M

Duke Systems

Storage Etc.

Jeff Chase
Duke University

http://dbshards.com/dbshards/database-sharding-white-paper/

Block storage API

« Multiple storage objects: dynamic create/destroy

« Each object is a sequence of logical blocks

» Blocks are fixed-size

« Read/write whole blocks, or sequential ranges of blocks
« Storage address: object + logical block offset

How to allocate for objects on a disk?
How to map a storage address to a location on disk?

Example: AWS Simple Storage Service

Am aZO n S 3 ’ Create Free Account »

Amazon S3 is storage for the Internet. It is designed to AWS Free Tier includes 5GB
storage, 20,000 Get Requests,

make web-scale computing easier for developers. ,
and 2,000 Put Requests with

Amazon S3 provides a simple web-services interface Amazon S3.

that can be used to store and retrieve any amount of View AWS Free Tier Details »

data, at any time, from anywhere on the web. It gives

any developer access to the same highly scalable,

reliable, secure, fast, inexpensive infrastructure that We are lowering S3 storage prices
, by 36% to 65%, effective April

Amazon uses to run its own global network of web 1et 2014

sites. The service aims to maximize benefits of scale

. See New Amazon S3 Prices »
and to pass those benefits on to developers.

Amazon S3 (Simple Storage Service) Basics

Amazon S3 stores data as objects within buckets. An object is
comprised of a file and optionally any metadata that describes that file.

To store an object in Amazon S3, you upload the file you want to store
to a bucket. When you upload a file, you can set permissions on the
object as well as any metadata.

Buckets are the containers for objects. You can have one or more
buckets. For each bucket, you can control access to the bucket (who
can create, delete, and list objects in the bucket), view access logs for
the bucket and its objects, and choose the geographical region where
Amazon S3 will store the bucket and its contents.

http://docs.aws.amazon.com/AmazonS3/latest/gsg/AmazonS3Basics.html

Memory/storage hierarchy

Computing happens here, at the tip of
the spear. The cores pull data up

through the hierarchy into registers, /
and then push updates back down.

small
and fast

registers
(ns)

caches
In general, each layer is a / c')'lec'je \
cache over the layer below.
VA \
/ off-chip

main memory (RAM) \ big and

You are here. »/’ off-module slow

disk, other storage, network RAM \(ms)

Cheap bulk storage

The block storage abstraction

« Read/write blocks of size b on a logical storage device (“disk”).

« A disk is a numbered array of these basic blocks. Each block is
named by a unique number (e.g., logical BlocklID).

« CPU (typically executing kernel code) forms buffer in memory and
issues read or write command to device queue/driver.

« Device DMAs data to/from memory buffer, then interrupts the CPU
to signal completion of each request.

« Device I/O is asynchronous: the CPU is free to do something else
while /O in progress.

« Transfer size b may vary, but is always a multiple of some basic
block size (e.g., sector size), which is a property of the device, and
Is always a power of 2.

« Storage blocks containing data/metadata are cached in memory
buffers while in active use: called buffer cache or block cache.

[Calypso]

StO rage StaCk Databases,

Hadoop, etc.

File system API.
Generic, for use
over many kinds of
storage devices.

We care mostly
about this stuff.

Device driver software is
a huge part of the kernel, <
but we mostly ignore it. ‘;

- Standard block 1/0

N internal interface.

' Block read/write on

numbered blocks on

each device/partition.

For kernel use only:
DMA + interrupts.

Many storage __
technologies, advancing—
rapidly with time.

Rotational disk (HDD): cheap, mechanical, high latency.
Solid-state “disk” (SSD): low latency/power, wear issues, getting cheaper.

[Calypso]

Anatomy of a read

3. Check to see if requested data (e.g., 6. Return to
a block) is in memory. If not, figure user mode.
where it is on disk, and start the |/O. 5. Copy data from

kernel buffer to user
buffer in read.

2. Enter kernel (kernel mode)
for read syscall. \
1. Compute 4. sleep for 1/0O (stall)

(user mode) Wakeup by interrupt. CPU

seek transfer (DMA) Disk

Improving utilization for I/O

Some things to notice about the “anatomy” fig.
 The CPU is idle when the disk is working.
* The disk is idle when the CPU is working.

 If their service demands are equal, each runs at 50%.
— Limits throughput! How to improve this?
— How to “hide” the 1/O latency?

 |f the disk service demand is 10x the CPU service
demand, then CPU utilization is at most 10%.
— Limits throughput! How to improve this?
— How to balance the system?

Prefetching for high read throughput

 Read-ahead (prefetching)
— Fetch blocks into the cache in expectation that they will be used.
— Requires prediction. Common for sequential access.

1. Detect access pattern. Reduce /O stalls

2. Start prefetchlng

Sequential read-ahead

* Prediction is easy for sequential access. “Most files
are read and written sequentially.”

