
D u k e  S y s t e m s 

Storage	Etc.	

Jeff	Chase	
Duke	University	



http://dbshards.com/dbshards/database-sharding-white-paper/ 



Block storage API 

•  Multiple storage objects: dynamic create/destroy 
•  Each object is a sequence of logical blocks 
•  Blocks are fixed-size 
•  Read/write whole blocks, or sequential ranges of blocks 
•  Storage address: object + logical block offset 

How to allocate for objects on a disk? 
How to map a storage address to a location on disk? 



Example: AWS Simple Storage Service 



Amazon S3 (Simple Storage Service) Basics 
 
Amazon S3 stores data as objects within buckets. An object is 
comprised of a file and optionally any metadata that describes that file. 
 
To store an object in Amazon S3, you upload the file you want to store 
to a bucket. When you upload a file, you can set permissions on the 
object as well as any metadata. 
 
Buckets are the containers for objects. You can have one or more 
buckets. For each bucket, you can control access to the bucket (who 
can create, delete, and list objects in the bucket), view access logs for 
the bucket and its objects, and choose the geographical region where 
Amazon S3 will store the bucket and its contents. 
 
http://docs.aws.amazon.com/AmazonS3/latest/gsg/AmazonS3Basics.html 
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You are here. 

In general, each layer is a 
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Cheap bulk storage 

Computing happens here, at the tip of 
the spear.   The cores pull data up 
through the hierarchy into registers, 
and then push updates back down. 
 



The block storage abstraction 
•  Read/write blocks of size b on a logical storage device (“disk”). 
•  A disk is a numbered array of these basic blocks.   Each block is 

named by a unique number (e.g., logical BlockID). 
•  CPU (typically executing kernel code) forms buffer in memory and 

issues read or write command to device queue/driver. 
•  Device DMAs data to/from memory buffer, then interrupts the CPU 

to signal completion of each request. 
•  Device I/O is asynchronous: the CPU is free to do something else 

while I/O in progress. 
•  Transfer size b may vary, but is always a multiple of some basic 

block size (e.g., sector size), which is a property of the device, and 
is always a power of 2. 

•  Storage blocks containing data/metadata are cached in memory 
buffers while in active use: called buffer cache or block cache. 

 

 
 



[Calypso] 



Storage stack 

[Calypso] 

File system API.  
Generic, for use 

over many kinds of 
storage devices. 

Standard block I/O 
internal interface. 

Block read/write on 
numbered blocks on 
each device/partition. 
For kernel use only: 
DMA + interrupts. 

We care mostly 
about this stuff. 

Many storage 
technologies, advancing 

rapidly with time. 

Device driver software is 
a huge part of the kernel, 
but we mostly ignore it. 

Rotational disk (HDD): cheap, mechanical, high latency. 
Solid-state “disk” (SSD): low latency/power, wear issues, getting cheaper.   

Databases, 
Hadoop, etc. 



Anatomy of a read 

1. Compute 
(user mode) 

2. Enter kernel 
for read syscall. 

3. Check to see if requested data (e.g., 
a block) is in memory.  If not, figure 
where it is on disk, and start the I/O. 

seek transfer (DMA) 

4. sleep for I/O (stall) 
Wakeup by interrupt. 

5. Copy data from 
kernel buffer to user 

buffer in read. 
(kernel mode) 

CPU 

Disk 

6. Return to 
user mode. 

Time 



 
Improving utilization for I/O 

Some things to notice about the “anatomy” fig. 
•  The CPU is idle when the disk is working. 
•  The disk is idle when the CPU is working. 
•  If their service demands are equal, each runs at 50%. 

–  Limits throughput!  How to improve this? 
–  How to “hide” the I/O latency? 

•  If the disk service demand is 10x the CPU service 
demand, then CPU utilization is at most 10%. 
–  Limits throughput!  How to improve this? 
–  How to balance the system? 



Prefetching for high read throughput 

•  Read-ahead (prefetching) 
–  Fetch blocks into the cache in expectation that they will be used. 
–  Requires prediction.  Common for sequential access. 

1. Detect access pattern. 

2. Start prefetching 
Reduce I/O stalls 



Sequential read-ahead 

n n+1 

App requests block n 
App requests block n+1 

n+2 

System prefetches block n+2 

System prefetches block n+3 

•  Prediction is easy for sequential access.  “Most files 
are read and written sequentially.” 

•  Read-ahead also helps reduce seeks by reading 
larger chunks if data is laid out sequentially on disk. 



