
D u k e S y s t e m s

Storage	Etc.	

Jeff	Chase	
Duke	University	

http://dbshards.com/dbshards/database-sharding-white-paper/

Block storage API

•  Multiple storage objects: dynamic create/destroy
•  Each object is a sequence of logical blocks
•  Blocks are fixed-size
•  Read/write whole blocks, or sequential ranges of blocks
•  Storage address: object + logical block offset

How to allocate for objects on a disk?
How to map a storage address to a location on disk?

Example: AWS Simple Storage Service

Amazon S3 (Simple Storage Service) Basics

Amazon S3 stores data as objects within buckets. An object is
comprised of a file and optionally any metadata that describes that file.

To store an object in Amazon S3, you upload the file you want to store
to a bucket. When you upload a file, you can set permissions on the
object as well as any metadata.

Buckets are the containers for objects. You can have one or more
buckets. For each bucket, you can control access to the bucket (who
can create, delete, and list objects in the bucket), view access logs for
the bucket and its objects, and choose the geographical region where
Amazon S3 will store the bucket and its contents.

http://docs.aws.amazon.com/AmazonS3/latest/gsg/AmazonS3Basics.html

registers
caches
L1/L2

L3

main memory (RAM)

disk, other storage, network RAM

off-core

off-chip

off-module

small
and fast

(ns)

big and
slow
(ms)

Memory/storage hierarchy

You are here.

In general, each layer is a
cache over the layer below.

Cheap bulk storage

Computing happens here, at the tip of
the spear. The cores pull data up
through the hierarchy into registers,
and then push updates back down.

The block storage abstraction
•  Read/write blocks of size b on a logical storage device (“disk”).
•  A disk is a numbered array of these basic blocks. Each block is

named by a unique number (e.g., logical BlockID).
•  CPU (typically executing kernel code) forms buffer in memory and

issues read or write command to device queue/driver.
•  Device DMAs data to/from memory buffer, then interrupts the CPU

to signal completion of each request.
•  Device I/O is asynchronous: the CPU is free to do something else

while I/O in progress.
•  Transfer size b may vary, but is always a multiple of some basic

block size (e.g., sector size), which is a property of the device, and
is always a power of 2.

•  Storage blocks containing data/metadata are cached in memory
buffers while in active use: called buffer cache or block cache.

[Calypso]

Storage stack

[Calypso]

File system API.
Generic, for use

over many kinds of
storage devices.

Standard block I/O
internal interface.

Block read/write on
numbered blocks on
each device/partition.
For kernel use only:
DMA + interrupts.

We care mostly
about this stuff.

Many storage
technologies, advancing

rapidly with time.

Device driver software is
a huge part of the kernel,
but we mostly ignore it.

Rotational disk (HDD): cheap, mechanical, high latency.
Solid-state “disk” (SSD): low latency/power, wear issues, getting cheaper.

Databases,
Hadoop, etc.

Anatomy of a read

1. Compute
(user mode)

2. Enter kernel
for read syscall.

3. Check to see if requested data (e.g.,
a block) is in memory. If not, figure
where it is on disk, and start the I/O.

seek transfer (DMA)

4. sleep for I/O (stall)
Wakeup by interrupt.

5. Copy data from
kernel buffer to user

buffer in read.
(kernel mode)

CPU

Disk

6. Return to
user mode.

Time

Improving utilization for I/O

Some things to notice about the “anatomy” fig.
•  The CPU is idle when the disk is working.
•  The disk is idle when the CPU is working.
•  If their service demands are equal, each runs at 50%.

–  Limits throughput! How to improve this?
–  How to “hide” the I/O latency?

•  If the disk service demand is 10x the CPU service
demand, then CPU utilization is at most 10%.
–  Limits throughput! How to improve this?
–  How to balance the system?

Prefetching for high read throughput

•  Read-ahead (prefetching)
–  Fetch blocks into the cache in expectation that they will be used.
–  Requires prediction. Common for sequential access.

1. Detect access pattern.

2. Start prefetching
Reduce I/O stalls

Sequential read-ahead

n n+1

App requests block n
App requests block n+1

n+2

System prefetches block n+2

System prefetches block n+3

•  Prediction is easy for sequential access. “Most files
are read and written sequentially.”

•  Read-ahead also helps reduce seeks by reading
larger chunks if data is laid out sequentially on disk.

