurrently! 
•  Some may be slower than others; any bottlenecks limit overall 

throughput.   If there is a bottleneck, then other centers are 
underutilized even if the overall system is saturated. 

 

 



Understanding utilization and throughput 

Is high utilization good or bad? 
 
Good. We don’t want to pay $$$ for resources and then leave them idle.  
Especially if there is useful work for them to do! 
 
Bad.  We want to serve any given workload as efficiently as possible.  
And we want resources to be ready for use when we need them. 
 
Utilization ßà contention 
 



Understanding bottlenecks 

In a multi-center queue system, performance is limited by the 
center with the highest utilization for any workload. 
 
That’s the center that saturates first: the bottleneck. 
 
Always optimize for the bottleneck. 
 
E.g., it’s easy to know if your service is “CPU-limited” or “I/O limited” by 
running it at saturation and looking at the CPU utilization.  (e.g., “top”). 



Mean response time (R) for a center 

Request arrival rate (offered load) 

Average 
response 

time R 

saturation 

Illustration only 
Saturation behavior is 
highly sensitive to 
implementation 
choices and quality. 

saturation (U = 1: 
U is server utilization) 

U 
R 

D 

R == D 
The server is idle.  The 
response time of a request is 
just the time to service the 
request (do requested work). 

R = D + queuing delay (DN) 
As the server approaches saturation, 
the queue of waiting requests (size N) 
grows without bound.  (We will see 
why in a moment.) 

Rmax 

λmax 



Little’s Law 

For a FIFO/FCFS queue in steady state, mean response 
time R and mean queue length N are governed by: 

Little’s Law:   N =  λR 
Why? 
•  Suppose a task T is in the system for R time units. 
•  During that time: 

–  λR new tasks arrive (on average) 
–  N tasks depart (all the tasks ahead of T, on average). 

•  But in steady state, the flow in balances flow out. 
–   “Obviously”: throughput X =  λ in steady state.  Otherwise 

requests “bottle up” in the server -- not a steady state. 



Inverse Idle Time “Law” 

R 

  1(100%) U 

Little’s Law gives mean response time R = D/(1 – U). 
(“Service demand over the idle time”) 
 

Intuitively, an average task T’s response time R = D + DN. 
(Serve T at cost D, and N other tasks ahead of T in queue.) 
Substituting λR for N (by Little’s Law):  R = D + D λR  
Substituting U for λD (by Utilization Law):  R = D + UR 
R  - UR = D  à R(1 - U) = D  à R = D/(1 - U) 

 

Service center saturates as 1/ λ 
approaches D: small increases in λ 
cause large increases in the expected 
response time R.  At saturation R is 
unbounded (divide by zero: no idle 
time at saturation == 100% utilization). 



Why Little’s Law is important 
1. Intuitive understanding of FCFS queue behavior. 

Compute response time from demand parameters (λ, D). 
Compute N: how much storage is needed for the queue. 

2. Notion of a saturated service center.  
Response times rise rapidly with load and are unbounded. 

At 50% utilization, a 10% increase in load increases R by 10%. 
At 90% utilization, a 10% increase in load increases R by 10x. 

3. Basis for predicting performance of queuing networks. 
Cheap and easy “back of napkin” (rough) estimates of system 
performance based on observed behavior and proposed 
changes, e.g., capacity planning, “what if” questions. 

Guides intuition even in scenarios where the assumptions of the 
theory are not (exactly) met. 



The problem of volume continues to be a top concern for the administration, Zients 
said. Right now, HealthCare.gov can comfortably handle between 20,000 and 
25,000 users at a time. But at "peak volumes, some users still experience slower 
response times," he said. 
 
Officials are also expecting traffic to spike at the end of the month and onward. So 
this weekend, the administration is adding more servers and data storage to help 
handle any additional load. 
 
The goal is "to maintain good speed and response times at higher volumes," Zients 
said. "This is a key focus of our work now." 
 



MANAGING SCALABLE 
PERFORMANCE 

Part 2 



Improving performance (X and R) 

1.  Make the service center faster.  (“scale up”) 
–  Upgrade the hardware, spend more $$$ 

2.  Reduce the work required per request (D). 
–  More/smarter caching, code path optimizations, use smarter 

disk layout. 

