M

Duke Systems

Services and Scale

Jeff Chase
Duke University

A simple, familiar example

request
“GET /images/fish.gif HTTP/1.1”

client (initiator) server

sd = socket(...); s = socket(...);
connect(sd, name); bind(s, name);
write(sd, request...); sd = accept(s);
read(sd, reply...); read(sd, request...);
close(sd); write(sd, reply...);

close(sd);

A SerVice Client

, %}
client %

....... response
client N

. Search | (¢

The Steve Yegge rant, part 1
Products vs. Platforms

Selectively quoted/clarified from http://steverant.pen.io/, emphasis added.
This is an internal google memorandum that "escaped”. Yegge had moved
to Google from Amazon. His goal was to promote service-oriented software
structures within Google.

So one day Jeff Bezos [CEO of Amazon] issued a mandate....[to the
developers in his company]:

His Big Mandate went something along these lines:

1) All teams will henceforth expose their data and functionality through
service interfaces.

2) Teams must communicate with each other through these interfaces.

3) There will be no other form of interprocess communication allowed:
no direct linking, no direct reads of another team's data store, no shared-
memory model, no back-doors whatsoever. The only communication allowed
is via service interface calls over the network.

The Steve Yegge rant, part 2
Products vs. Platforms

4) It doesn't matter what technology they use. HTTP, Corba, PubSub,
custom protocols -- doesn't matter. Bezos doesn't care.

5) All service interfaces, without exception, must be designed from the
ground up to be externalizable. That is to say, the team must plan and
design to be able to expose the interface to developers in the outside
world. No exceptions.

6) Anyone who doesn't do this will be fired.
7) Thank you; have a nice day!

SaaS platforms

New!
$10!

ALPHA EDITION

ENGINEERING
LONG-LASTING
SOFTWARE

mmmma—samm

Armando

FOoX

David

Patterson

Web/SaaS/cloud
http://saasbook.info

A study of SaaS application
frameworks is a topic in itself.

Rests on material in this course

We’ll cover the basics

— Internet/web systems and core
distributed systems material

But we skip the practical details on
specific frameworks.

— Ruby on Rails, Django, etc.
Recommended: Berkeley MOOC

— Fundamentals of Web systems and cloud-
based service deployment.

— Examples with Ruby on Rails

Server performance

 How many clients can the server handle?

 What happens to performance as we
increase the number of clients?

 What do we do when there are too many
clients?

Understanding performance: queues

offered load Handle request: task
request stream @ Service\ occupies center for
arrival rate A Center/ D time units (its
Request == task == job service demand).

Note: real systems are networks of centers and queues. To
maximize overall utilization/throughput, we must think about how
the centers interact. (For example, go back and look again at
multi-level feedback queue with priority boosts for I/O bound jobs.)

o

Disk

But we can also “squint” and think of the entire network as a single
queueing center (e.g., a server), and we won’t go too far astray.

Queuing Theory for Busy People

Requests wait here

in FIFO queue Handle_ request: task
offered load occupies center for
request stream @ —— mean service demand ——
arrival rate A D time units
(requests/time) “M/M/1” Service Center

« Big Assumptions (at least for this summary)
— Single service center (e.g., one core), with no concurrency.
— Queue is First-Come-First-Served (FIFO, FCFS).
— Independent request arrivals at mean rate A (poisson arrivals).
— Requests have independent service demands at the center.

— i.e., arrival interval (1/A\) and service demand (D) are
exponentially distributed (noted as “M”) around their means.

— These assumptions are rarely exactly true for real systems, but they
give a rough (“back of napkin”) understanding of queue behavior.

Ideal throughput: cartoon version

throughput == arrival rate
The center is not saturated: it
completes requests at the rate
requests are submitted.

throughput == peak rate

The center is saturated. It can’t
go any faster, no matter how
many requests are submitted.

|ldeal throughput

Response -
rate | eaturation This graph shows
(throughput) ! throughput (e.g., of a
| server) as a function
i.e., request ! of offered load. Itis
completion I peak rate idealized: your
rate l mileage may vary.

<

Request arrival rate (offered load)

Throughput: reality

Thrashing, also called congestion collapse

Real servers/devices often have some pathological behaviors at
saturation. E.g., they abort requests after investing work in them
(thrashing), which wastes work, reducing throughput.