Challenge: I/O and scheduling

•  Suppose thread T does a lot of I/O.
•  T blocks while the I/O is in progress.
•  When each I/O completes, T gets back on the readyQ.
•  Where T waits for threads that use a lot of CPU time.

–  While the disk or other I/O device sits idle!

•  T needs only a smidgen of CPU time to get its next I/O
started.

•  Why not let it jump the queue, and get the disk going so
that both the disk and CPU are fully utilized?

•  This is a form of shortest job first (SJF) scheduling,
also known as shortest processing time first (SPT).

Mixed Workload

Time

Tasks

I/O bound

CPU bound

CPU bound

issues
 I/O
request

 I/O
completes

gets
CPU

 I/O
completes

Two Schedules for CPU/Disk

CPU busy 25/25: U = 100%
Disk busy 15/25: U = 60%

5 5 1 1

4
CPU busy 25/37: U = 67%
Disk busy 15/37: U = 40%

33% improvement in utilization
When there is work to do,
U == efficiency. More U means
better throughput.

1. Naive Round Robin

2. Add internal priority boost for I/O completion

Estimating Time-to-Yield

How to predict which job/task/thread will have the shortest
demand on the CPU?
–  If you don’t know, then guess.

Weather report strategy: predict future D from the recent past.

We can “guess” well by using adaptive internal priority.
–  Common technique: multi-level feedback queue.
–  Set N priority levels, with a timeslice quantum for each.
–  If thread’s quantum expires, drop its priority down one level.

•  “It must be CPU bound.” (mostly exercising the CPU)

–  If a job yields or blocks, bump priority up one level.
•  “It must be I/O bound.” (blocking to wait for I/O)

Example: a recent Linux rev

“Tasks are determined to be I/O-bound or CPU-
bound based on an interactivity heuristic. A task's
interactiveness metric is calculated based on how
much time the task executes compared to how much
time it sleeps. Note that because I/O tasks schedule
I/O and then wait, an I/O-bound task spends more
time sleeping and waiting for I/O completion. This
increases its interactive metric.”

Key point: interactive tasks get higher priority for the
CPU, when they want the CPU (which is not much).

Multilevel Feedback Queue
Many systems (e.g., Unix variants) implement internal

priority using a multilevel feedback queue.
•  Multilevel. Separate ready queue for each of N priority levels.

Use RR on each queue; look at queue i+1 only if queue i is empty.

•  Feedback. Factor a task’s previous behavior into its priority.
•  Put each ready/awakened task at the tail of the q for its priority.

high

 low

I/O bound tasks

CPU-bound tasks

Tasks holding resouces
Tasks with high external priority

ready queues
indexed by priority

GetNextToRun selects task
at the head of the highest
priority queue: constant time,
no sorting Priority of CPU-bound

tasks decays with system
load and service received.

MFQ

Priority

1

Time Slice (ms)

time slice
expiration

new or I/O
bound task

2

4

3

80

40

20

10

Round Robin Queues

Challenge: data management

•  Data volumes are growing enormously.
•  Mega-services are “grounded” in data.
•  How to scale the data tier?

–  Scaling requires dynamic placement of data items across data
servers, so we can grow the number of servers.

–  Sharding divides data across multiple servers or storage units.
–  Caching helps to reduce load on the data tier.
–  Replication helps to survive failures and balance read/write load.
–  Caching and replication require careful update protocols to

ensure that servers see a consistent view of the data.

The Buffer Cache

Memory

File
cache

Proc

Ritchie and Thompson
The UNIX Time-Sharing

System, 1974

Editing Ritchie/Thompson

Memory

File
cache

Proc

The system maintains a buffer cache (block cache, file
cache) to reduce the number of I/O operations.

Suppose a process makes a system call to access a
single byte of a file. UNIX determines the affected
disk block, and finds the block if it is resident in the
cache. If it is not resident, UNIX allocates a cache
buffer and reads the block into the buffer from the disk.

Then, if the op is a write, it replaces the affected byte
in the buffer. A buffer with modified data is marked
dirty: an entry is made in a list of blocks to be written.
The write call may then return. The actual write might
not be completed until a later time.

If the op is a read, it picks the requested byte out of the
buffer and returns it, leaving the block in the cache.