 Read-ahead also helps reduce seeks by reading
larger chunks if data is laid out sequentially on disk.

App requests block n
App requests block n+1

System prefetches block n+2

System prefetches block n+3

Challenge: I/O and scheduling

« Suppose thread T does a lot of 1/O.
» T blocks while the I/O is in progress.
 When each I/O completes, T gets back on the readyQ.

« Where T waits for threads that use a lot of CPU time.
— While the disk or other I/O device sits idle!

* T needs only a smidgen of CPU time to get its next I/O
started.

« Why not let it jump the queue, and get the disk going so
that both the disk and CPU are fully utilized?

» This is a form of shortest job first (SJF) scheduling,
also known as shortest processing time first (SPT).

Mixed Workload

Tasks I/0O
\I/completes

/0 bound D

issues

170

request
CPU bound
CPU bound

]
dh

gets
CPU

1/0O
\I/com pletes

Time

A4

Two Schedules for CPU/Disk

1. Naive Round Robin o 00

5 5 1 1

I I D .
4

CPU busy 25/37: U = 67%
Disk busy 15/37: U = 40% m
2. Add internal priority boost for I/O completion

33% improvement in utilization
When there is work to do,

U == efficiency. More U means
better throughput.

CPU busy 25/25: U = 100%
Disk busy 15/25: U = 60%

Estimating Time-to-Yield

How to predict which job/task/thread will have the shortest
demand on the CPU?

— If you don’ t know, then guess.
Weather report strateqy: predict future D from the recent past.

We can “guess” well by using adaptive internal priority.
— Common technique: multi-level feedback queue.
— Set N priority levels, with a timeslice quantum for each.

— If thread’s quantum expires, drop its priority down one level.
* “lt must be CPU bound.” (mostly exercising the CPU)

— If a job yields or blocks, bump priority up one level.
* “lt must be I/0 bound.” (blocking to wait for 1/O)

Example: a recent Linux rev

“Tasks are determined to be I/O-bound or CPU-
bound based on an interactivity heuristic. A task's
interactiveness metric is calculated based on how
much time the task executes compared to how much
time it sleeps. Note that because 1/O tasks schedule
I/O and then wait, an 1/O-bound task spends more
time sleeping and waiting for 1/O completion. This
iIncreases its interactive metric.”

Key point: interactive tasks get higher priority for the
CPU, when they want the CPU (which is not much).

Multilevel Feedback Queue

Many systems (e.g., Unix variants) implement internal
priority using a multilevel feedback queue.

« Multilevel. Separate ready queue for each of N priority levels.
Use RR on each queue; look at queue i+7 only if queue i is empty.

 Feedback. Factor a task’s previous behavior into its priority.
« Put each ready/awakened task at the tail of the q for its priority.

bieh ‘ . |/O bound tasks

—»‘ Tasks holding resouces
Tasks with high external priority

v v

GetNextToRun selects task low

at the head of the highest ® CPU-bound tasks

priority queue: constant time,

no sorting ready queues Priority of CPU-bound
indexed by priority tasks decays with system

load and service received.

MFQ

Priority

Time Slice (ms)

10

20

40

80

Round Robin Queues

new or I/O
bound task

@timg in.ce
<Dexplratlon
<

HEE

Challenge: data management

« Data volumes are growing enormously.

« Mega-services are “grounded” in data.

« How to scale the data tier?

Scaling requires dynamic placement of data items across data
servers, so we can grow the number of servers.

Sharding divides data across multiple servers or storage units.
Caching helps to reduce load on the data tier.
Replication helps to survive failures and balance read/write load.

Caching and replication require careful update protocols to
ensure that servers see a consistent view of the data.

The Buffer Cache

To the user, both reading and writing of files appear to
be synchronous and unbuffered. That is immediately after
return from a read call the data are available, and con-
versely after a write the user’s workspace may be reused. In
fact the system maintains a rather complicated buffering
mechanism which reduces greatly the number of /O opera-
tions required to access a file. Suppose a write call is made
specifying transmission of a single byte.

UNIX will search its buffers to see whether the affected
disk block currently resides in core memory; if not, it will
be read in from the device. Then the affected byte is
replaced in the buffer, and an entry is made in a list of
blocks to be written. The return from the write call may
then take place, although the actual /O may not be com-
pleted until a later time. Conversely, if a single byte is read,
the system determines whether the secondary storage block
in which the byte is located is already in one of the system’s
buffers; if so, the byte can be returned immediately. If not,
the block is read into a buffer and the byte picked out.

@ Memory

File
cache

Ritchie and Thompson
The UNIX Time-Sharing
System, 1974

Editing Ritchie/Thompson

The system maintains a buffer cache (block cache, file
cache) to reduce the number of |/O operations.

Suppose a process makes a system call to access a @ Memory

single byte of a file. UNIX determines the affected
disk block, and finds the block if it is resident in the File
cache. Ifitis not resident, UNIX allocates a cache cache

buffer and reads the block into the buffer from the disk.

