
COMPSCI 330: Design and Analysis of Algorithms April 12, 2016

Convex Hull
Lecturer: Kyle Fox Scribe: Fred Zhang

1 Overview

In this lecture we discussed two-dimensional convex hull problem and gave two algorithms for
computing convex hull.

2 Convex Hull

Figure 1: (i). A point set P in R2. (ii). Convex hull of P. (iii). A violation of convexity, indicated by
the orange segment. (iv). A proper subset of CH(P) cannot possibly contain P.

Definition 1. Let P ⊆ R2 be a set of n points. Then the convex hull of P is the smallest convex polygon
that contains all points in P, denoted by CH(P).

Here, we make two more comments on the definition; also see figures above.

• Convex: For any points p, q inside a convex polygon, the line segment pq lies in the polygon.

• Smallest: Any convex proper subset of CH(P) cannot contain P. Informally, that means you
cannot cut off any part of the convex hull.

3 Formal Problem

Given a set of n points, we want an algorithm to output its convex hull. Now let’s try to formalize
the problem a little bit.

The input of our algorithm would be the Cartesian coordinates of the points in P as two arrays,
X[1 · · · n] and Y[1 · · · n].

Observation 1. Any vertex of CH(P) is a point in P.

Our algorithm should output a circular doubly-linked list of the vertices of CH(P). By the
Observation 1, it consists only of points in P. Concretely, it can be represented as two arrays,
next[1 · · · n] and prev[1 · · · n]. If point i is a vertex of the convex hull, then next[i] is its next vertex
in counter-clockwise order; similarly define prev[i].

Convex Hull-1

4 Algorithms

4.1 Preliminaries

We assume the general position of input points, which means that

(i) no three points are collinear, and that

(ii) no two points share a horizontal or vertical line.

First we start by looking at some simple cases.

1. If P contains one point, then CH(P) is simply the point itself.

2. If P contains two points, then CH(P) is the two points plus the edge that connects them two.

3. Things get trickier when |P| = 3. We know that the three edges that connect the input points
forms CH(P). However, it is required that they be output in counter-clockwise order.

(a,b)
(c,d)

(e,f)

Figure 2: (i). 1-point case. (ii). 2-point case. (iii). 3-point case

Without loss of generality, assume that (a, b) is the leftmost point. Then

(a, b), (c, d), (e, f) is in counter-clockwise order ⇐⇒ slope at (a, b)(c, d) ≤ slope at (a, b)(e, f)

⇐⇒ d− b
c− a

≤ f − b
e− a

⇐⇒ (d− b)(e− a) ≤ (f − b)(c− a)

This gives use a way to test if three (ordered) points are in counter-clockwise order.

4.2 March algorithm

Observation 2. The leftmost point of P has to be a vertex of CH(P).

This observation gives us a starting point of our algorithm. We can simply find the leftmost
point, i.e., the point with the smallest x coordinate, and somehow wrap around the point set.

Observation 3. Let P be a point on CH(P). Then pq is an edge of CH(P) if and only if ∀r ∈ P \ {p, q},
r is on the left of pq.

Convex Hull-2

Informally, it claims that for any edge of a convex hull, the entire convex hull lies to the left
of the edge. This leads us to an algorithm that looks for the smallest slope at each iteration and
finishes when it goes back to the leftmost starting point.

1 March(X[1 · · · n], Y[1 · · · n])
2 l ← 1
3 for j← 2 to n do
4 if X[j] < X[l] then
5 l ← j
6 end
7 p← l
8 repeat
9 if p 6= 1 then

10 q← 1
11 else
12 q← 2
13 for i← 2 to n, skipping p and q do
14 if ccw(p, i, q) then
15 q← i
16 end
17 next[p]← q, prev[q]← p
18 p← q
19 until p = l
20 return next[1 · · · n], prev[1 · · · n]
Algorithm 1: March algorithm for convex hull, where ccw(·) is the procedure testing if three
points are in counter-clockwise order; see Section 4.1.

Let h be the number of edges of CH(P). The outer loop takes h iterations, since each time it
adds a new vertex. The inner for loop runs in O(n) time. Hence, the March algorithm has O(nh)
run time.

In a certain sense, the algorithm is analogous to selection sort, where you look for the minimum
value ahead of you in each iteration and insert it in right position. Yet, we know that selection sort
is not optimal. The next algorithm finds the next vertex faster.

4.3 Scanning algorithm

Figure 3: Note that the non-convex polygon contains a right turn.

Lemma 4. A polygon with vertices on the points of P is the convex hull if and only if it contains P and has
no clockwise turn.

Convex Hull-3

Intuitively, the lemma is saying that if you walk through the edges of a convex hull counter-
clockwise, you may never turn right. In other words, right turn violates convexity; see the figure
above.

1 Scan(X[1 · · · n], Y[1 · · · n])
2 l ← 1
3 for j← 2 to n do
4 if X[j] < X[l] then
5 l ← j
6 end
7 Swap two points, 1 and l
8 Sort points 2 · · · n using ccw(l, ,) as comparison criterion.
9 prev[1]← n

10 for i← 1 to n do
11 next[i− 1]← i, prev[i]← i− 1
12 end
13 p← 1, q← 2, r ← 3.
14 repeat
15 if ccw(p, q, r) then
16 p← q, q← r, r ← r + 1
17 else
18 next[q]← 0, prev[q]← 0
19 next[p]← r, prev[r]← p
20 q← p, p← prev[p]
21 until r = l
22 return next[1 · · · n], prev[1 · · · n]

Algorithm 2: Scanning algorithm for convex hull.
Observe that the if block in the main loop may run at most O(n) times, and same for the

else block. Hence, the runtime of algorithm is determined by the sorting step in line 8, which is
O(n log n). For a visualization of the scanning algorithm, see [Vis].

5 Summary

We defined the convex hull problem, and presented two algorithms for computing convex hull in
2D; one runs in O(nh) time and the other in O(n log n) time.

References

[Vis] VisuAlgo - Computational Geometry. http://visualgo.net/geometry.html.

Convex Hull-4

http://visualgo.net/geometry.html

	Overview
	Convex Hull
	Formal Problem
	Algorithms
	Preliminaries
	March algorithm
	Scanning algorithm

	Summary