Challenge: I/O and scheduling 

•  Suppose thread T does a lot of I/O. 
•  T blocks while the I/O is in progress. 
•  When each I/O completes, T gets back on the readyQ. 
•  Where T waits for threads that use a lot of CPU time. 

–  While the disk or other I/O device sits idle! 

•  T needs only a smidgen of CPU time to get its next I/O 
started. 

•  Why not let it jump the queue, and get the disk going so 
that both the disk and CPU are fully utilized? 

•  This is a form of shortest job first (SJF) scheduling, 
also known as shortest processing time first (SPT). 
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Two Schedules for CPU/Disk 

CPU busy 25/25: U = 100% 
Disk busy 15/25: U = 60% 

5 5 1 1 

4 
CPU busy 25/37: U = 67% 
Disk busy 15/37: U = 40% 

33% improvement in utilization 
When there is work to do, 
U == efficiency.  More U means 
better throughput. 

1. Naive Round Robin 

2. Add internal priority boost for I/O completion 



Estimating Time-to-Yield 

How to predict which job/task/thread will have the shortest 
demand on the CPU? 
–  If you don’t know, then guess. 

Weather report strategy: predict future D from the recent past. 

We can “guess” well by using adaptive internal priority. 
–  Common technique: multi-level feedback queue. 
–  Set N priority levels, with a timeslice quantum for each. 
–  If thread’s quantum expires, drop its priority down one level. 

•  “It must be CPU bound.”  (mostly exercising the CPU) 

–  If a job yields or blocks, bump priority up one level. 
•  “It must be I/O bound.”     (blocking to wait for I/O) 

 



Example: a recent Linux rev 

“Tasks are determined to be I/O-bound or CPU-
bound based on an interactivity heuristic. A task's 
interactiveness metric is calculated based on how 
much time the task executes compared to how much 
time it sleeps. Note that because I/O tasks schedule 
I/O and then wait, an I/O-bound task spends more 
time sleeping and waiting for I/O completion. This 
increases its interactive metric.” 
 
Key point: interactive tasks get higher priority for the 
CPU, when they want the CPU (which is not much). 



Multilevel Feedback Queue 
Many systems (e.g., Unix variants) implement internal 

priority using a multilevel feedback queue. 
•  Multilevel. Separate ready queue for each of N priority levels. 

Use RR on each queue; look at queue i+1 only if queue i is empty. 

•  Feedback.  Factor a task’s previous behavior into its priority. 
•  Put each ready/awakened task at the tail of the q for its priority. 

high 

 low 

I/O bound tasks 

CPU-bound tasks 

Tasks holding resouces 
Tasks with high external priority 

ready queues 
indexed by priority 

GetNextToRun selects task 
at the head of the highest 
priority queue: constant time, 
no sorting Priority of CPU-bound 

tasks decays with system 
load and service received.  
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Challenge: data management 

•  Data volumes are growing enormously. 
•  Mega-services are “grounded” in data. 
•  How to scale the data tier? 

–  Scaling requires dynamic placement of data items across data 
servers, so we can grow the number of servers. 

–  Sharding divides data across multiple servers or storage units. 
–  Caching helps to reduce load on the data tier. 
–  Replication helps to survive failures and balance read/write load. 
–  Caching and replication require careful update protocols to 

ensure that servers see a consistent view of the data. 
 



The Buffer Cache 

Memory 

File 
cache 

Proc 

Ritchie and Thompson 
The UNIX Time-Sharing 

System, 1974 



Editing Ritchie/Thompson  

Memory 

File 
cache 

Proc 

The system maintains a buffer cache (block cache, file 
cache) to reduce the number of I/O operations.  
 
Suppose a process makes a system call to access a 
single byte of a file.  UNIX determines the affected 
disk block, and finds the block if it is resident in the 
cache.  If it is not resident, UNIX allocates a cache 
buffer and reads the block into the buffer from the disk. 
 
Then, if the op is a write,  it replaces the affected byte 
in the buffer.  A buffer with modified data is marked 
dirty: an entry is made in a list of blocks to be written.  
The write call may then return.  The actual write might 
not be completed until a later time.  
 
If the op is a read, it picks the requested byte out of the 
buffer and returns it, leaving the block in the cache. 



I/O caching 
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A set of available frames 

(buffers) for block I/O 
caching, whose use is 
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Concept: load spreading 
•  Spread (“deal”) the data across a set of storage units. 