Then, if the op is a write, it replaces the affected byte
in the buffer. A buffer with modified data is marked
dirty: an entry is made in a list of blocks to be written.
The write call may then return. The actual write might
not be completed until a later time.

If the op is a read, it picks the requested byte out of the
buffer and returns it, leaving the block in the cache.

I/O caching

Buffer headers BlockID =12

Cache :
directory detscr![be ;
contents o
(hash table) buffers

cached

fetch
? <4
)
push
app threads memory
Request read and A set of available frames
write operations (buffers) for block 1/0
on byte ranges of caching, whose use is
files controlled by the system

BlockID

5
10
15
20

An array of numbered
blocks on storage

Concept: load spreading

« Spread (“deal”) the data across a set of storage units.
— Make it “look like one big unit”, e.g., “one big disk”.
— Redirect requests for a data item to the right unit.

« The concept appears in many different settings/contexts.

— We can spread load across many servers too, to make a server
cluster look like “one big server”.

— We can spread out different data items: objects, records, blocks,
chunks, tables, buckets, keys....

— Keep track using maps or a deterministic function (e.g., a hash).

» Also called sharding, declustering, striping, “bricks”.

Example: disk arrays and striping

One way to grow:
(1) Buy more disks

(2) “Deal the blocks”
(3) Keep track of them
(4) Spread the I/O

How to keep track of the
blocks? Given a request for
block n in the “logical drive”,
which disk to send it to? Which
block on that disk?

Block 8

Logical Drive

Buiding

Block 2
S ——]

Block 4
——]

Block §
_— =

Block 8
—— ™’

Physical Disks

Example: striping in Lustre, a Parallel FS

“chunk”
or block

Afile

Example:
‘ stripe width=4

Lustre

« Lustre is an open-source parallel file system widely
used in supercomputers.

« A Lustre file system contains a collection of many disk
servers, each with multiple disks (“targets”).

« Large bursts of reads/writes on large striped files use
many targets in parallel.

Clients 1/O Routers OSS OST
(server) (tarﬁet)
— -

Load spreading and performance

« What effect does load spreading across N units have on
performance, relative to 1 unit?

« What effect does it have on throughput?
 What effect does it have on response time?

« How does the workload affect the answers?
 E.g., what if striped file access is sequential?
 What if accesses are random?

 What if the accesses follow a skewed distribution, so
some items are more “popular” than others?

Write order from CPU for data “"ABCD”

RAID O

STI"IDIF\Q
» Sequential throughput?
Random throughput?
Random latency?

Read vs. write?
» Cost per GB?

Pure declustering

Data is written by spreading it across
multiple disks, this is called *striping”

Fujitsu

What about failures? X

« Systems fail. Here’s a reasonable set of assumptions
about failure properties for servers/bricks (or disks)

— Fail-stop or fail-fast fault model
— Nodes either function correctly or remain silent
— A failed node may restart, or not = |

— Arestarted node loses its memory state, and recovers its
secondary (disk) state

o If failures are random/independent, the probability of
some failure is linear with the number of units.

— Higher scale - less reliable!

« If adisk in a striped storage system fails, we lose the
entire file! (It's no good with all those holes.)

What is the probability that a disk fails in an array of N disks at any given time?

Let's make some reasonable assumptions (not always true, but reasonable) about the disks
in the array:

- Disk failures are independent: a disk doesn't "know" what happens to other disks when
it "decides" to fail.

- Disks all have the same probability of failure in any given point in time (or any given
interval): no disk is more or less prone to failing to any other.

- Disk failures are evenly distributed in time: no interval in time is more prone to disk
failures than any other interval.

So the probability of any given disk failing in any given interval (of some fixed length) is a
constant. Let us call this constant F.

It is an axiom of elementary probability that:
- The probability of either A or B occurring (but not both) is P(A) + P(B) - P(A and B).
- The probability of both A and B occurring is P(A)*P(B).

Well, if F is a small number (it is), then the probability of two disks failing in the same
interval is F-squared, a very small number. So forget about that.

So the probability that any one of N disks fails in some given interval is NF.

Write order from CPU for data “ABCD”

RAID 1

Mirroring

» Sequential throughput?

» Random throughput?
Random latency?

- Read vs. write?
» Cost per GB?

Pure replication

HDDO

Writes same data onto
both disks simultaneously)
Fujitsu

Building a better
disk: RAID §

Write order from CPU for data “ABCD"

-

-~
‘‘‘‘‘‘

- -
......

-~ .
......

 Market standard

Party data creaton| . Striping for high throughput
for pipelined/batched reads.

« Data redundancy: parity

« Parity enables recovery from
one disk failure.