I/O caching

memory
A set of available frames

(buffers) for block I/O
caching, whose use is

controlled by the system An array of numbered
blocks on storage

push

app threads
Request read and
write operations
on byte ranges of

files

fetch

write

read

BlockID = 12

home
cached

Cache
directory

(hash table)

BlockID
5

10
15
20

Buffer headers
describe

contents of
buffers

Concept: load spreading
•  Spread (“deal”) the data across a set of storage units.

–  Make it “look like one big unit”, e.g., “one big disk”.
–  Redirect requests for a data item to the right unit.

•  The concept appears in many different settings/contexts.
–  We can spread load across many servers too, to make a server

cluster look like “one big server”.
–  We can spread out different data items: objects, records, blocks,

chunks, tables, buckets, keys….
–  Keep track using maps or a deterministic function (e.g., a hash).

•  Also called sharding, declustering, striping, “bricks”.

Example: disk arrays and striping

One way to grow:
(1) Buy more disks
(2)  “Deal the blocks”
(3) Keep track of them
(4) Spread the I/O

How to keep track of the
blocks? Given a request for
block n in the “logical drive”,
which disk to send it to? Which
block on that disk?

pantherproducts.co.uk

4
6
8

A file

The 1st stripe

Target23

	c0

“chunk”
or block

	c1 	c2 	c3 	c4 	c5 	c6 	c7 	c8 	c9

The 2nd stripe

Object0

c0

c8
	c4

Object1

c5

Object2 Object3

c7

Target24 Target26

c6

Target25

Example:	
stripe	width=4	

Lustre

•  Lustre is an open-source parallel file system widely
used in supercomputers.

•  A Lustre file system contains a collection of many disk
servers, each with multiple disks (“targets”).

•  Large bursts of reads/writes on large striped files use
many targets in parallel.

Clients I/O Routers OSS

(server)
OST

(target)

Load spreading and performance

•  What effect does load spreading across N units have on
performance, relative to 1 unit?

•  What effect does it have on throughput?
•  What effect does it have on response time?
•  How does the workload affect the answers?
•  E.g., what if striped file access is sequential?
•  What if accesses are random?
•  What if the accesses follow a skewed distribution, so

some items are more “popular” than others?

RAID 0

Fujitsu

Striping
•  Sequential throughput?
•  Random throughput?
•  Random latency?
•  Read vs. write?
•  Cost per GB?

Pure declustering

What about failures?
•  Systems fail. Here’s a reasonable set of assumptions

about failure properties for servers/bricks (or disks)
–  Fail-stop or fail-fast fault model
–  Nodes either function correctly or remain silent
–  A failed node may restart, or not
–  A restarted node loses its memory state, and recovers its

secondary (disk) state

•  If failures are random/independent, the probability of
some failure is linear with the number of units.
–  Higher scale à less reliable!

•  If a disk in a striped storage system fails, we lose the
entire file! (It’s no good with all those holes.)

X

What is the probability that a disk fails in an array of N disks at any given time?

Let's make some reasonable assumptions (not always true, but reasonable) about the disks
in the array:

-  Disk failures are independent: a disk doesn't "know" what happens to other disks when

it "decides" to fail.

-  Disks all have the same probability of failure in any given point in time (or any given
interval): no disk is more or less prone to failing to any other.

-  Disk failures are evenly distributed in time: no interval in time is more prone to disk
failures than any other interval.

So the probability of any given disk failing in any given interval (of some fixed length) is a
constant. Let us call this constant F.

It is an axiom of elementary probability that:
- The probability of either A or B occurring (but not both) is P(A) + P(B) - P(A and B).
- The probability of both A and B occurring is P(A)*P(B).

Well, if F is a small number (it is), then the probability of two disks failing in the same
interval is F-squared, a very small number. So forget about that.

So the probability that any one of N disks fails in some given interval is NF.

RAID 1

Fujitsu

Mirroring
•  Sequential throughput?
•  Random throughput?
•  Random latency?
•  Read vs. write?
•  Cost per GB?

Pure replication

Fujitsu

•  Market standard
•  Striping for high throughput

for pipelined/batched reads.
•  Data redundancy: parity
•  Parity enables recovery from

one disk failure.
•  Cheaper than mirroring
•  Random block write must

also update parity for stripe
•  Distributes parity: no“hot

spot” for random writes

Building a better
disk: RAID 5

Parity

A parity bit (or parity block) is redundant information stored with
a string of data bits (or a stripe of data blocks). Parity costs
less than full replication (e.g., mirroring), but allows us to
reconstruct the data string/stripe if any single bit/block is lost.