–  Make it “look like one big unit”, e.g., “one big disk”. 
–  Redirect requests for a data item to the right unit. 

•  The concept appears in many different settings/contexts. 
–  We can spread load across many servers too, to make a server 

cluster look like “one big server”. 
–  We can spread out different data items: objects, records, blocks, 

chunks, tables, buckets, keys…. 
–  Keep track using maps or a deterministic function (e.g., a hash). 

•  Also called sharding, declustering, striping, “bricks”. 



Example: disk arrays and striping 

One way to grow: 
(1) Buy more disks 
(2)  “Deal the blocks” 
(3) Keep track of them 
(4) Spread the I/O 
 
How to keep track of the 
blocks?  Given a request for 
block n in the “logical drive”, 
which disk to send it to?  Which 
block on that disk? 

pantherproducts.co.uk 

4 
6 
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A file 
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Example:	
stripe	width=4	



Lustre 

•  Lustre is an open-source parallel file system widely 
used in supercomputers. 

•  A Lustre file system contains a collection of many disk 
servers, each with multiple disks (“targets”). 

•  Large bursts of reads/writes on large striped files use 
many targets in parallel. 

 
Clients I/O Routers OSS 

(server) 
OST 

(target) 



Load spreading and performance 

•  What effect does load spreading across N units have on 
performance, relative to 1 unit? 

•  What effect does it have on throughput? 
•  What effect does it have on response time? 
•  How does the workload affect the answers? 
•  E.g., what if striped file access is sequential? 
•  What if accesses are random? 
•  What if the accesses follow a skewed distribution, so 

some items are more “popular” than others? 



RAID 0 

Fujitsu 

Striping 
•  Sequential throughput? 
•  Random throughput? 
•  Random latency? 
•  Read vs. write? 
•  Cost per GB? 

Pure declustering 



What about failures? 
•  Systems fail.  Here’s a reasonable set of assumptions 

about failure properties for servers/bricks (or disks) 
–  Fail-stop or fail-fast fault model 
–  Nodes either function correctly or remain silent 
–  A failed node may restart, or not 
–  A restarted node loses its memory state, and recovers its 

secondary (disk) state 

•  If failures are random/independent, the probability of 
some failure is linear with the number of units. 
–  Higher scale à less reliable! 

•  If a disk in a striped storage system fails, we lose the 
entire file!  (It’s no good with all those holes.) 

X 



What is the probability that a disk fails in an array of N disks at any given time?  
 
Let's make some reasonable assumptions (not always true, but reasonable) about the disks 
in the array: 
 
-  Disk failures are independent: a disk doesn't "know" what happens to other disks when 

it "decides" to fail. 

-  Disks all have the same probability of failure in any given point in time (or any given 
interval): no disk is more or less prone to failing to any other. 

-  Disk failures are evenly distributed in time: no interval in time is more prone to disk 
failures than any other interval. 

So the probability of any given disk failing in any given interval (of some fixed length) is a 
constant.  Let us call this constant F. 
  
It is an axiom of elementary probability that: 
- The probability of either A or B occurring (but not both) is P(A) + P(B) - P(A and B). 
- The probability of both A and B occurring is P(A)*P(B). 
  
Well, if F is a small number (it is), then the probability of two disks failing in the same 
interval is F-squared, a very small number.  So forget about that. 
  
So the probability that any one of N disks fails in some given interval is NF. 

  



RAID 1 

Fujitsu 

Mirroring 
•  Sequential throughput? 
•  Random throughput? 
•  Random latency? 
•  Read vs. write? 
•  Cost per GB? 

Pure replication 



Fujitsu 

•  Market standard 
•  Striping for high throughput 

for pipelined/batched reads. 
•  Data redundancy: parity 
•  Parity enables recovery from 

one disk failure. 
•  Cheaper than mirroring 
•  Random block write must 

also update parity for stripe  
•  Distributes parity: no“hot 

spot” for random writes 

Building a better 
disk: RAID 5 



Parity 

A parity bit (or parity block) is redundant information stored with 
a string of data bits (or a stripe of data blocks).   Parity costs 
less than full replication (e.g., mirroring), but allows us to 
reconstruct the data string/stripe if any single bit/block is lost.    



Just to spell it out: a stripe is an array of blocks, one block per disk in the disk array.  Each 
block is an array of bits ("memory/storage is fungible").   In RAID-5, one of the blocks of 
each stripe is a parity block.  Each bit in the parity block contains parity over the corresponding 
bits in the data blocks (i.e., the result of a bitwise XOR, exclusive-or).   
 