* Cheaper than mirroring

« Random block write must
HDD3 also update parity for stripe
A~D—Parity ABCD « Distributes parity: no“hot

E~H-Parity EFGH spot” for random writes
| ~L-Parity IJKL
M-~P —Parity MNOP

Fujitsu

Parity

Scheme Character Bits Parity Bit
*j
1101101 0
Parity Odd 1000100 1
1111111 0
1101101 1
Parity Even 1000100 0
1111111 1

Simple Parity Generation

A parity bit (or parity block) is redundant information stored with
a string of data bits (or a stripe of data blocks). Parity costs
less than full replication (e.g., mirroring), but allows us to
reconstruct the data string/stripe if any single bit/block is lost.

Just to spell it out: a stripe is an array of blocks, one block per disk in the disk array. Each
block is an array of bits ("memory/storage is fungible"). In RAID-5, one of the blocks of

each stripe is a parity block. Each bit in the parity block contains parity over the corresponding
bits in the data blocks (i.e., the result of a bitwise XOR, exclusive-or).

Q: If two bits/blocks are lost, your even/odd state may not be changed. Therefore, how
do you recover from a failure in this situation?

A: A classic RAID 5 can survive only a single disk failure. That is why many deployments are
using alternatives with more redundancy, e.g., "RAID-6" (two parity disks) or

"RAID-10" (essentially a mirrored pair of RAID-5 units, 2x5=10).

Q: How do you know which bit/block was lost?

A: ltis presumed that disk drive failure is detectable by external means. One possibility is that
the disk drive is "fail stop": if it fails, it simply stops serving requests. Or the failed disk reports
errors when you try to use it. It is presumed that a disk doesn't ever lie about the stored data
(essentially a "byzantine" failure). Fortunately, this assumption is almost always true.

So: in a classic RAID-5, if you know which drive has failed, it is easy to rebuild each stripe from
the contents of the remaining disks. For each stripe, the failed disk either contains the parity
block of that stripe, or it contains some data block of the stripe. These cases are symmetric:
either way the array can rebuild the contains of the missing block.

Note that recovery is very expensive. The recovery process must read the contents of all
surviving disks, and write parity data to a replacement disk. That means that a disk failure must
be repaired quickly: if a drive fails in your RAID, you should replace it right away.

Q: Can you specify the differences between read and write on that same slide for the different
raids? | know you said in class that for raid 1 reads get faster and writes get slower? Could you
explain that and also for the other raids?

A: Once you understand the RAID 0, 1, 5 patterns (striping, mirroring, and parity), all of these
differences are "obvious". The differences stem from different levels of redundancy.
Redundancy increases $$$ cost but it also improves reliability. And redundancy tends to make
writes more expensive than reads: redundant data must be kept up to date in a write, but it may
allow more copies to choose from for load-balancing reads.

Always be careful and precise about "faster" and "slower". For example, for random accesses,
throughput goes up with RAIDs but latency (minimum response time, not counting queuing
delays) is unchanged: you still have to reach out with a disk arm to get to that data. This
example underscores that “faster” and “slower” also depend on characteristics of the workload.

Also, “faster” and “slower” are relative, so you must specify a baseline. Writes on RAID-1 are
slower than for RAID-0, because writes in RAID-1 have to go to all disks. In RAID-0 or RAID-5
you can write different data to multiple disks in parallel, but not in RAID-1. But RAID-1 is no
slower for writes than a single disk---just more expensive. Also, RAID-1s can load-balance better
than RAID-0 or RAID-5 for random read workloads. For any given block, you have N disks to
choose from that have a copy of the block, so you can choose the least loaded. So read
throughput on a RAID-1 is N times better than a single disk.

RAID-5 suffers for random write throughput because any write of a data chunk that is smaller
than a whole stripe must also write a parity block. For a stream of random single-block writes,
that means RAID-5 is doing twice as much work as RAID-0. So throughput will be lower.

Names and layers

User notes in notebook file
view

Application
fd [l/ notefile: fd, byte range*
bytes File System

block# @ device, block #

: ”\v Disk Subsystem
’ Y / surface, cylinder, sector
— >

Add more layers as needed.

More (optional) layers of mapping

%

Logical disk

Files

volumes or
objects

Physical
disks

There could be
many more
layers than this!

For “storage
virtualization”....

It's turtles all the
way down.

Which block?

When an app requests to read/write a file at offset i, how
to know which block contains that byte i on storage?

We need a map!

We know which logical block it is in the file (simple
arithmetic), but how do we know which block it is on disk?

We need a map!

Block maps

Large storage objects (e.qg., files,
segments) may be mapped so they
don’t have to be stored contiguously
in memory or on disk.

Idea: use a level of indirection through
a map to assemble a storage object
from “scraps” of storage in different
locations.

The “scraps” can be fixed-size slots:
that makes allocation easy because
the slots are interchangeable (fixed
partitioning). Fixed-size chunks of
data or storage are called blocks or
pages.