\ delivered
- throughput

:\A (“goodput”)
Response \
rate saturation :
(throughput) lllustration only

Saturation behavior is
l.e., request highly sensitive to
completion peak rate Implementation

rate / choices and quality.
\

Request arrival rate (offered load)

Utilization

What is the probability that the center is busy?

— Answer: some number between 0 and 1.

What percentage of the time is the center busy?
— Answer: some number between 0 and 100

These are interchangeable: called utilization U

The probability that the service center is idle is 1-U

Utilization: cartoon version

U=XD

X = throughput

D = service demand, i.e., how
much time/work to complete
each request (on average).

| == 100%
Utilization
(also called

load factor)

<

U=1=100%

The server is saturated. It has
no spare capacity. It is busy all
the time.

saturated

This graph shows
utilization (e.g., of a

saturation server) as a function of

offered load. It is
idealized: each request
works for D time units
on a single service
center (e.g., a single
CPU core).

peak rate

Request arrival rate (offered load)

The Utilization “Law”

 |f the center is not saturated then:
— U = AD = (arrivals/time) * service demand

 Reminder: that's a rough average estimate for a mix of
arrivals with average service demand D.

 If you actually measure utilization at the center, it may
vary from this estimate.

— But not by much.

It just makes sense

The thing about all these laws is that they just make sense. So you can always let
your intuition guide you by working a simple example.

If it takes 0.1 seconds for a center to handle a request, then peak throughput is 10
requests per second. So let's say the offered load A is 5 requests per second.

ThenU=A*"D=5%*0.1=0.5=50%.

It just makes sense: the center is busy half the time (on average) because it is
servicing requests at half its peak rate. It spends the other half of its time twiddling
its thumbs. The probability that it is busy at any random moment is 0.5.

Note that the key is to choose units that are compatible. If | had said it takes

100 milliseconds to handle a request, it changes nothing. But U = 5*100 = 500 is not
meaningful as a percentage or a probability. U is a number between 0 and 1. So
you have to do what makes sense. Our treatment of the topic in this class is all
about formalizing the intuition you have anyway because it just makes sense. Try it
yourself for other values of A and D.

Understanding utilization and throughput

« Throughput/utilization are “easy” to understand for a single service
center that stays busy whenever there is work to do.

« |tis more complex for a network of centers/queues that interact, and
where each task/job/request visits multiple centers.

 And that’s what real computer systems look like.

— E.g., CPU, disk, network, and mutexes... =il ()

— Other synchronization objects

« The centers can service requests concurrently! 4O—D]B

« Some may be slower than others; any bottlenecks limit overall
throughput. If there is a bottleneck, then other centers are
underutilized even if the overall system is saturated.

Understanding utilization and throughput

Is high utilization good or bad?

Good. We don’t want to pay $$$ for resources and then leave them idle.
Especially if there is useful work for them to do!

Bad. \We want to serve any given workload as efficiently as possible.
And we want resources to be ready for use when we need them.

Utilization €- contention

Understanding bottlenecks

In a multi-center queue system, performance is limited by the
center with the highest utilization for any workload.

That’'s the center that saturates first: the bottleneck.
Always optimize for the bottleneck.

E.g., it's easy to know if your service is “CPU-limited” or “I/O limited” by
running it at saturation and looking at the CPU utilization. (e.g., “top”).

—Om r‘

Mean response time (R) for a center

R ==

The serveris idle. The
response time of a request is
just the time to service the
request (do requested work).

R =D + queuing delay (DN)

As the server approaches saturation,
the queue of waiting requests (size N)
grows without bound. (We will see
why in a moment.)

/

R - . saturation (U = 1:
U is server utilization)
é\ézgangsee lllustration only
time R Saturation behavior is
highly sensitive to
saturation implementation
l choices and quality.
D)\maxi /

Request arrival rate (offered load)

Little’s Law

For a FIFO/FCFS queue in steady state, mean response
time R and mean queue length N are governed by:

Little’'s Law: N = AR
Why?
« Suppose a task T is in the system for R time units.
* During that time:

— AR new tasks arrive (on average)
— N tasks depart (all the tasks ahead of T, on average).

« But in steady state, the flow in balances flow out.

— “Obviously”: throughput X = A in steady state. Otherwise
requests “bottle up” in the server -- not a steady state.

Inverse Idle Time “Law”

Service center saturates as 1/ A
approaches D: small increases in A

R cause large increases in the expected
response time R. At saturation R is
unbounded (divide by zero: no idle
time at saturation == 100% utilization).