Just to spell it out: a stripe is an array of blocks, one block per disk in the disk array. Each
block is an array of bits ("memory/storage is fungible"). In RAID-5, one of the blocks of
each stripe is a parity block. Each bit in the parity block contains parity over the corresponding
bits in the data blocks (i.e., the result of a bitwise XOR, exclusive-or).

Q: If two bits/blocks are lost, your even/odd state may not be changed. Therefore, how
do you recover from a failure in this situation?
A: A classic RAID 5 can survive only a single disk failure. That is why many deployments are
using alternatives with more redundancy, e.g., "RAID-6" (two parity disks) or
"RAID-10" (essentially a mirrored pair of RAID-5 units, 2x5=10).

Q: How do you know which bit/block was lost?
A: It is presumed that disk drive failure is detectable by external means. One possibility is that
the disk drive is "fail stop": if it fails, it simply stops serving requests. Or the failed disk reports
errors when you try to use it. It is presumed that a disk doesn't ever lie about the stored data
(essentially a "byzantine" failure). Fortunately, this assumption is almost always true.

So: in a classic RAID-5, if you know which drive has failed, it is easy to rebuild each stripe from
the contents of the remaining disks. For each stripe, the failed disk either contains the parity
block of that stripe, or it contains some data block of the stripe. These cases are symmetric:
either way the array can rebuild the contains of the missing block.

Note that recovery is very expensive. The recovery process must read the contents of all
surviving disks, and write parity data to a replacement disk. That means that a disk failure must
be repaired quickly: if a drive fails in your RAID, you should replace it right away.

Q: Can you specify the differences between read and write on that same slide for the different
raids? I know you said in class that for raid 1 reads get faster and writes get slower? Could you
explain that and also for the other raids?

A: Once you understand the RAID 0, 1, 5 patterns (striping, mirroring, and parity), all of these
differences are "obvious". The differences stem from different levels of redundancy.
Redundancy increases $$$ cost but it also improves reliability. And redundancy tends to make
writes more expensive than reads: redundant data must be kept up to date in a write, but it may
allow more copies to choose from for load-balancing reads.

Always be careful and precise about "faster" and "slower". For example, for random accesses,
throughput goes up with RAIDs but latency (minimum response time, not counting queuing
delays) is unchanged: you still have to reach out with a disk arm to get to that data. This
example underscores that “faster” and “slower” also depend on characteristics of the workload.

Also, “faster” and “slower” are relative, so you must specify a baseline. Writes on RAID-1 are
slower than for RAID-0, because writes in RAID-1 have to go to all disks. In RAID-0 or RAID-5
you can write different data to multiple disks in parallel, but not in RAID-1. But RAID-1 is no
slower for writes than a single disk---just more expensive. Also, RAID-1s can load-balance better
than RAID-0 or RAID-5 for random read workloads. For any given block, you have N disks to
choose from that have a copy of the block, so you can choose the least loaded. So read
throughput on a RAID-1 is N times better than a single disk.

RAID-5 suffers for random write throughput because any write of a data chunk that is smaller
than a whole stripe must also write a parity block. For a stream of random single-block writes,
that means RAID-5 is doing twice as much work as RAID-0. So throughput will be lower.

Names and layers

notes in notebook file User
view

Application

File System

notefile: fd, byte range*

Disk Subsystem

device, block #

surface, cylinder, sector

bytes

fd

block#

Add more layers as needed.

More (optional) layers of mapping

map

map

Files

Logical disk
volumes or

objects

Physical
disks

There could be
many more

layers than this!

For “storage
virtualization”…

It’s turtles all the
way down.

Which block?

When an app requests to read/write a file at offset i, how
to know which block contains that byte i on storage?

We need a map!

We know which logical block it is in the file (simple
arithmetic), but how do we know which block it is on disk?

We need a map!

Block maps

map

Large storage objects (e.g., files,
segments) may be mapped so they
don’t have to be stored contiguously
in memory or on disk.

Idea: use a level of indirection through
a map to assemble a storage object
from “scraps” of storage in different
locations.

The “scraps” can be fixed-size slots:
that makes allocation easy because
the slots are interchangeable (fixed
partitioning). Fixed-size chunks of
data or storage are called blocks or
pages.