Q:  If two bits/blocks are lost, your even/odd state may not  be changed. Therefore, how 
do you recover from a failure in this situation? 
A: A classic RAID 5 can survive only a single disk failure.   That is why many deployments are 
using alternatives with more redundancy, e.g., "RAID-6" (two parity disks) or 
"RAID-10" (essentially a mirrored pair of RAID-5 units, 2x5=10). 
  
Q: How do you know which bit/block was lost? 
A:  It is presumed that disk drive failure is detectable by external means.  One possibility is that 
the disk drive is "fail stop": if it fails, it simply stops serving requests.  Or the failed disk reports 
errors when you try to use it.  It is presumed that a disk doesn't ever lie about the stored data 
(essentially a "byzantine" failure).   Fortunately, this assumption is almost always true. 
  
So: in a classic RAID-5, if you know which drive has failed, it is easy to rebuild each stripe from 
the contents of the remaining disks. For each stripe, the failed disk either contains the parity 
block of that stripe, or it contains some data block of the stripe.  These cases are symmetric: 
either way the array can rebuild the contains of the missing block.  
  
Note that recovery is very expensive.  The recovery process must read the contents of all 
surviving disks, and write parity data to a replacement disk.  That means that a disk failure must 
be repaired quickly: if a drive fails in your RAID, you should replace it right away. 

  



Q: Can you specify the differences between read and write on that same slide for the different 
raids? I know you said in class that for raid 1 reads get faster and writes get slower? Could you 
explain that and also for the other raids? 
 
A: Once you understand the RAID 0, 1, 5 patterns (striping, mirroring, and parity), all of these 
differences are "obvious".   The differences stem from different levels of redundancy.  
Redundancy increases $$$ cost but it also improves reliability.  And redundancy tends to make 
writes more expensive than reads: redundant data must be kept up to date in a write, but it may 
allow more copies to choose from for load-balancing reads. 
  
Always be careful and precise about "faster" and "slower".  For example, for random accesses, 
throughput goes up with RAIDs but latency (minimum response time, not counting queuing 
delays) is unchanged: you still have to reach out with a disk arm to get to that data.  This 
example underscores that “faster” and “slower” also depend on characteristics of the workload. 
  
Also, “faster” and “slower” are relative, so you must specify a baseline.  Writes on RAID-1 are 
slower than for RAID-0, because writes in RAID-1 have to go to all disks.  In RAID-0 or RAID-5 
you can write different data to multiple disks in parallel, but not in RAID-1.   But RAID-1 is no 
slower for writes than a single disk---just more expensive.  Also, RAID-1s can load-balance better 
than RAID-0 or RAID-5 for random read workloads.  For any given block, you have N disks to 
choose from that have a copy of the block, so you can choose the least loaded.  So read 
throughput on a RAID-1 is N times better than a single disk. 
 
RAID-5 suffers for random write throughput because any write of a data chunk that is smaller 
than a whole stripe must also write a parity block.   For a stream of random single-block writes, 
that means RAID-5 is doing twice as much work as RAID-0.   So throughput will be lower.  



Names and layers 

notes in notebook file User 
view 

Application 

File System 

notefile: fd, byte range* 

Disk Subsystem 

device, block # 

surface, cylinder, sector 

bytes 

fd 

block# 

Add more layers as needed. 



More (optional) layers of mapping 

map 

map 

Files 

Logical disk 
volumes or 

objects 

Physical 
disks 

There could be 
many more 

layers than this! 

For “storage 
virtualization”… 

It’s turtles all the 
way down. 



Which block? 

When an app requests to read/write a file at offset i, how 
to know which block contains that byte i on storage? 
 
We need a map!  
 
We know which logical block it is in the file (simple 
arithmetic), but how do we know which block it is on disk? 
 
We need a map!  
 



Block maps 

map 

Large storage objects (e.g., files, 
segments) may be mapped so they 
don’t have to be stored contiguously 
in memory or on disk. 

 
Idea: use a level of indirection through 
a map to assemble a storage object 
from “scraps” of storage in different 
locations. 
 
The “scraps” can be fixed-size slots: 
that makes allocation easy because 
the slots are interchangeable (fixed 
partitioning).  Fixed-size chunks of 
data or storage are called blocks or 
pages. 

Examples: page tables that 
implement a VAS. 
 