U 1(100%)

Little’s Law gives mean response time R = D/(1 - U).
("Service demand over the idle time”)

Intuitively, an average task T's response time R =D + DN.
(Serve T at cost D, and N other tasks ahead of T in queue.)
Substituting AR for N (by Little’s Law): R=D + D AR
Substituting U for AD (by Utilization Law): R=D + UR

R -UR=D > R(1-U)=D -> R=DI(1-U)

Why Little’s Law is important

1. Intuitive understanding of FCFS queue behavior.
Compute response time from demand parameters (A, D).
Compute N: how much storage is needed for the queue.

2. Notion of a saturated service center.
Response times rise rapidly with load and are unbounded.
At 50% utilization, a 10% increase in load increases R by 10%.
At 90% utilization, a 10% increase in load increases R by 10x.

3. Basis for predicting performance of queuing networks.

Cheap and easy “back of napkin” (rough) estimates of system
performance based on observed behavior and proposed

changes, e.g., capacity planning, “what if’ questions.

Guides intuition even in scenarios where the assumptions of the
theory are not (exactly) met.

The problem of volume continues to be a top concern for the administration, Zients
said. Right now, HealthCare.gov can comfortably handle between 20,000 and
25,000 users at a time. But at "peak volumes, some users still experience slower
response times," he said.

Officials are also expecting traffic to spike at the end of the month and onward. So
this weekend, the administration is adding more servers and data storage to help
handle any additional load.

The goal is "to maintain good speed and response times at higher volumes," Zients
said. "This is a key focus of our work now." Ehe New ork Times

HealthCare.gov Learn Get Insurance Login Espariol

Individuals & Families Small Businesses All Topics v SEARCH

The System is down at the moment.

We're working to resolve the issue as soon as possible. Please try again later.

Please include the reference ID below if you wish to contact us at 1-800-318-2596 for support.

Error from: https%3A//www.healthcare.gov/marketplace/global/en_US/registration%23signUpStepOne
Reference ID: 0.cdd74f17.1380634949.2f9c301c

1 1 DAYS LEFT TO ‘E’Pe'l‘l t EOVeé’ag,e [MAR | gper;l -
(Heol?h Insurance Marketplace R 1 Enrolimen 1 CanBegin 31 Enrollmen

Began Closes

Part 2

MANAGING SCALABLE
PERFORMANCE

Improving performance (X and R)

1. Make the service center faster. (“scale up”)
— Upgrade the hardware, spend more $$$

2. Reduce the work required per request (D).

— More/smarter caching, code path optimizations, use smarter
disk layout.

3. Add service centers, expand capacity. (“scale out”)
— RAIDs, blades, clusters, elastic provisioning

— N centers improves throughput by a factor of N: iff we can
partition the workload evenly across the centers!

— Note: the math is different for multiple service centers, and
there are various ways to distribute work among them, but we
can “squint” and model a balanced aggregate roughly as a
single service center: the cartoon graphs still work.

This graph shows how certain design alternatives under study impact a
server’s throughput. The alternatives reduce per-request work(D or

overhead) and/or improve load balancing. (This is a graph from a random
research paper: the design alternatives themselves are not important to us.)

\ saturation
550

Note how throughput
degrades in overload
on this system.

200 250 300 350 400 450 500 550 600 650 700
Reauested Load (Op/s)

Offered load (requests/sec)

" VWAN ——
ENH-NODB -
500 LENH-NORDP .- |
:NH-Ng&ﬁg B
- - el e
Measured 450 3 %\
throughput §
(“goodput”)§ 400 F i i
Higher 3 | L S,
numbers §' i i 1¥
are better. aoo |
L

Saturation and response time

In the real world we don’t want to saturate our systems.
We want systems to be responsive, and saturated systems aren’t responsive.

. 'y Original '
How to measure maximum ;
; Performance I d
capacity of a server? f Improve
: A Curve ! Performance
Characterize max request e max /
. . ':
rate)\m_ax this way: | N
1. Define a response time £ Acceptable Response
objective: maximum o Time\
aCceptab|e response tlme o PR ARAR R AR AR AR AR AR AAAAAAA A A S VSV ATE s s s YTy vy Ty e
(Riax): @ simple form of %//
Service Level Objective — -
(SLO). " Number of Operations T
2. Increase A until system Current A Scaling
response time surpasses Load Target
R : thatis A,

[graphic from IBM.com]

Improving response time

If we improve the service for “higher capacity” by any means, the
effect is to push the response time curve out to the right.