@, object

map

Examples: page tables that

implement a VAS.

One issue now is that each
access must indirect through
the map...

Indirection SIMPLY EXPLAINED

ayod g 3eab

A famous aphorism of David Wheeler goes: "All problems
in computer science can be solved by another level of
indirection";!"! this is often deliberately mis-quoted with
"abstraction layer" substituted for "level of indirection".
Kevlin Henney's corollary to this is, "...except for the
problem of too many layers of indirection."

NEXT DIRECTION SIGRN
18 KM

e—

INDIRECTION

Using block maps

« Files are accessed through e.g. read/write syscalls: the kernel can

chop them up, allocate space in pieces, and reassemble them.
» Allocate in units of fixed-size logical blocks (e.g., 4KB, 8KB).

« Each logical block in the object has an address (logical block
number or logical blockID): a block offset within the object.

 Use a block map data structure.

Index by logical blocklID, return underlying address

Example: inode indexes file blocks on disk
Maps file+logical blocklD to disk block #
Example: page table indexes pages in memory
Maps VAS+page VPN to machine frame PFN

Note: the addresses (block # or PFN) might themselves
be blockIDs indexing another level of virtual map!

Index map with name,
e.g., logical blockID #.

S

—

Read address of the
block from map entry.

To put it another way

« Variable partitioning is a pain. We need it for heaps, and for other
cases (e.g., address space layout).

« But for files/storage we can break the objects down into “pieces”.

— When access to files is through an API, we can add some code behind
that API to represent the file contents with a dynamic linked data
structure (a map).

— If the pieces are fixed-size (called pages or logical blocks), we can use
fixed partitioning to allocate the underlying storage, which is efficient
and trivial.

— With that solution, internal fragmentation is an issue, but only for small
objects. (Why?)

« That approach can work for VM segments too: we have VM
hardware to support it (since the 1970s).

Representing files: inodes

« There are many many file system implementations.
« Most of them use a block map to represent each file.

« Each file is represented by a corresponding data object,
which is the root of its block map, and holds other

J 14

information about the file (the file's “metadata”).

 In classical Unix and many other systems, this per-file
object is called an inode. (“index node”)

« The inode for a file is stored “on disk”: the OS/FS reads it
in and keeps it in memory while the file is in active use.

 When a file is modified, the OS/FS writes any changes to
its inode/maps back to the disk.

Inodes

A file’s data blocks could be “anywhere” on disk. The file’s inode maps them.
Each entry of the map gives the disk location for the corresponding logical block.

A fixed-size inode _
has a fixed-size attributes - Once upo
block map. - n atime
"/ /nin al
How to represent large
files that have more block and far
logical blocks than can ma 1 ‘ Jar gway
P J/nlived t
fit in the inode’s map?
he wise
inode - T and sage
wizard.
An inode could be “anywhere” on disk. How to find the = data
inode for a given file? Assume: inodes are uniquely blocks

numbered: we can find an inode from its number. on disk

Classical Unix inode

A classical Unix inode has a set of file attributes (below) in addition to
the root of a hierarchical block map for the file. The inode structure
size is fixed, e.g., total size is 128 bytes: 16 inodes fit in a 4KB block.

/* Metadata returned by the stat and fstat functions */

struct stat {

dev t
ino t
mode t
nlink t
uid t
gid t
dev_t
off t

unsigned long
unsigned long

time t
time t
time t

st dev;

st ino;

st mode;
st nlink;
st uid;

st gid;

st rdev;
SIENN SNz
st blksize;
st blocks;
st atime;
st mtime;
st ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

device */

inode */

protection and file type */
number of hard links */

user ID of owner */

group ID of owner */

device type (if inode device) */
total size, in bytes */
blocksize for filesystem I/0 */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */

Not to be tested

Representing Large Files

inode
Classical Unix file systems .//'
node == 128 byt direct

Each inode has 68 bytes of attributes map | @- o
and 15 block map entries that are the T indirect

root of a tree-structured block map. \bloch'

double 'S
indirect

Suppose block size = 8KB "Llér:;

12 direct block map entries: map 96KB of data.

One indirect block pointer in inode: + 16MB of data.

One double indirect pointer in inode: +2K indirects.

indirect
Maximum file size is 96KB + 16MB + (2K*16MB) + ... Ibl(:cks

Skewed tree block maps

Inodes are the root of a tree-structured block map.
— Like hierarchical page tables, but

These maps are skewed.
— Low branching factor at the root.
— “The further you go, the bushier they get.”
— Small files are cheap: just need the inode to map it.
— ...and most files are small.

Use indirect blocks for large files.
— Requires another fetch for another level of map block
— But the shift to a high branching factor covers most large files.

Double indirect blocks allow very large files.

Inodes on disk

Where should inodes be stored on disk?

They’re a fixed size, so we can dense-pack them into blocks. We
can find them by inode number. But where should the blocks be?