One issue now is that each 
access must indirect through 
the map… 
 

object 



Indirection 



Using block maps 
•  Files are accessed through e.g. read/write syscalls: the kernel can 

chop them up, allocate space in pieces, and reassemble them. 
•  Allocate in units of fixed-size logical blocks (e.g., 4KB, 8KB). 
•  Each logical block in the object has an address (logical block 

number or logical blockID): a block offset within the object. 
•  Use a block map data structure. 

–  Index by logical blockID, return underlying address 
–  Example: inode indexes file blocks on disk 

–  Maps file+logical blockID to disk block # 
–  Example: page table indexes pages in memory 

–  Maps VAS+page VPN to machine frame PFN 

Index map with name, 
e.g., logical blockID #.

Read address of the 
block from map entry.

 
Note: the addresses (block # or PFN) might themselves 
be blockIDs indexing another level of virtual map! 
 



To put it another way 
•  Variable partitioning is a pain.  We need it for heaps, and for other 

cases (e.g., address space layout). 
•  But for files/storage we can break the objects down into “pieces”.  

–  When access to files is through an API, we can add some code behind 
that API to represent the file contents with a dynamic linked data 
structure (a map).    

–  If the pieces are fixed-size (called pages or logical blocks), we can use 
fixed partitioning to allocate the underlying storage, which is efficient 
and trivial. 

–  With that solution, internal fragmentation is an issue, but only for small 
objects. (Why?) 

•  That approach can work for VM segments too: we have VM 
hardware to support it (since the 1970s). 



Representing files: inodes 

•  There are many many file system implementations. 
•  Most of them use a block map to represent each file. 
•  Each file is represented by a corresponding data object, 

which is the root of its block map, and holds other 
information about the file (the file’s “metadata”). 

•  In classical Unix and many other systems, this per-file 
object is called an inode.  (“index node”) 

•  The inode for a file is stored “on disk”: the OS/FS reads it 
in and keeps it in memory while the file is in active use. 

•  When a file is modified, the OS/FS writes any changes to 
its inode/maps back to the disk.  



Inodes 

inode 

An inode could be “anywhere” on disk.  How to find the 
inode for a given file?  Assume: inodes are uniquely 
numbered: we can find an inode from its number. 

A fixed-size inode 
has a fixed-size 
block map. 
 
How to represent large 
files that have more 
logical blocks than can 
fit in the inode’s map? 

block 
map 

Once upo 
n a time 
/nin a l 

and far  
far away 
,/nlived t 

he wise  
and sage 
wizard. 

attributes 
 
 

data 
blocks 
on disk 

A file’s data blocks could be “anywhere” on disk.  The file’s inode maps them.  
Each entry of the map gives the disk location for the corresponding logical block. 



/* Metadata returned by the stat and fstat functions */ 
struct stat { 
    dev_t         st_dev;      /* device */ 
    ino_t         st_ino;      /* inode */ 
    mode_t        st_mode;     /* protection and file type */ 
    nlink_t       st_nlink;    /* number of hard links */ 
    uid_t         st_uid;      /* user ID of owner */ 
    gid_t         st_gid;      /* group ID of owner */ 
    dev_t         st_rdev;     /* device type (if inode device) */ 
    off_t         st_size;     /* total size, in bytes */ 
    unsigned long st_blksize;  /* blocksize for filesystem I/O */ 
    unsigned long st_blocks;   /* number of blocks allocated */ 
    time_t        st_atime;    /* time of last access */ 
    time_t        st_mtime;    /* time of last modification */ 
    time_t        st_ctime;    /* time of last change */ 
}; Not to be tested 

Classical Unix inode 
A classical Unix inode has a set of file attributes (below) in addition to 
the root of a hierarchical block map for the file.   The inode structure 
size is fixed, e.g., total size is 128 bytes: 16 inodes fit in a 4KB block. 



Representing Large Files 
inode 

indirect 
block 

double 
indirect 
block Suppose block size = 8KB 

12 direct block map entries: map 96KB of data. 
One indirect block pointer in inode: + 16MB of data. 
One double indirect pointer in inode: +2K indirects. 
 
Maximum file size is 96KB + 16MB + (2K*16MB) + ... 

Classical Unix file systems 
inode == 128 bytes 
Each inode has 68 bytes of attributes 
and 15 block map entries that are the 
root of a tree-structured block map. 
 

direct 
block 
map 

indirect 
blocks 

The numbers on this slide are for illustration only. 