A Original
Peri‘ormam:efr
- Improved
urve
2)\max f Performance
= A Cur've/
o
v
< Acceptable Response
Q. .
9 Time K
d "‘Ill""AAAlA:i:/-’m““y..qﬁ““'l" """l'l'l'yyl maX
" Number of Operations T
Current A Scaling
Load Target

[graphic from IBM.com]

L

SPECSFS2008 NFS v3/TCP FAS3140 Performance
e JIAFCC K 10k ~=fl=112 FCdisks 15Kv2m ¢ PAN w112 SATA disks 7K2 pm + F20A
120
100 |
'g 30 /
r
E
3 60
c
a
& 10|
20
o
0 3CCC 10000 15000 ZDDDO 25000 30000 35000 40000 45000
Operations per second

lllustration: if we improve/expand the service by any means, the
effect is to push the R curve out to the right. Roughly.

Managing overload

What should we do when a service is in overload?
« Overload: service is close to saturation. A\ >)\max

« Overload - work queues grow without bound, increasing
memory consumption and response time.

~

Throughput
X

A A..x offered load

Options for overload

1. Thrashing

— Keep trying and hope things get better. Accept each request
and inject it into the system. Then drop requests at random if
some queue overflows its memory bound. Note: leads to
dropping requests after work has been invested, wasting work
and reducing throughput (e.g., “congestion collapse”).

2. Admission control or load conditioning

— Reject requests as needed to keep system healthy. Reject
them early, before they incur processing costs. Choose your
victims carefully, e.g., prefer “gold” customers, or reject the
most expensive requests.

3. Dynamic provisioning or elastic scaling

— E.g., acquire new capacity “on the fly” (e.g., from a cloud
provider), and shift load over to the new capacity.

Scaling a service

Dispatcher

/

e >

Server cluster/farm/cloud/grid
Data center

Incremental scalability. Add servers or “bricks” for scale and robustness.
Issues: state storage, server selection, request routing, etc.

Scale-up vs. scale-out

http://dbshards.com/dbshards/database-sharding-white-paper/

Concept: load spreading

« Spread (“deal”) the data across a set of storage units.
— Make it “look like one big unit”, e.g., “one big disk”.
— Redirect requests for a data item to the right unit.

« The concept appears in many different settings/contexts.

— We can spread load across many servers too, to make a server
cluster look like “one big server”.

— We can spread out different data items: objects, records, blocks,
chunks, tables, buckets, keys....

— Keep track using maps or a deterministic function (e.g., a hash).

» Also called sharding, declustering, striping, “bricks”.

Service scaling and bottlenecks

Scale up by adding capacity incrementally?

« “Just add bricks/blades/units/elements/cores”...but that presumes we
can parallelize the workload.

« “Service workloads parallelize easily.”
— Many independent requests: spread requests across multiple units.

— Problem: some requests use shared data. Partition data into chunks and
spread them across the units: be sure to read/write a common copy.

« Load must be evenly distributed, or else some unit saturates before
the others (bottleneck or hot spot).

||| gy
A bottleneck limits throughput
and/or may increase response m -
-

time for some class of requests.

Storage tier: key-value stores

pUt(keyl data) l get (key) l T data [image ad.apted.
Distributed hash table henkor ey

lookup(key) | |

Example of how to

@ Web Tier Storage Tier scale the storage tier.
Rep);
/’Can-o,, Remote DC Incrementally scalable?
Balanced load?
e O
e O
>
e O

[image adapted from Lloyd, etc.,
Don’t Settle for Eventual]

Bottlenecks and hot spots: analysis

1. Suppose requests are divided evenly among N servers. Mean per-
request processing time is D, and also each request reads data from a
storage tier at mean cost 2D.

« Simplistic assumption (for now): all nodes are single-threaded.

« |f there are N servers in the storage tier, what is the maximum
throughput of the system? What is the utilization of the first tier?

« How should we provision capacity to “fix it"?

2. Suppose one of the N servers takes 2D per request.
 Whatis the impact on throughput?

 What is the impact on response time?

« |s the effect equivalent if the server has demand D but receives
requests at double the rate of the others? How is it different?

3. Suppose the request rate doubles? What then?

Arrivals Completions
e P—

Varying Fixed system Varying
workload performance

The math also works in the other direction....