Early Unix reserved a fixed array of inodes at the start of the disk.

— But how many inodes will we need? And don’t we want inodes
to be stored close to the file data they describe?

Second-gen file systems (FFS) reserve a fixed set of blocks at
known locations distributed throughout the storage volume.

Newer file systems add a level of indirection: make a system
inode file (“ifile”) in the volume, and store inodes in the inode file.

— That allows a variable number of inodes (ifile can grow), and they can
be anywhere on disk: the ifile is itself a file indexed by an inode.

— Originated with Berkeley’s Log Structured File System (LFS) and
NetApp’s Write Anywhere File Layout (WAFL).

File systems today: “Filers”

« Network-attached (IP)
« RAID appliance

Ul |
\)) e l

« Multiple protocols
— ISCSI, NFS, CIFS

« Admin interfaces

» Flexible configuration

« Lots of virtualization: dynamic volumes

* Volume cloning, mirroring, snapshots, etc.

* NetApp technology leader since 1994 (WAFL)

Resw strvelvee (UMY
Tonde

on
r‘ e ‘
o thm
Umverse

o€ Values

UMY inede <
Tnode Jablg

(1]]

Riocks sa steraye deviee

(Jwiy deiretones
Dicector

Dirastony Omohty

_— S
http://web.mit.edu/6.033/2001/wwwdocs/
handouts/naming_review.html

Filesystem layout on disk

11100010
00101101
10111101

e

10011010
00110001
00010101

allocation

inode 0
bitmap file

L @

—

bitmap file
for disk blocks

00101110
00011001
01000100

bit is set 1ff the

corresponding block
1S in use

N/

fixed

locations
on disk

~ ./

once upo
n atime
/minal

file
blocks

and far
far away
, lived th

inode 1
root directory

rain: 32

-9

inode

This is a toy example (Nachos).

hail: 48

T~

wind: 18
0

snow: 62

A Filesystem On Disk

11100010
00101101
10111101

10011010
00110001
00010101

00101110
00011001
01000100

sector 0

_. .
o | allocation

bitmap file
?

once upo

n atime
/minal

and far

, lived th

far away «

—

sector 1
o

directory
file

T~

wind: 18

0

snow: 62

0

rain: 32
/ hail: 48

A Filesystem On Disk

11100010
00101101
10111101

10011010
00110001
00010101

00101110
00011001
01000100

sector 0
B .
o allocation
bitmap file
b
once upo
n atime
/minal
and far
Sfar away
, lived th

~

sector 1

directory

file

T~ T~

wind: 18

0

snow: 62

rain: 32

hail: 48

L~

Metadata

Directories

A directory contains a set of

o \ entries. Each directory entry is a
record mapping a symbolic name to

wind: 18 an inode number. The inode can

be found on disk from its number.

directory
inode 0

snow: 62 There can be no duplicate name

0 entries: the name-to-inode

rain: 32 mapping is a function.
hail: 48 \

_— A creat or mkdir
. : @ .
Note: implementations ° operation must scan the
vary. Large directories o directory to ensure that
are problematic. , —~ creates are exclusive.
inode 32

Entries or free slots are typically found by a linear scan.

Q: Can you characterize the difference between page table maps and inode maps?

A: Page tables and inode maps are similar in that they are both block maps for locating data
given block offsets in a logical storage object. A VAS is a logical storage object: a space of
sequentially numbered pages/blocks that could be stored anywhere in memory. A file is a logical
storage object: a space of sequentially numbered blocks that could be stored anywhere on disk.

Both kinds of logical storage objects can be large, and both kinds can be sparse. And, no
surprise, the data structures they use are almost identical: a tree-structured map. There are
some differences too, and you should understand why they exist.

One key difference: the pointers in an inode block map are disk addresses. The map exists
to find data on “disk”. Note: that is true for all of the file system metadata structures. File
system code must read the metadata structures from disk into memory in order to find and
access files, and then modify the metadata and write it back as files are created and destroyed
and shrink and grow, to keep track of files and their names, locations, and properties.

In contrast, the pointers in a page table are "physical" memory addresses. The map exists to find
data in memory.

Inode block maps are “skewed” because they are optimized for small files and dense files. Most
files are written sequentially (they are “dense” with no “holes”), and most files are small. For
small files the inode map is very compact, yet it can grow (by adding indirect blocks) as the file
grows. Page tables are optimized for sparseness of VAS: a VAS is a collection of segments that
may be widely separated, with empty regions (“holes”) between them. The tree structure is
compact because we don’t need to allocate maps for the holes: just leave the branch empty.

Safety of metadata

 How to protect integrity of the metadata structures?
— Metadata is a complex linked data structure, e.g., a tree.

— Must be “well-formed” after a crash/restart, even if writes are lost.