Skewed tree block maps 
•  Inodes are the root of a tree-structured block map. 

–  Like hierarchical page tables, but 

•  These maps are skewed. 
–  Low branching factor at the root. 
–  “The further you go, the bushier they get.” 
–  Small files are cheap: just need the inode to map it. 
–  …and most files are small. 

•  Use indirect blocks for large files. 
–  Requires another fetch for another level of map block 
–  But the shift to a high branching factor covers most large files. 

•  Double indirect blocks allow very large files. 



Inodes on disk 
Where should inodes be stored on disk? 
•  They’re a fixed size, so we can dense-pack them into blocks.  We 

can find them by inode number.  But where should the blocks be? 
•  Early Unix reserved a fixed array of inodes at the start of the disk. 

–  But how many inodes will we need?  And don’t we want inodes 
to be stored close to the file data they describe? 

•  Second-gen file systems (FFS) reserve a fixed set of blocks at 
known locations distributed throughout the storage volume. 

•  Newer file systems add a level of indirection: make a system 
inode file (“ifile”) in the volume, and store inodes in the inode file. 
–  That allows a variable number of inodes (ifile can grow), and they can 

be anywhere on disk: the ifile is itself a file indexed by an inode. 

–  Originated with Berkeley’s Log Structured File System (LFS) and 
NetApp’s Write Anywhere File Layout (WAFL). 



File systems today: “Filers” 

•  Network-attached (IP) 
•  RAID appliance 
•  Multiple protocols 

–  iSCSI, NFS, CIFS 

•  Admin interfaces 
•  Flexible configuration 
•  Lots of virtualization: dynamic volumes 
•  Volume cloning, mirroring, snapshots, etc. 
•  NetApp technology leader since 1994 (WAFL) 



http://web.mit.edu/6.033/2001/wwwdocs/
handouts/naming_review.html 



Filesystem layout on disk 
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This is a toy example (Nachos). 



A Filesystem On Disk 
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A Filesystem On Disk 
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Directories 
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Entries or free slots are typically found by a linear scan. 

Note: implementations 
vary.  Large directories 
are problematic. 

A creat or mkdir 
operation must scan the 
directory to ensure that 
creates are exclusive. 

There can be no duplicate name 
entries: the name-to-inode 
mapping is a function. 

A directory contains a set of 
entries.  Each directory entry is a 
record mapping a symbolic name to 
an inode number.  The inode can 
be found on disk from its number. 



Q: Can you characterize the difference between page table maps and inode maps? 
 
A: Page tables and inode maps are similar in that they are both block maps for locating data 
given block offsets in a logical storage object.  A VAS is a logical storage object: a space of 
sequentially numbered pages/blocks that could be stored anywhere in memory.   A file is a logical 
storage object: a space of sequentially numbered blocks that could be stored anywhere on disk. 
 
Both kinds of logical storage objects can be large, and both kinds can be sparse.  And, no 
surprise, the data structures they use are almost identical: a tree-structured map.  There are 
some differences too, and you should understand why they exist. 
  
One key difference: the pointers in an inode block map are disk addresses.  The map exists 
to find data on “disk”.  Note: that is true for all of the file system metadata structures.   File 
system code must read the metadata structures from disk into memory in order to find and 
access files, and then modify the metadata and write it back as files are created and destroyed 
and shrink and grow, to keep track of files and their names, locations, and properties. 
 
In contrast, the pointers in a page table are "physical" memory addresses.  The map exists to find 
data in memory. 
 
Inode block maps are “skewed” because they are optimized for small files and dense files.  Most 
files are written sequentially (they are “dense” with no “holes”), and most files are small.  For 
small files the inode map is very compact, yet it can grow (by adding indirect blocks) as the file 
grows.  Page tables are optimized for sparseness of VAS: a VAS is a collection of segments that 
may be widely separated, with empty regions (“holes”) between them.  The tree structure is 
compact because we don’t need to allocate maps for the holes: just leave the branch empty. 
 



Safety of metadata 
•  How to protect integrity of the metadata structures? 