Arrivals Completions
o t
Varying Varying system Fixed
workload (use elastic scaling) performance

(meet SLO)

“Elastic Cloud”

Resource Control

Feedback for
elastic
provisioning
(see RightScale)

Arrivals Completions
—p— P

Varying Varying system Target
workload performance

Elastic scaling: “pay as you grow”

Infrastructure Costs

Scalable Cloud Model

\: RIGHTSCALe

Use RightScale's Alert System

to configure an automated and

scalable setup that helps you |
stay ahead of the curve.

Predicted Demand

Actual Demand
Scalable Cloud Hardware

Automated Trigger Actions
-

Time

Elastic scaling: points

« What are the "automated triggers” that drive scaling?
— Monitor system measures: N, R, U, X (from previous class)
— Use models to derive the capacity needed to meet targets
« Service Level Objectives or SLO for response time
 target average utilization

 How to adapt when system is under/overloaded?
— Obtain capacity as needed, e.g., from cloud (“pay as you grow”).

— Direct traffic to spread workload across your capacity (servers)
as evenly and reliably as you can. (Use some replication.)

— Rebalance on failures or other changes in capacity.
— Leave some capacity “headroom” for sudden load spikes.
— Watch out for bottlenecks! But how to address them?

SEDA: An architecture for well-conditioned

scalable internet services I

A 2001 paper, mentioned here

because it offers basic insight into Og':gggg' m
server structure and performance. b

Event Queue Event Handler _ O
Internally, server software is “like” _anmn| C %;%, q.—.;)
server hardware: requests “flow | ThreadPool | N\ Lol
through” a graph of processing stages. L e T

SEDA is a software architecture to Controler

. .. Figure 6: A SEDA Stage: A stage consists of an incoming event queue, @
manage thlS ﬂOW eXp|ICIt|y thread pool, and an application-supplied event handler. The stage’s operation
is managed by the controller, which adjusts resource allocations and scheduling

We can control how much processing dynamically.

power to give to each stage by changing
the number of servers, or threads
dedicated to it (SEDA on a single server).

We can identify bottlenecks by observing
queue lengths. If we must drop a request,
we can pick which queue to drop it from.

Component
(stage)

Component

Staged Event-Driven Architecture (SEDA)

accept
"

connection

l HTT!
g

read
o

\

check
LI

file %"
handle
e
cache

110
request

——

miss l

cache

packet
-

[
\ send
hit L’J response

Decompose service into stages separated by queues

e Each stage performs a subset of request processing
e Stages internally event-driven, typically nonblocking
e Queues introduce execution boundary for isolation and conditioning

write
"

Each stage contains a thread pool to drive stage execution

e However, threads are not exposed to applications
e Dynamic control grows/shrinks thread pools with demand
> Stages may block if necessary

Best of both threads and events:

Compare to our
earlier treatment of

event-driven models
and thread pools.

e Programmability of threads with explicit flow of events

Response Time Distribution - 1024 Clients

0_9 RS FUI TSI S————— 4 2 TRy JES— s -
08 - ‘Long tail in Apache & Flash|
: Apache due to TCP SYN backoff
~ 150 conns 5
>I: 07 k- () TN SN S S S B oo R A
Vv
@
E 061 o Flash
@ 506 conns
g 05 | ¥ (..........)
5 A
@
e 04 ... o
8
s 03
02 ... -
0.1 K %
: Note log scale
0 r P | s PP | s PRSP | M PR
10 100 1000 10000 100000

Response time, msec

SEDA Flash Apache
Mean RT | 547 ms | 665 ms 475 ms
Max RT | 3.8 sec | 37 sec | 1.7 minutes

e SEDA yields predictable performance - Apache and Flash are very unfair

> “‘Unlucky’’ clients see long TCP retransmit backoff times
> Everyone is ‘‘unlucky’’: multiple HTTP requests to load one page!

Cumulative Distribution Function (CDF)

80% of the requests (90-10) have w19 .
response time R with x7 < R < x2. Tail” of 19% of requests with
response time R > x2.

\ J

90%
quantile

—

A few requests

What's the have very long
mean R? response times.
310 S = e I .
(median) |
0% | S o
quantile

R x1 X2

Understand how/why the mean (average) response time can be misleading.

SEDA Lessons

« Mean/average values are often not useful to capture system
behavior, esp. for bursty/irregular measures like response time.