— ...or, must be possible to restore metadata to a consistent state
with a scrub (file system check or “fsck”) on restart after a crash.

once upo
n atime
/minal

, lived th

file blocks

and far ﬁe Im
far away

dir inode

0

rain: 32

hail: 48

T~

wind: 18

0

snow: 62

dir entries

The disk was not ejected properly. If
possible, always eject a disk before
unplugging it or turning it off.

To eject a disk, select it in the Finder and choose File

> Eject. The next time you connect the disk, Mac OS
X will attempt to repair any damage to the

information on the disk.

ook |

Atomic updates: the recovery problem

The safe metadata update problem in file systems is a simplified form of

t

he atomic update and recovery problem for databases.

We want to make a group of related updates to a complex linked data
structure, e.g., to create a new file. The updates could be all over the disk.

But we could crash at any time, e.g., in the middle of the group of updates.

We need some way to do atomic commit: either all of the updates in each
group complete, or none of them do. And we want it to be fast.

The concern is similar to concurrency control: we don’t want software to “see”
an inconsistent state that violates structural invariants.

once upo dir inode
natime

/minal \

\— :
H wind: 18
file blocks ~° \ 0

and far file inode 0 snow: 62

f‘"f od th rain: 32 . .
ved th : dir entries

hail: 48

Disk write behavior (cartoon version)

Disk may reorder pending writes.
— Limited ordering support (“do X before Y?).

— Host software can enforce ordering by writing X synchronously:
wait for write of X to complete before issuing Y.

Writes at sector grain are atomic (512 bytes?).

Writes of larger blocks may fail “in the middle”.

Disk may itself have a writeback cache.
— Even “old” writes may be lost.

— (The cache can be disabled.)

Atomic commit: shadowing

Shadowing is used in NetApp WAFL.:
Write Anywhere File Layout

1. Write each modified block to a new location.
2. Update block maps to point to the new locations.
3. Write the new block map to disk with a single disk write.

Shadowing presumes that the data is mapped by a block map on disk,
that the disk is large enough to store both the old version and the
modified data, and that we can update the block map on disk with a
single (atomic) disk write. To grow the block map we can make it
hierarchical.

Shadowing

o o _4 o A
\
o | = [~ ITeo| —> o
q - @
® ~_ ® ~—_ //. L —
1. starting point 2. write new blocks to disk 3. write new block map
modify purple/grey blocks prepare new block map (atomic commit)
and free old blocks
Shadowing is a basic technique for atomic (optional)

commit and recovery. Itis used in WAFL.

Just to spell it out: if the system crashes before step 3, then the update fails, but the
previous version is still intact. To abort the failed update we just need to free any
blocks written in step 2. Step 3 completes the update: it replaces the old map with the
new. Because it is a single disk write, the system cannot fail “in the middle”: it either
completes or it does not: it is atomic. Once it is complete, the new data is safe.

On-disk metadata structures
Write Anywhere File Layout (WAFL)

NetApp:

Go further, faster

Inodes for user files

and directories

[P root pointer]
Root inode _
TN indirect blocks _ inode
file
_______________________ inodes

directory

g S S S S S S S S ———

WAFL and Writes

« Any modified data/metadata can go anywhere on the disk.

— The WAFL metadata structure assures this: every piece of metadata
Is linked in a tree rooted in the root pointer.

* An arbitrary stream of updates can be installed atomically.
— Retain the old copy: “no overwrite”
— Switch to new copy with a single write to the root (shadowing).

« WAFL’s design naturally maintains multiple point-in-time
consistent snapshots of each file volume.

— OlId copy lives on as a point-in-time snapshot.

WAFL Snapshots

(a) Before Snapshot (b) After Snapshot (c) After Block Update

Root New Root New Root
Inode Snapshot Inode Snapshot Inode

The snapshot mechanism is used for user-accessible
snapshots and for transient “consistency points”.

WAFL’s on-disk structure (high
level)

Root Inode

> Metadata

File Data Blocks

67

NetAnn C.onfidential -

Another Look

e Use copy-on-write up to root of file system

file’s root pointer D\

P

-

Suppose | modify

blocks A and B. / \

Write new copies of
A and B and every

piece of metadata
on the path back to
the root.

Al

BI

* Anychange requires bubbling to the FS root

Storage system performance

 How to get good storage performance?

Build better disks: new technology, SSD hybrids.
Gang disks together into arrays (RAID logical devices).

Smart disk head scheduling (when there is a pool of pending
requests to choose from).

Smarter caching: better victim selection policies
Asynchronous 1I/O: prefetching, read ahead, “write behind”
Location, location, location: smart block placement

« It’s a big part of the technology of storage systems.

Building better file systems

« The 1990s was a period of experimentation with new strategies for
high-performance file system design.

« The new file systems generally used the FFS mechanisms and data
structures, but changed the policies for block allocation.

— Block allocation policy: where to place new data (or modified old data)
on the storage volume? Which block number to choose?