3.  Add service centers, expand capacity.  (“scale out”) 
–  RAIDs, blades, clusters, elastic provisioning 
–  N centers improves throughput by a factor of N: iff we can 

partition the workload evenly across the centers! 
–  Note: the math is different for multiple service centers, and 

there are various ways to distribute work among them, but we 
can “squint” and model a balanced aggregate roughly as a 
single service center: the cartoon graphs still work. 



Measured 
throughput 
(“goodput”) 
Higher 
numbers 
are better. 

saturation 

Offered load (requests/sec) 

Note how throughput 
degrades in overload 
on this system. 

This graph shows how certain design alternatives under study impact a 
server’s throughput.  The alternatives reduce per-request work(D or 
overhead) and/or improve load balancing. (This is a graph from a random 
research paper: the design alternatives themselves are not important to us.)  



[graphic from IBM.com] 

Saturation and response time 

In the real world we don’t want to saturate our systems. 
We want systems to be responsive, and saturated systems aren’t responsive. 

How to measure maximum 
capacity of a server? 
Characterize max request 
rate λmax this way: 
1.  Define a response time 

objective: maximum 
acceptable response time 
(Rmax): a simple form of 
Service Level Objective 
(SLO). 

2.  Increase λ until system 
response time surpasses 
Rmax : that is λmax.  

λ 

Rmax 

λmax 



[graphic from IBM.com] 

Improving response time 

If we improve the service for “higher capacity” by any means, the 
effect is to push the response time curve out to the right. 

λ 

Rmax 

λmax 



Illustration: if we improve/expand the service by any means, the 
effect is to push the R curve out to the right.  Roughly. 



Managing overload 

What should we do when a service is in overload? 
•  Overload: service is close to saturation.   
•  Overload à work queues grow without bound, increasing 

memory consumption and response time. 

λ > λmax 

λ λmax 

Throughput 
X 

offered load 



Options for overload 
1.  Thrashing 

–  Keep trying and hope things get better.  Accept each request 
and inject it into the system.  Then drop requests at random if 
some queue overflows its memory bound.  Note: leads to 
dropping requests after work has been invested, wasting work 
and reducing throughput (e.g., “congestion collapse”). 

2.  Admission control or load conditioning 
–  Reject requests as needed to keep system healthy.  Reject 

them early, before they incur processing costs.  Choose your 
victims carefully, e.g., prefer “gold” customers, or reject the 
most expensive requests.   

3.  Dynamic provisioning or elastic scaling 
–  E.g., acquire new capacity “on the fly” (e.g., from a cloud 

provider), and shift load over to the new capacity. 



Work 

Server cluster/farm/cloud/grid 
Data center 

Support substrate 

Scaling a service 

Dispatcher 

Incremental scalability.  Add servers or “bricks” for scale and robustness. 
Issues: state storage, server selection, request routing, etc. 



http://dbshards.com/dbshards/database-sharding-white-paper/ 

Scale-up vs. scale-out 



Concept: load spreading 
•  Spread (“deal”) the data across a set of storage units. 

–  Make it “look like one big unit”, e.g., “one big disk”. 
–  Redirect requests for a data item to the right unit. 

•  The concept appears in many different settings/contexts. 
–  We can spread load across many servers too, to make a server 

cluster look like “one big server”. 
–  We can spread out different data items: objects, records, blocks, 

chunks, tables, buckets, keys…. 
–  Keep track using maps or a deterministic function (e.g., a hash). 

•  Also called sharding, declustering, striping, “bricks”. 



Service scaling and bottlenecks 
Scale up by adding capacity incrementally? 
•  “Just add bricks/blades/units/elements/cores”...but that presumes we 

can parallelize the workload. 
•  “Service workloads parallelize easily.”  

–  Many independent requests: spread requests across multiple units. 
–  Problem: some requests use shared data.  Partition data into chunks and 

spread them across the units: be sure to read/write a common copy. 

•  Load must be evenly distributed, or else some unit saturates before 
the others (bottleneck or hot spot). 

Work 
A bottleneck limits throughput 
and/or may increase response 
time for some class of requests. Storage tier 



Distributed hash table 

Distributed application 
get (key) data 

node node node …. 

put(key, data) 

lookup(key) 

[image adapted 
from Morris, Stoica, 
Shenker, etc.] 