— You have to look at the actual distribution of the values to understand
what is happening, or at least the quantiles.

« Long response time tails can occur under overload, because (some)
queues (may) GROW, leading to (some) very long response times.

— E.g., consider the “hot spot” example earlier.

« A staged structure (multiple components/stages separated by
queues) can help manage performance.

— Provision resources (e.g., threads) for each stage independently.

— Monitor the queues for bottlenecks: underprovisioned stages have
longer queues.

— Choose which requests to drop, e.g., drop from the longest queues.
* Note: staged structure can also help simplify concurrency/locking.
— SEDA stages have no shared state. Each thread runs within one stage.

Part 3

LIMITS OF SCALABLE
PERFORMANCE

Parallelization

A simple treatment

A program has some work to do. We want to do it fast. How?

Do it on multiple computers/cores in parallel.

But we won’t be able to do all of
the work in parallel.

A
< Preamble >
| (1-p)’
Some portion will be Fork()
iali X
E e F e " —— ——
E.g.: I e e e (e
startup, P
locking l ! l |
combining results ! I
access to a specific disk Join()
(1-p)”
v
http://blogs.msdn.com/b/ddperf/archive/2009/04/29/ GOSt-pTOCGSSiﬂg)
parallel-scalability-isn-t-child-s-play-part-2-amdahl- Y

s-law-vs-gunther-s-law.aspx

Suppose some
portion p of the
work can be

done in parallel.

Then a portion
1-p is serial.

How much
does that help?

Amdahl’s Law

Normalize runtime = 1

AmcuTs Law (On a single core.)
[| AT 0.95) Now parallelize:
) //T';‘ arsl .c;’\:r on
’ N R P Par_allel pqrtion: P((0<P<1)
A —= Serial portion: 1-P
10.¢ 4 : P -
T T A T T T T 11 -9.90) N-way parallelism (N cores)
1/(1- 0.75) Runtime is now:
wl AT L] P/N + (1-P)
SpeedU.P. -t ' ; :
o /{ 3 J 31l:(11[_ 95':'0) L
N T RRREREIERG Even if “infinite parallelism”,
runtime is 1-P in the limit. Itis
determined by the serial portion.
Law of Diminishing Returns Bottleneck: limits performance.

“Optimize for the primary bottleneck.” Speedup = before/after
Bounded by 1/(1-P)

Amdahl’s Law

In the case of parallelization, Amdahl's law states that if P is the proportion of a program that can be made
parallel (i.e., benefit from parallelization), and (1 — P) is the proportion that cannot be parallelized (remains
serial), then the maximum speedup that can be achieved by using N processors is

1
(1-P)+ %

In the limit, as N tends to infinity, the maximum speedup tends to 1 / (1 — P). In practice, performance to price
ratio falls rapidly as N is increased once there is even a small component of (1 — P).

S(N) =

As an example, if P is 90%, then (1 — P) is 10%, and the problem can be sped up by a maximum of a factor of
10, no matter how large the value of N used. For this reason, parallel computing is only useful for either small
numbers of processors, or problems with very high values of P: so-called embarrassingly parallel problems. A
great part of the craft of parallel programming consists of attempting to reduce the component (1 — P) to the
smallest possible value.

What is the “serial portion” that “cannot be parallelized™?
- Mutexes/critical sections
- Combining results from parallel portions (e.g., “reducers”)

“Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned
and released with minimal management effort or service
provider interaction.”

- US National Institute for Standards and Technology NIST
http://www.csrc.nist.gov/groups/SNS/cloud-computing/

Part 4

VIRTUAL CLOUD HOSTING

amazon

webservices™

Virtual “
Appliance <
Image Terﬁplate
(AMI)
Client [

EC2 Elastic Compute Cloud
The canonical public cloud

e Large
f‘ Instance
\\:_-
High-CPU
3 Extra Large
% Instance
High-Memory
3 Double Extra
. Large Instance
=
17| Service Guest
Cloud Host
Provider(s)

Compute

Amazon EC2
750 hours/month*

AWS Free Tier

Launch new applications, test existing

. . . : Storage
applications in the cloud, or simply gain
. . Amazon S3

hands-on experience with AWS. 5 GB*

Get started with AWS for Free »
Database
DynamoDB
100 MB of

SSD-backed storage”
o

Get Started for Free » | Launch virtual machines and apps in minutes.