–  Metadata is a complex linked data structure, e.g., a tree. 
–  Must be “well-formed” after a crash/restart, even if writes are lost. 
–  …or, must be possible to restore metadata to a consistent state 

with a scrub (file system check or “fsck”) on restart after a crash. 
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Atomic updates: the recovery problem 
The safe metadata update problem in file systems is a simplified form of 
the atomic update and recovery problem for databases. 
•  We want to make a group of related updates to a complex linked data 

structure, e.g., to create a new file.  The updates could be all over the disk. 
•  But we could crash at any time, e.g., in the middle of the group of updates. 
•  We need some way to do atomic commit: either all of the updates in each 

group complete, or none of them do.  And we want it to be fast. 
•  The concern is similar to concurrency control: we don’t want software to “see” 

an inconsistent state that violates structural invariants. 
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Disk write behavior (cartoon version) 

•  Disk may reorder pending writes. 
–  Limited ordering support (“do X before Y”). 
–  Host software can enforce ordering by writing X synchronously: 

wait for write of X to complete before issuing Y. 

•  Writes at sector grain are atomic (512 bytes?). 
•  Writes of larger blocks may fail “in the middle”. 
•  Disk may itself have a writeback cache. 

–  Even “old” writes may be lost. 
–  (The cache can be disabled.) 



Atomic commit: shadowing 

Shadowing is used in NetApp WAFL: 
Write Anywhere File Layout 
1.  Write each modified block to a new location. 
2.  Update block maps to point to the new locations. 
3. Write the new block map to disk with a single disk write. 
Shadowing presumes that the data is mapped by a block map on disk, 
that the disk is large enough to store both the old version and the 
modified data, and that we can update the block map on disk with a 
single (atomic) disk write.   To grow the block map we can make it 
hierarchical. 



Shadowing 

1. starting point 
modify purple/grey blocks 

2. write new blocks to disk 
prepare new block map 

3. write new block map 
(atomic commit) 

and free old blocks 
(optional) 

Just to spell it out: if the system crashes before step 3, then the update fails, but the 
previous version is still intact.  To abort the failed update we just need to free any 
blocks written in step 2.  Step 3 completes the update: it replaces the old map with the 
new.  Because it is a single disk write, the system cannot fail “in the middle”: it either 
completes or it does not: it is atomic.  Once it is complete, the new data is safe. 

Shadowing is a basic technique for atomic 
commit and recovery.  It is used in WAFL. 



On-disk metadata structures  
Write Anywhere File Layout (WAFL) 

Root inode 

Inodes for user files 
and directories 



WAFL and Writes 

•  Any modified data/metadata can go anywhere on the disk. 
–  The WAFL metadata structure assures this: every piece of metadata 

is linked in a tree rooted in the root pointer. 

•  An arbitrary stream of updates can be installed atomically. 
–  Retain the old copy: “no overwrite” 
–  Switch to new copy with a single write to the root (shadowing). 

•  WAFL’s design naturally maintains multiple point-in-time 
consistent snapshots of each file volume. 
–  Old copy lives on as a point-in-time snapshot. 



WAFL Snapshots 

The snapshot mechanism is used for user-accessible 
snapshots and for transient “consistency points”. 
 



WAFL’s on-disk structure (high 
level) 
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Another Look 

Suppose I modify 
blocks A and B. 

Write new copies of 
A and B and every 
piece of metadata 
on the path back to 
the root.  



Storage system performance 
 

•  How to get good storage performance? 
–  Build better disks: new technology, SSD hybrids. 
–  Gang disks together into arrays (RAID logical devices). 
–  Smart disk head scheduling (when there is a pool of pending 

requests to choose from). 
–  Smarter caching: better victim selection policies 
–  Asynchronous I/O: prefetching, read ahead, “write behind” 
–  Location, location, location: smart block placement 

•  It’s a big part of the technology of storage systems. 

 
 



Building better file systems 
•  The 1990s was a period of experimentation with new strategies for 

high-performance file system design. 
•  The new file systems generally used the FFS mechanisms and data 

structures, but changed the policies for block allocation. 
–  Block allocation policy: where to place new data (or modified old data) 

on the storage volume?   Which block number to choose? 

–  “File system design is 99% block allocation.”  - Larry McVoy 
–  Example: Group large-file data into big contiguous chunks called 

clusters or extents that can be read or written as a unit (larger b). 
[McVoy91] and [Smith/Seltzer96] 

–  Example: Write modified data and metadata wherever convenient to 
minimize seeking: e.g., “log-structured” file systems (LFS) 
[Rosenblum91] and NetApp’s WAFL [Hitz95].  Note: requires a level of 
indirection so the FS can write each version of an inode to a different 
location on the disk.  (See WAFL’s inode file.) 