Examples: page tables that
implement a VAS.

One issue now is that each
access must indirect through
the map…

object

Indirection

Using block maps
•  Files are accessed through e.g. read/write syscalls: the kernel can

chop them up, allocate space in pieces, and reassemble them.
•  Allocate in units of fixed-size logical blocks (e.g., 4KB, 8KB).
•  Each logical block in the object has an address (logical block

number or logical blockID): a block offset within the object.
•  Use a block map data structure.

–  Index by logical blockID, return underlying address
–  Example: inode indexes file blocks on disk

–  Maps file+logical blockID to disk block #
–  Example: page table indexes pages in memory

–  Maps VAS+page VPN to machine frame PFN

Index map with name,
e.g., logical blockID #.

Read address of the
block from map entry.

Note: the addresses (block # or PFN) might themselves
be blockIDs indexing another level of virtual map!

To put it another way
•  Variable partitioning is a pain. We need it for heaps, and for other

cases (e.g., address space layout).
•  But for files/storage we can break the objects down into “pieces”.

–  When access to files is through an API, we can add some code behind
that API to represent the file contents with a dynamic linked data
structure (a map).

–  If the pieces are fixed-size (called pages or logical blocks), we can use
fixed partitioning to allocate the underlying storage, which is efficient
and trivial.

–  With that solution, internal fragmentation is an issue, but only for small
objects. (Why?)

•  That approach can work for VM segments too: we have VM
hardware to support it (since the 1970s).

Representing files: inodes

•  There are many many file system implementations.
•  Most of them use a block map to represent each file.
•  Each file is represented by a corresponding data object,

which is the root of its block map, and holds other
information about the file (the file’s “metadata”).

•  In classical Unix and many other systems, this per-file
object is called an inode. (“index node”)

•  The inode for a file is stored “on disk”: the OS/FS reads it
in and keeps it in memory while the file is in active use.

•  When a file is modified, the OS/FS writes any changes to
its inode/maps back to the disk.

Inodes

inode

An inode could be “anywhere” on disk. How to find the
inode for a given file? Assume: inodes are uniquely
numbered: we can find an inode from its number.

A fixed-size inode
has a fixed-size
block map.

How to represent large
files that have more
logical blocks than can
fit in the inode’s map?

block
map

Once upo
n a time
/nin a l

and far
far away
,/nlived t

he wise
and sage
wizard.

attributes

data
blocks
on disk

A file’s data blocks could be “anywhere” on disk. The file’s inode maps them.
Each entry of the map gives the disk location for the corresponding logical block.

/* Metadata returned by the stat and fstat functions */
struct stat {
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection and file type */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
}; Not to be tested

Classical Unix inode
A classical Unix inode has a set of file attributes (below) in addition to
the root of a hierarchical block map for the file. The inode structure
size is fixed, e.g., total size is 128 bytes: 16 inodes fit in a 4KB block.

Representing Large Files
inode

indirect
block

double
indirect
block Suppose block size = 8KB

12 direct block map entries: map 96KB of data.
One indirect block pointer in inode: + 16MB of data.
One double indirect pointer in inode: +2K indirects.

Maximum file size is 96KB + 16MB + (2K*16MB) + ...

Classical Unix file systems
inode == 128 bytes
Each inode has 68 bytes of attributes
and 15 block map entries that are the
root of a tree-structured block map.

direct
block
map

indirect
blocks

The numbers on this slide are for illustration only.

Skewed tree block maps
•  Inodes are the root of a tree-structured block map.

–  Like hierarchical page tables, but

•  These maps are skewed.
–  Low branching factor at the root.
–  “The further you go, the bushier they get.”
–  Small files are cheap: just need the inode to map it.
–  …and most files are small.

•  Use indirect blocks for large files.
–  Requires another fetch for another level of map block
–  But the shift to a high branching factor covers most large files.

•  Double indirect blocks allow very large files.

Inodes on disk
Where should inodes be stored on disk?
•  They’re a fixed size, so we can dense-pack them into blocks. We

can find them by inode number. But where should the blocks be?
•  Early Unix reserved a fixed array of inodes at the start of the disk.

–  But how many inodes will we need? And don’t we want inodes
to be stored close to the file data they describe?

•  Second-gen file systems (FFS) reserve a fixed set of blocks at
known locations distributed throughout the storage volume.