WHAT IS CLOUD COMPUTING? WHAT IS AMAZON WEB SERVICES? GET STARTED WITH AWS
Learn the benefits of Cloud Learn about the AWS platform, Start using AWS in under 15
Computing with AWS products and services minutes

OpenStack, the Cloud Operating System

Management Layer That Adds Automation & Control

Self-service
Connects to apps ‘ ‘ P Is
via APIs #id - g Portals for
APPS USERS | ADMINS users

n openstack cLouD OPERATING SYSTEM

Creates Pools of Resources Automates The Network

1
1
1
1
‘/ it -\I ‘/ i -\I l '/ i -'\| '/ $ -\|
/ === \"= = . =/ \=& =/ \
{)) |

n openstack
[Anthony Young @ RaCkSpace] CLOUD SOFTWARE

Host/guest model

Client [[_"77"17| Service Guest
Provider(s)

» Service is hosted by a third party.
— flexible programming model
— cloud APIs for service to allocate/link resources
— on-demand: pay as you grow

laaS: Infrastructure as a Service

SO - : EC2 is a public laaS
>
Client | _________ ~| Service cloud (fee-for-service).
| Platform Deployment of private
Host_lng p_erfo_rmance clouds is growing
and isolation is 0S rapidly w/ open laaS

determined by
virtualization layer

"~ cloud software.
Virtual Machines

7/
(VM): VMware, KVM,

etc. ECAT openstack

Ehe New Jork Times
December 3, 2013

Google Joins a Heavyweight Competition in
Cloud Computing

By QUENTIN HARDY
MOUNTAIN VIEW, Calif. — Google already runs much of the digital lives of consumers through email, Internet

searches and YouTube videos. Now it wants the corporations, too.

The search giant has for years been evasive about its plans for a so-called public cloud of computers and data
storage that is rented to individuals and businesses. On Tuesday, however, it will announce pricing, features and
performance guarantees aimed at companies ranging from start-ups to multinationals.

It is the latest salvo in an escalating battle among some of the most influential companies in technology to control
corporate and government computing through public clouds. That battle, which is expected to last years and cost
the competitors billions of dollars annually in material and talent, already includes Microsoft, IBM and Amazon.

As businesses move from owning their own computers to renting data-crunching power and software over the
Internet, this resource-rich foursome is making big promises about computing clouds. Supercomputing-based
research, for example, won’t be limited to organizations that can afford supercomputers. And tech companies with a
hot idea will be able to get big fast because they won’t have to build their own computer networks.

Over the last several years, each of the big cloud providers has built a global network of over a million computer
servers. In the process, the companies are rethinking almost every step to maximize efficiency and power. Intel, the
world’s largest semiconductor maker, now has six salespeople assigned full time to Amazon, feeding a continuous
appetite for new computers.

The biggest promise of these clouds is their ability to make it easy to do things that would have cost millions of
dollars in hardware just a few years ago.

That is, unless you want to build your own public cloud. Executives at all four public cloud competitors say there is
no college course or professional training for running computers at this scale: The only real way to learn how to do it
is by working at the handful of companies with the resources to pull it off.

“We’re giving people the same services we rely on to run Google,” said Mr. DeMichillie. “I wouldn’t say spending
billions of dollars doesn’t matter, but there is a learning by doing in this, too; hard information problems we’ve
tackled.”

Native virtual machines (VMs)

« Slide a hypervisor underneath the kernel.
— New OS layer: also called virtual machine monitor (VMM).

« Kernel and processes run in a virtual machine (VM).
— The VM “looks the same” to the OS as a physical machine.
— The VM is a sandboxed/isolated context for an entire OS.

« Can run multiple VM instances on a shared computer.

qwests| 1 1 1 || I I) || D EE

host hypervisor (VMM)

vinwdare

guest VM1 guest VM2 guest VM3

guest or
MO0 O8O | DEE
VM
OS kernel 1 OS kernel 2 OS kernel 3 contexts
hypervisor/VMM host

<

%ng

|| Parallels

Virtualization support: VT

 These VMs can run a full OS with a kernel and multiple
processes with direct execution: they are not interpreted!

« Kernel, process, and hypervisor all run on the same
cores, at full speed. (Note: distinct from Java JVM.)

* VMs used to be implemented in all sorts of goofy ways.
« Since 2007-2010 chip vendors offer hardware support.