Storage tier: key-value stores 

Web	Tier	 Storage	Tier	

A-F	

G-L	

M-R	

S-Z	

Web	
Tier	

Storage	Tier	

A-F	

G-L	

M-R	

S-Z	

Remote	DC	

[image adapted from Lloyd, etc., 
Don’t Settle for Eventual] 

Incrementally scalable? 
Balanced load? 

Example of how to 
scale the storage tier. 



Bottlenecks and hot spots: analysis 
1. Suppose requests are divided evenly among N servers.  Mean per-
request processing time is D, and also each request reads data from a 
storage tier at mean cost 2D. 
•  Simplistic assumption (for now): all nodes are single-threaded. 
•  If there are N servers in the storage tier, what is the maximum 

throughput of the system?  What is the utilization of the first tier? 
•  How should we provision capacity to “fix it”? 
2. Suppose one of the N servers takes 2D per request. 
•  What is the impact on throughput? 
•  What is the impact on response time? 
•  Is the effect equivalent if the server has demand D but receives 

requests at double the rate of the others?  How is it different? 
3. Suppose the request rate doubles?  What then? 



Varying 
workload 

Fixed system Varying 
performance 



Varying 
workload 

Varying system 
(use elastic scaling)  

Fixed 
performance 
(meet SLO) 

The math also works in the other direction…. 



Varying 
workload 

Varying system Target 
performance 

“Elastic Cloud” Resource Control 

Feedback for 
elastic 

provisioning 
(see RightScale) 



Elastic scaling: “pay as you grow” 



Elastic scaling: points 
•  What are the “automated triggers” that drive scaling? 

–  Monitor system measures: N, R, U, X (from previous class) 
–  Use models to derive the capacity needed to meet targets 

•  Service Level Objectives or SLO for response time 
•  target average utilization 

•  How to adapt when system is under/overloaded? 
–  Obtain capacity as needed, e.g., from cloud (“pay as you grow”). 
–  Direct traffic to spread workload across your capacity (servers) 

as evenly and reliably as you can.  (Use some replication.) 
–  Rebalance on failures or other changes in capacity. 
–  Leave some capacity “headroom” for sudden load spikes. 
–  Watch out for bottlenecks!  But how to address them? 



SEDA: An architecture for well-conditioned 
scalable internet services  

•  A 2001 paper, mentioned here 
because it offers basic insight into 
server structure and performance. 

•  Internally, server software is “like” 
server hardware: requests “flow 
through” a graph of processing stages. 

•  SEDA is a software architecture to 
manage this flow explicitly. 

•  We can control how much processing 
power to give to each stage by changing 
the number of servers, or threads 
dedicated to it (SEDA on a single server). 

•  We can identify bottlenecks by observing 
queue lengths.  If we must drop a request, 
we can pick which queue to drop it from. 

Component 

Component 
(stage) 



Compare to our 
earlier treatment of 
event-driven models 
and thread pools. 





10% 
quantile 

90% 
quantile 

median 
value 

80% of the requests (90-10) have 
response time R with x1 < R < x2.  

x1 x2 

“Tail” of 10% of requests with 
response time R > x2. 

What’s the 
mean R? 

Understand how/why the mean (average) response time can be misleading. 

A few requests 
have very long 
response times. 

50% 
(median) 

Cumulative Distribution Function (CDF) 

R 



SEDA Lessons 
•  Mean/average values are often not useful to capture system 

behavior, esp. for bursty/irregular measures like response time. 
–  You have to look at the actual distribution of the values to understand 

what is happening, or at least the quantiles. 

•  Long response time tails can occur under overload, because (some) 
queues (may) GROW, leading to (some) very long response times. 
–  E.g., consider the “hot spot” example earlier. 

•  A staged structure (multiple components/stages separated by 
queues) can help manage performance. 
–  Provision resources (e.g., threads) for each stage independently. 

–  Monitor the queues for bottlenecks: underprovisioned stages have 
longer queues. 

–  Choose which requests to drop, e.g., drop from the longest queues. 

•  Note: staged structure can also help simplify concurrency/locking. 
–  SEDA stages have no shared state.  Each thread runs within one stage. 