WAFL and the disk system 

•  WAFL generates a continuous stream of large-chunk 
contiguous writes to the disk system. 
–  WAFL does not overwrite the old copy of a modified structure: it 

can write a new copy anywhere.  So it gathers them together. 

•  Large writes minimize seek overhead and deliver the full 
bandwidth of the disk. 

•  WAFL gets excellent performance by/when using many 
disks in tandem (“RAID”)… 

•  …and writing the chunks in interleaved fashion across 
the disks (“striping”). 

•  Old copies of the data and metadata survive on the disk 
and are accessible through point-in-time “snapshots”. 



Block placement and layout 
 

•  One key assumption: “seeks waste time”. 
–  Blocks whose addresses (logical block numbers) are close 

together are cheaper to access together. 
–  “Sequentialize!” 

•  Location, location, location: 
–  Place data on disk carefully to keep related items close together 

(smart block allocation). 
–  Use larger b (larger blocks, clustering, extents, etc.) 
–  Smaller s (placement / ordering, sequential access, logging, etc.) 

 
 



Access time 

–  5-15 ms on average for access to random location 
–  Includes seek time to move head to desired track 

•  Roughly linear with radial distance 

–  Includes rotational delay 
•  Time for sector to rotate under head 

–  These times depend on drive model: 
•  platter width (e.g., 2.5 in vs. 3.5 in) 
•  rotation rate (5400 RPM vs. 15K RPM). 
•  Enterprise drives use more/smaller platters spinning faster. 

–  These properties are mechanical and improve slowly as 
technology advances over time. 

Sector Track 

Cylinder 

Head 
Platter 

Arm 

How long to access data on disk? 



Average seek time 

“The seek time is due to the 
mechanical motion of the head when it 
is moved from one track to another. It 
is improving by about 5% CAGR. In 
general, this is a mature technology 
and is not likely to change dramatically 
in the future. “ 

IBM Research Report 2011 
GPFS Scans 10 Billion 
Files in 43 Minutes 



Rotational latency 
The average disk latency is ½ the rotational time of the disk drive. As you can see from its 
recent history…[it] has settled down to three values 2, 3 and 4.1 milliseconds. These are ½ 
the inverses of 15,000, 10,000 and 7,200 revolutions per minute (RPM), respectively.  

It is unlikely that there will be a disk rotational speed increase in the 
near future. In fact, the 15K RPM drive and perhaps the 10K RPM 
drive may disappear from the marketplace…driven by the successful 
combination of SSD and slower disk drives into storage systems that 
provide the same or better performance, cost and power. 

IBM Research Report 2011 
GPFS Scans 10 Billion 
Files in 43 Minutes 

Drives spin at a fixed 
constant RPM.  (A few 

can “shift gears” to 
save power, but the 
gains are minimal.) 



Effective bandwidth 

Transfer size b 

Effective bandwidth is 
efficiency or goodput 
What percentage of the 

time is the busy resource 
(the disk head) doing useful 
work, i.e., transferring data? 

b/(sB+b) 

b/B       s (seek) 

1 100% 

Seeks are overhead: “wasted effort”.  It is a cost s that the device 
imposes to get to the data.  It is not actually transferring data.   

This graph is obvious.  It applies to so many things in computer 
systems and in life.   

Spindle bandwidth B 



Effective bandwidth 
Effective bandwidth or bandwidth utilization is the share or 
percentage of potential bandwidth that is actually delivered.  E.g., what 
percentage of time is the disk actually transferring data, vs. seeking etc.? 
 
Define 
b  Block size 
B  Raw disk bandwidth (“spindle speed”) 
s  Average access (seek+rotation) delay per block I/O 
 
Then 
Transfer time per block = b/B 
I/O completion time per block = s + (b/B) 
Delivered bandwidth for I/O request stream = bytes/time = b/(s + (b/B)) 
Bandwidth wasted per I/O: sB 
 
So 
Effective bandwidth: bandwidth utilization/efficiency (%): b/(sB + b) 
[bytes transferred over the “byte time slots” consumed for the transfer] 
 



Effective bandwidth by access time 
b/(sB+b) 

1 100% Spindle bandwidth B (90 MB/s) 

access time s 5ms 

b=256K 

b=64K 
b=4K 

Bigger is better.  Other things being equal, effective bandwidth is higher 
when access costs can be amortized over larger transfers.   High access 
cost is the reason we use tapes primarily for backup!  As B grows and s is 
unchanged, disks are looking more and more like tapes!   (Jim Gray) 