Intel VT and VT-d, AMD-V VirtualBox - Error ~ ?
+ new CPU modes -

VT-x/AMD-V hardware acceleration is

+ new CPU events/transitions { § not available on your system. Certain
i ~ guests (e.g. 0S/2 and QNX) require
+ a new level of VA translation this feature and will fail to boot without
Extended Page Tables (EPT) -

Close VM Copy Continue

VT in a Nutshell

« New VM mode bit

Orthogonal to CPL (e.g., kernel/luser mode)

 If VM mode is off > host mode

Machine “looks just like it always did” ("VMX root”)

« [If VM bit is on = guest mode

Machine is running a guest VM: “VMX non-root mode”
Machine “looks just like it always did” to the guest, BUT:
Various events trigger gated entry to hypervisor (in VMX root)
A “virtualization intercept”: exit VM mode to VMM (VM EXxit)
Hypervisor (VMM) can control which events cause intercepts

Hypervisor can examine/manipulate guest VM state and return
to VM (VM Entry)

VT: core modes

guest VM1 guest VM2 VMX non-root mode

“guest mode”
(user or kernel)
CPU events
trap, fault, interrupt
OS kernel 1 OS kernel 2 and return
orlenter vnbenter VMEXxit and VMEnter
_ _ intercept and return
vm+iexit vmtexit
v \ VMX root mode
hypervisorNMM [] “host mode”

host (user or kernel)

CPU Virtualization With VT-x

Two new VT-x operating modes SRS elrines (Whas

® Less-privileged mode
(VMX non-root) for guest OSes

¢ More-privileged mode
(VMX root) for VMM

Two new transitions
¢ VM entry to non-root operation pLLE VM Entry

¢ VM exit to root operation V|\/|X|_ VM Monitor (VMM)
Root

Execution controls determine when exits occur

® Access to privilege state, occurrence of exceptions, etc.
¢ Flexibility provided to minimize unwanted exits

VM Control Structure (VMCS) controls VT-x operation

® Also holds guest and host state

Virtual Machines + Virtual Memory

Guest Virtual Guest Physical Host Physical

Addresses Guest Page Addresses Host Page Addresses

Tables Tables

> [2
S

7

>

“VA” 13 PA” EPT “MA” B

Three address spaces

“VA”
Current Guest Process Guest OS
13 PA” ‘
: el Virtual Virtual
Virtual RAM Effrf:er Devices ROM
“MA” ‘
RAM Devices FBrjferf ROM

Virtual
Address Spaces

Physical
Address Spaces

Machine
Address Space

TLB caches VA->MA mappings

VA—PA mapping

1t

TLB

VA | MA

PA—MA mapping

Image/Template/Virtual Appliance

« A virtual appliance is a program for a virtual machine.
— Sometimes called a VM image or template
« The image has everything needed to run a virtual server:
— OS kernel program
— file system
— application programs
« The image can be instantiated as a VM on a cloud.
— Not unlike running a program to instantiate it as a process

Thank you, VMware

VIRTUAL

APPLIANCE

o

Virtual Infrastructure

SyIL<in

Containers

* Note: lightweight container technologies offer a similar
abstraction for software packaging and deployment,
based on an extended process model.

— E.g., Docker and Google Kubernetes

docker

Docker, Containers, and the
Future of Application Delivery

Part 5

NOTREACHED

Not to be tested.

GENI: slices and federation

My “slice” runs across
/ the evolving GENI
P _federation.

Commercial
Clouds

Backbone

Other-Nation
Projects

Slice: an end-to-end virtual network context spanning multiple sites, with
configurable topology and properties, e.g., containment and isolation.

Exploring Networks
of the Future

Not to be tested.

ExoGENI.net

ExoGEN

L2/L3 m

A packaged small-scale cloud
site for a campus, lab, or PoP.

L2/L3

transport
fabrics

ExoGENI Rack

openstack OpenFlow

Linked to a federated hosting
platform for tenant networks (slices).

Not to be tested.

ExoGENI.net:

cartoon version

Not shown: dynamic
slice adaptation under
automated control

ﬁ “Make my slice.”

GENI control framework for federated orchestration
Open Resource Control Architecture

-~

orca

“Instantiate VMs
and VLANs x, y, z.”

openstack

“Link sites

| |
=

\\‘4.\\?/:,7{
SFERDHA

ISPy
92D

Network
provider

Site A

“Enable external
with circuits.” SDN controller

forx, y, z.”

U

OpenFlow