LIMITS OF SCALABLE 
PERFORMANCE 

Part 3 



Parallelization 
A simple treatment 
A program has some work to do.  We want to do it fast.  How? 
Do it on multiple computers/cores in parallel. 

But we won’t be able to do all of 
the work in parallel.  

Some portion will be 
serialized. 
E.g.: 
startup, 
locking 
combining results 
access to a specific disk 

Suppose some 
portion p of the 
work can be 
done in parallel. 
 
Then a portion 
1-p is serial.  
 
How much 
does that help? 

http://blogs.msdn.com/b/ddperf/archive/2009/04/29/
parallel-scalability-isn-t-child-s-play-part-2-amdahl-
s-law-vs-gunther-s-law.aspx 



Amdahl’s Law 

Law of Diminishing Returns 
 
“Optimize for the primary bottleneck.” 

Normalize runtime = 1 
(On a single core.) 
Now parallelize: 
 
Parallel portion: P (0 ≤ P ≤1) 
Serial portion: 1-P 
 
N-way parallelism (N cores) 
Runtime is now: 

 P/N + (1-P) 
 
Even if “infinite parallelism”, 
runtime is 1-P in the limit.  It is 
determined by the serial portion. 
Bottleneck: limits performance.  
 
Speedup = before/after 
Bounded by 1/(1-P) 

P 

N 

speedup 

1/(1 - 0.90) 

1/(1 - 0.75) 

1/(1 - 0.95) 

1/(1 – 0.50) 



Amdahl’s Law 

What is the “serial portion” that “cannot be parallelized”? 
 - Mutexes/critical sections 
 - Combining results from parallel portions (e.g., “reducers”) 
 - … 
  

 



VIRTUAL CLOUD HOSTING 
Part 4 

“Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provisioned 
and released with minimal management effort or service 
provider interaction.” 
 
-  US National Institute for Standards and Technology  
http://www.csrc.nist.gov/groups/SNS/cloud-computing/ 



                   EC2 Elastic Compute Cloud 
                        The canonical public cloud 

 
Virtual 

Appliance 
Image 

 
 

Cloud 
Provider(s) 

Host 

Guest Client Service 





OpenStack, the Cloud Operating System 

Management Layer That Adds Automation & Control 

[Anthony Young @ Rackspace] 



 
 

Cloud 
Provider(s) 

  

Host 

Guest Client Service 

Host/guest model  

•  Service is hosted by a third party. 
–  flexible programming model 
–  cloud APIs for service to allocate/link resources 
–  on-demand: pay as you grow 



 
 

  

OS  

VMM 

Physical 

Platform 

Client Service 

IaaS: Infrastructure as a Service 

EC2 is a public IaaS 
cloud (fee-for-service). 
 
 Deployment of private 
clouds is growing 
rapidly w/ open IaaS 
cloud software. 

Hosting performance 
and isolation is 
determined by 
virtualization layer 
 
Virtual Machines 
(VM): VMware, KVM, 
etc. 







Native virtual machines (VMs) 

•  Slide a hypervisor underneath the kernel. 
–  New OS layer: also called virtual machine monitor (VMM). 

•  Kernel and processes run in a virtual machine (VM). 
–  The VM “looks the same” to the OS as a physical machine. 
–  The VM is a sandboxed/isolated context for an entire OS. 

•  Can run multiple VM instances on a shared computer. 

hypervisor (VMM) host 

guests 



guest or 
tenant 

VM 
contexts 

host hypervisor/VMM 

guest VM1 guest VM2 guest VM3 

OS kernel 1 OS kernel 2 OS kernel 3 

P1A P2B P3C 



Virtualization support: VT 
•  These VMs can run a full OS with a kernel and multiple 

processes with direct execution: they are not interpreted! 
•  Kernel, process, and hypervisor all run on the same 

cores, at full speed.  (Note: distinct from Java JVM.) 
•  VMs used to be implemented in all sorts of goofy ways. 
•  Since 2007-2010 chip vendors offer hardware support. 