— “File system design is 99% block allocation.” - Larry McVoy

— Example: Group large-file data into big contiguous chunks called
clusters or extents that can be read or written as a unit (larger b).
[McVoy91] and [Smith/Seltzer96]

— Example: Write modified data and metadata wherever convenient to
minimize seeking: e.g., “log-structured” file systems (LFS)
[Rosenblum91] and NetApp’'s WAFL [Hitz95]. Note: requires a level of
indirection so the FS can write each version of an inode to a different
location on the disk. (See WAFL'’s inode file.)

WAFL and the disk system

WAFL generates a continuous stream of large-chunk
contiguous writes to the disk system.

— WAFL does not overwrite the old copy of a modified structure: it
can write a new copy anywhere. So it gathers them together.

Large writes minimize seek overhead and deliver the full
bandwidth of the disk.

WAFL gets excellent performance by/when using many
disks in tandem (“RAID")...

...and writing the chunks in interleaved fashion across
the disks (“striping”).

Old copies of the data and metadata survive on the disk
and are accessible through point-in-time “snapshots”.

Block placement and layout

* One key assumption: “seeks waste time”.

— Blocks whose addresses (logical block numbers) are close
together are cheaper to access together.

— “Sequentialize!”

 Location, location, location:

— Place data on disk carefully to keep related items close together
(smart block allocation).

— Use larger b (larger blocks, clustering, extents, etc.)
— Smaller s (placement / ordering, sequential access, logging, etc.)

Access time

D
How long to access data on disk? Q

— 5-15 ms on average for access to random location
— Includes seek time to move head to desired track

* Roughly linear with radial distance Track Sector

— Includes rotational delay Arm
« Time for sector to rotate under head \ |

— These times depend on drive model: o Cylinder
. platter width (e.g., 2.5 in vs. 3.5 in) Platter

Head
« rotation rate (5400 RPM vs. 15K RPM).

« Enterprise drives use more/smaller platters spinning faster.

— These properties are mechanical and improve slowly as
technology advances over time.

Average seek time

“The seek time is due to the
_ mechanical motion of the head when it
12 is moved from one track to another. It
is improving by about 5% CAGR. In
general, this is a mature technology
and is not likely to change dramatically
in the future. *

Milliseconds
o

F <

1985 1990 1995 2000 2005 2010 2015

Year IBM Research Report 2011

GPFS Scans 10 Billion
Files in 43 Minutes

Rotational latency

The average disk latency is %z the rotational time of the disk drive. As you can see from its
recent history...[it] has settled down to three values 2, 3 and 4.1 milliseconds. These are 7%
the inverses of 15,000, 10,000 and 7,200 revolutions per minute (RPM), respectively.

It is unlikely that there will be a disk rotational speed increase in the

8
near future. In fact, the 15K RPM drive and perhaps the 10K RPM
7 drive may disappear from the marketplace...driven by the successful
combination of SSD and slower disk drives into storage systems that
6 provide the same or better performance, cost and power.
g 5
S, Drives spin at a fixed
@ constant RPM. (A few
=3 P4 > < can “shift gears” to
= save power, but the
2 bl gains are minimal.)
1
0 IBM Research Report 2011

GPFS Scans 10 Billion

1985 1990 1995 2000 2005 2010 2015 2020 2025 Files in 43 Minutes

Effective bandwidth

Seeks are overhead: “wasted effort”. It is a cost s that the device
imposes to get to the data. It is not actually transferring data.

This graph is obvious. It applies to so many things in computer
systems and in life.

bi(sB+b)
1 - Spindle bandwidth B 100%

Effective bandwidth is
efficiency or goodput
What percentage of the
time is the busy resource
(the disk head) doing useful
work, i.e., transferring data?

b/B s (seek)

D AAN

Transfer size b

Effective bandwidth

Effective bandwidth or bandwidth utilization is the share or
percentage of potential bandwidth that is actually delivered. E.g., what
percentage of time is the disk actually transferring data, vs. seeking etc.?

Define

b Block size

B Raw disk bandwidth (“spindle speed”)

s Average access (seek+rotation) delay per block 1/0O

Then

Transfer time per block = b/B

I/O completion time per block = s + (b/B)

Delivered bandwidth for I/O request stream = bytes/time = b/(s + (b/B))
Bandwidth wasted per 1/O: sB

So
Effective bandwidth: bandwidth utilization/efficiency (%): b/(sB + b)
[bytes transferred over the “byte time slots” consumed for the transfer]

Effective bandwidth by access time

bl(sB+b)

b=256K

b=64K
\ b R

=4K

e

access time s 5ms

Bigger is better. Other things being equal, effective bandwidth is higher
when access costs can be amortized over larger transfers. High access
cost is the reason we use tapes primarily for backup! As B grows and s is
unchanged, disks are looking more and more like tapes! (Jim Gray)