•  Newer file systems add a level of indirection: make a system
inode file (“ifile”) in the volume, and store inodes in the inode file.
–  That allows a variable number of inodes (ifile can grow), and they can

be anywhere on disk: the ifile is itself a file indexed by an inode.

–  Originated with Berkeley’s Log Structured File System (LFS) and
NetApp’s Write Anywhere File Layout (WAFL).

File systems today: “Filers”

•  Network-attached (IP)
•  RAID appliance
•  Multiple protocols

–  iSCSI, NFS, CIFS

•  Admin interfaces
•  Flexible configuration
•  Lots of virtualization: dynamic volumes
•  Volume cloning, mirroring, snapshots, etc.
•  NetApp technology leader since 1994 (WAFL)

http://web.mit.edu/6.033/2001/wwwdocs/
handouts/naming_review.html

Filesystem layout on disk

11100010
00101101
10111101

inode 0
bitmap file

0

rain: 32

hail: 48

once upo
n a time
/n in a l

and far
far away
, lived th

inode 1
root directory

inode

file
blocks

11100010
00101101
10111101

10011010
00110001
00010101

00101110
00011001
01000100

allocation
bitmap file

for disk blocks
bit is set iff the

corresponding block
is in use

0
wind: 18

snow: 62

inode 1
root directory

fixed
locations
on disk

This is a toy example (Nachos).

A Filesystem On Disk

11100010
00101101
10111101

10011010
00110001
00010101

00101110
00011001
01000100

sector 0

allocation
bitmap file

0

rain: 32

hail: 48

0
wind: 18

snow: 62

once upo
n a time
/n in a l

and far
far away
, lived th

sector 1

directory
file

Data

A Filesystem On Disk

11100010
00101101
10111101

10011010
00110001
00010101

00101110
00011001
01000100

sector 0

allocation
bitmap file

0

rain: 32

hail: 48

0
wind: 18

snow: 62

once upo
n a time
/n in a l

and far
far away
, lived th

sector 1

directory
file

Metadata

Directories

0

rain: 32
hail: 48

0
wind: 18

snow: 62

directory
inode

inode 32

Entries or free slots are typically found by a linear scan.

Note: implementations
vary. Large directories
are problematic.

A creat or mkdir
operation must scan the
directory to ensure that
creates are exclusive.

There can be no duplicate name
entries: the name-to-inode
mapping is a function.

A directory contains a set of
entries. Each directory entry is a
record mapping a symbolic name to
an inode number. The inode can
be found on disk from its number.

Q: Can you characterize the difference between page table maps and inode maps?

A: Page tables and inode maps are similar in that they are both block maps for locating data
given block offsets in a logical storage object. A VAS is a logical storage object: a space of
sequentially numbered pages/blocks that could be stored anywhere in memory. A file is a logical
storage object: a space of sequentially numbered blocks that could be stored anywhere on disk.

Both kinds of logical storage objects can be large, and both kinds can be sparse. And, no
surprise, the data structures they use are almost identical: a tree-structured map. There are
some differences too, and you should understand why they exist.

One key difference: the pointers in an inode block map are disk addresses. The map exists
to find data on “disk”. Note: that is true for all of the file system metadata structures. File
system code must read the metadata structures from disk into memory in order to find and
access files, and then modify the metadata and write it back as files are created and destroyed
and shrink and grow, to keep track of files and their names, locations, and properties.

In contrast, the pointers in a page table are "physical" memory addresses. The map exists to find
data in memory.

Inode block maps are “skewed” because they are optimized for small files and dense files. Most
files are written sequentially (they are “dense” with no “holes”), and most files are small. For
small files the inode map is very compact, yet it can grow (by adding indirect blocks) as the file
grows. Page tables are optimized for sparseness of VAS: a VAS is a collection of segments that
may be widely separated, with empty regions (“holes”) between them. The tree structure is
compact because we don’t need to allocate maps for the holes: just leave the branch empty.

Safety of metadata
•  How to protect integrity of the metadata structures?

–  Metadata is a complex linked data structure, e.g., a tree.
–  Must be “well-formed” after a crash/restart, even if writes are lost.
–  …or, must be possible to restore metadata to a consistent state

with a scrub (file system check or “fsck”) on restart after a crash.