Intel VT and VT-d, AMD-V 
+ new CPU modes 
+ new CPU events/transitions 
+ a new level of VA translation 
   Extended Page Tables (EPT) 



VT in a Nutshell 

•  New VM mode bit 
–  Orthogonal to CPL (e.g., kernel/user mode) 

•  If VM mode is off à host mode 
–  Machine “looks just like it always did” (“VMX root”) 

•  If VM bit is on à guest mode 
–  Machine is running a guest VM: “VMX non-root mode” 
–  Machine “looks just like it always did” to the guest, BUT: 
–  Various events trigger gated entry to hypervisor (in VMX root) 
–  A “virtualization intercept”: exit VM mode to VMM (VM Exit) 
–  Hypervisor (VMM) can control which events cause intercepts 
–  Hypervisor can examine/manipulate guest VM state and return 

to VM (VM Entry)  



hypervisor/VMM 

guest VM1 guest VM2 

OS kernel 1 OS kernel 2 
trap, fault, interrupt 

and return 

CPU events 

host 

vm-enter 
vm-exit 

vm-enter 
vm-exit 

VMExit and VMEnter 
intercept and return 

VMX root mode 
“host mode” 

(user or kernel) 

VMX non-root mode 
“guest mode” 

(user or kernel) 

VT: core modes 



CPU Virtualization With VT-x 

Two new VT-x operating modes 
Less-privileged mode 
(VMX non-root) for guest OSes 
More-privileged mode 
(VMX root) for VMM 

Two new transitions 
VM entry to non-root operation 
VM exit to root operation 

Ring 3 

Ring 0 

VMX 
Root 

Virtual Machines (VMs) 

Apps 

OS  

VM Monitor (VMM) 

Apps 

OS  

VM Exit VM Entry 

Execution controls determine when exits occur 
Access to privilege state, occurrence of exceptions, etc. 
Flexibility provided to minimize unwanted exits 

VM Control Structure (VMCS) controls VT-x operation 
Also holds guest and host state 



Virtual Machines + Virtual Memory 

Guest Virtual
  Addresses Guest Page

   Tables

Guest Physical
   Addresses Host Page

   Tables

Host Physical
   Addresses

“VA” 
 

“PA” 
 

“MA” 
 

EPT 
 



Three address spaces 

0	

Current	Guest	Process	

0	

Guest	OS	 Virtual		
Address	Spaces	

Physical	
Address	Spaces	Virtual	RAM	 Virtual	

ROM	
Virtual	
Devices	

Virtual	
Frame	
Buffer	

0	
Machine	

Address	Space	RAM	 ROM	Devices	 Frame	
Buffer	

“VA” 
 

“PA” 
 

“MA” 
 



TLB caches VA->MA mappings 



Image/Template/Virtual Appliance 

•  A virtual appliance is a program for a virtual machine. 
–  Sometimes called a VM image or template 

•  The image has everything needed to run a virtual server: 
–  OS kernel program 
–  file system 
–  application programs 

•  The image can be instantiated as a VM on a cloud. 
–  Not unlike running a program to instantiate it as a process 



Thank you, VMware 



Containers 

•  Note: lightweight container technologies offer a similar 
abstraction for software packaging and deployment, 
based on an extended process model. 
–  E.g., Docker and Google Kubernetes 

 



NOTREACHED 
Part 5 



GENI: slices and federation 

Backbone #1 

Backbone #2 

Campus 
#3 

Campus 
rack 

Access 
#1 

Commercial 
Clouds 

Corporate 
GENI suites 

Other-Nation 
Projects 

Research 
Testbed 

Campus 

My “slice” runs across 
the evolving GENI 
federation. 

My GENI Slice 

Slice: an end-to-end virtual network context spanning multiple sites, with 
configurable topology and properties, e.g., containment and isolation. 

TTG 

Not to be tested. 



ExoGENI.net 

ExoGENI Rack 

A packaged small-scale cloud 
site for a campus, lab, or PoP. 

Linked to a federated hosting 
platform for tenant networks (slices). 

OpenFlow 

campus 
net 

L2/L3 transport
fabrics 

L2/L3 

Not to be tested. 



GENI control framework for federated orchestration 
Open Resource Control Architecture 
 

“Make my slice.” 

“Instantiate VMs 
and VLANs x, y, z.” 

Network 
provider 

“Link sites 
with circuits.” 

“Enable external 
SDN controller    
for x, y, z.” 

OpenFlow 

ExoGENI.net: 
cartoon version 

Site A Site B 

Not shown: dynamic 
slice adaptation under 

automated control 

Not to be tested. 