0

rain: 32

hail: 48

once upo
n a time
/n in a l

and far
far away
, lived th

file inode
0

wind: 18

snow: 62

dir inode

dir entries
file blocks

Atomic updates: the recovery problem
The safe metadata update problem in file systems is a simplified form of
the atomic update and recovery problem for databases.
•  We want to make a group of related updates to a complex linked data

structure, e.g., to create a new file. The updates could be all over the disk.
•  But we could crash at any time, e.g., in the middle of the group of updates.
•  We need some way to do atomic commit: either all of the updates in each

group complete, or none of them do. And we want it to be fast.
•  The concern is similar to concurrency control: we don’t want software to “see”

an inconsistent state that violates structural invariants.

0

rain: 32

hail: 48

once upo
n a time
/n in a l

and far
far away
, lived th

file inode
0

wind: 18

snow: 62

dir inode

dir entries

file blocks

Disk write behavior (cartoon version)

•  Disk may reorder pending writes.
–  Limited ordering support (“do X before Y”).
–  Host software can enforce ordering by writing X synchronously:

wait for write of X to complete before issuing Y.

•  Writes at sector grain are atomic (512 bytes?).
•  Writes of larger blocks may fail “in the middle”.
•  Disk may itself have a writeback cache.

–  Even “old” writes may be lost.
–  (The cache can be disabled.)

Atomic commit: shadowing

Shadowing is used in NetApp WAFL:
Write Anywhere File Layout
1.  Write each modified block to a new location.
2.  Update block maps to point to the new locations.
3. Write the new block map to disk with a single disk write.
Shadowing presumes that the data is mapped by a block map on disk,
that the disk is large enough to store both the old version and the
modified data, and that we can update the block map on disk with a
single (atomic) disk write. To grow the block map we can make it
hierarchical.

Shadowing

1. starting point
modify purple/grey blocks

2. write new blocks to disk
prepare new block map

3. write new block map
(atomic commit)

and free old blocks
(optional)

Just to spell it out: if the system crashes before step 3, then the update fails, but the
previous version is still intact. To abort the failed update we just need to free any
blocks written in step 2. Step 3 completes the update: it replaces the old map with the
new. Because it is a single disk write, the system cannot fail “in the middle”: it either
completes or it does not: it is atomic. Once it is complete, the new data is safe.

Shadowing is a basic technique for atomic
commit and recovery. It is used in WAFL.

On-disk metadata structures
Write Anywhere File Layout (WAFL)

Root inode

Inodes for user files
and directories

WAFL and Writes

•  Any modified data/metadata can go anywhere on the disk.
–  The WAFL metadata structure assures this: every piece of metadata

is linked in a tree rooted in the root pointer.

•  An arbitrary stream of updates can be installed atomically.
–  Retain the old copy: “no overwrite”
–  Switch to new copy with a single write to the root (shadowing).

•  WAFL’s design naturally maintains multiple point-in-time
consistent snapshots of each file volume.
–  Old copy lives on as a point-in-time snapshot.

WAFL Snapshots

The snapshot mechanism is used for user-accessible
snapshots and for transient “consistency points”.

WAFL’s on-disk structure (high
level)

67
NetApp Confidential -
Limited Use

Root Inode

File Data Blocks

Metadata

Another Look

Suppose I modify
blocks A and B.

Write new copies of
A and B and every
piece of metadata
on the path back to
the root.

Storage system performance

•  How to get good storage performance?
–  Build better disks: new technology, SSD hybrids.
–  Gang disks together into arrays (RAID logical devices).
–  Smart disk head scheduling (when there is a pool of pending

requests to choose from).
–  Smarter caching: better victim selection policies
–  Asynchronous I/O: prefetching, read ahead, “write behind”
–  Location, location, location: smart block placement

•  It’s a big part of the technology of storage systems.

Building better file systems
•  The 1990s was a period of experimentation with new strategies for

high-performance file system design.
•  The new file systems generally used the FFS mechanisms and data

structures, but changed the policies for block allocation.
–  Block allocation policy: where to place new data (or modified old data)

on the storage volume? Which block number to choose?

–  “File system design is 99% block allocation.” - Larry McVoy
–  Example: Group large-file data into big contiguous chunks called

clusters or extents that can be read or written as a unit (larger b).
[McVoy91] and [Smith/Seltzer96]

–  Example: Write modified data and metadata wherever convenient to
minimize seeking: e.g., “log-structured” file systems (LFS)
[Rosenblum91] and NetApp’s WAFL [Hitz95]. Note: requires a level of
indirection so the FS can write each version of an inode to a different
location on the disk. (See WAFL’s inode file.)

WAFL and the disk system

•  WAFL generates a continuous stream of large-chunk
contiguous writes to the disk system.
–  WAFL does not overwrite the old copy of a modified structure: it

can write a new copy anywhere. So it gathers them together.

•  Large writes minimize seek overhead and deliver the full
bandwidth of the disk.

•  WAFL gets excellent performance by/when using many
disks in tandem (“RAID”)…

•  …and writing the chunks in interleaved fashion across
the disks (“striping”).

•  Old copies of the data and metadata survive on the disk
and are accessible through point-in-time “snapshots”.

Block placement and layout

•  One key assumption: “seeks waste time”.
–  Blocks whose addresses (logical block numbers) are close

together are cheaper to access together.
–  “Sequentialize!”

•  Location, location, location:
–  Place data on disk carefully to keep related items close together

(smart block allocation).
–  Use larger b (larger blocks, clustering, extents, etc.)
–  Smaller s (placement / ordering, sequential access, logging, etc.)

Access time

–  5-15 ms on average for access to random location
–  Includes seek time to move head to desired track

•  Roughly linear with radial distance

–  Includes rotational delay
•  Time for sector to rotate under head

–  These times depend on drive model:
•  platter width (e.g., 2.5 in vs. 3.5 in)
•  rotation rate (5400 RPM vs. 15K RPM).
•  Enterprise drives use more/smaller platters spinning faster.

–  These properties are mechanical and improve slowly as
technology advances over time.

Sector Track

Cylinder

Head
Platter

Arm

How long to access data on disk?

Average seek time

“The seek time is due to the
mechanical motion of the head when it
is moved from one track to another. It
is improving by about 5% CAGR. In
general, this is a mature technology
and is not likely to change dramatically
in the future. “

IBM Research Report 2011
GPFS Scans 10 Billion
Files in 43 Minutes

Rotational latency
The average disk latency is ½ the rotational time of the disk drive. As you can see from its
recent history…[it] has settled down to three values 2, 3 and 4.1 milliseconds. These are ½
the inverses of 15,000, 10,000 and 7,200 revolutions per minute (RPM), respectively.

It is unlikely that there will be a disk rotational speed increase in the
near future. In fact, the 15K RPM drive and perhaps the 10K RPM
drive may disappear from the marketplace…driven by the successful
combination of SSD and slower disk drives into storage systems that
provide the same or better performance, cost and power.

IBM Research Report 2011
GPFS Scans 10 Billion
Files in 43 Minutes

Drives spin at a fixed
constant RPM. (A few

can “shift gears” to
save power, but the
gains are minimal.)

Effective bandwidth

Transfer size b

Effective bandwidth is
efficiency or goodput
What percentage of the

time is the busy resource
(the disk head) doing useful
work, i.e., transferring data?

b/(sB+b)

b/B s (seek)

1 100%

Seeks are overhead: “wasted effort”. It is a cost s that the device
imposes to get to the data. It is not actually transferring data.

This graph is obvious. It applies to so many things in computer
systems and in life.

Spindle bandwidth B

Effective bandwidth
Effective bandwidth or bandwidth utilization is the share or
percentage of potential bandwidth that is actually delivered. E.g., what
percentage of time is the disk actually transferring data, vs. seeking etc.?

Define
b Block size
B Raw disk bandwidth (“spindle speed”)
s Average access (seek+rotation) delay per block I/O

Then
Transfer time per block = b/B
I/O completion time per block = s + (b/B)
Delivered bandwidth for I/O request stream = bytes/time = b/(s + (b/B))
Bandwidth wasted per I/O: sB

So
Effective bandwidth: bandwidth utilization/efficiency (%): b/(sB + b)
[bytes transferred over the “byte time slots” consumed for the transfer]

Effective bandwidth by access time
b/(sB+b)

1 100% Spindle bandwidth B (90 MB/s)

access time s 5ms

b=256K

b=64K
b=4K

Bigger is better. Other things being equal, effective bandwidth is higher
when access costs can be amortized over larger transfers. High access
cost is the reason we use tapes primarily for backup! As B grows and s is
unchanged, disks are looking more and more like tapes! (Jim Gray)

