
COMPSCI 330: Design and Analysis of Algorithms 3/22/2016

Las Vegas and Monte Carlo Algorithms
Lecturer: Debmalya Panigrahi Scribe: Tianqi Song

1 Overview

In this lecture, we will introduce Las Vegas and Monte Carlo algorithms.1

2 Las Vegas Algorithms

Definition 1. A randomized algorithm is called a Las Vegas algorithm if it always returns the correct
answer, but its runtime bounds hold only in expectation.

In Las Vegas algorithms, runtime is at the mercy of randomness, but the algorithm always succeeds in
giving a correct answer.

2.1 Randomized Quicksort Analysis

Recall that the randomized quicksort algorithm picks a pivot at random, and then partitions the elements
into three sets: all the elements less than the pivot, all elements equal to the pivot, and all elements greater
than the pivot.

S

S<p S>p

S=p

We analyze the runtime using charging. In the computation tree shown above, we count the number times
each element appears. The sum over all elements is equal to the sum of the sizes of all the sets in the
computation tree, which is proportional to the runtime.

1Some materials are from a note by Samuel Haney for this class in Fall 2014 and a note by Allen Xiao for COMPSCI 532 in
Fall 2015.

11-1

Claim 1. The number of times an element appears in sets in the computation tree is O(logn) in expectation.

Each set S in the computation tree has three children. Let S=p be child set with elements equal to the
pivot. Let S>p and S<p be defined similarly. We color the tree edges to these children as follows:

• Color the edge to S=p red.

• Color the edge to the larger of S>p and S<p black.

• Color the edge to the smaller of S>p and S<p blue.

Now, we trace the path of some element e through the computation tree, and count the number of edges
of each color along the path.

• The number of red edges is 1. Only the last edge can be red.

• The number of blue edges is at most log2 n, since the smaller of S>p and S<p has at most 1
2 · |S|

elements.

• The number of black edges, using the definitions we have given, could be large.

What is the probability that an edge is black? That is, given that e ∈ S, what is the probability that the
next edge in e’s path is black? Suppose e is the smallest element in the array.

center

e

For this element, any pivot in the right half of the array, illustrated with the shaded region in the image
above, will cause e’s next edge to black. Therefore, the probability that the next edge is black in this case is
roughly 1

2 .
However, consider some element e near the center of the array.

center

e

The shaded region shows which pivots will cause the next edge in e’s path to be black. For this element,
the probability that the next edge is black is nearly 1. The probability will be high for all elements near the
center of the array.

We need to modify our definition of black edges and blue edges to fix the problem. If |S>p|> 3
4 |S|, color

the edge to S>p black. Otherwise, color the edge to S>p blue. We color the edge to S<p using identical rules.
Note that now it is possible for both edges to be blue (but not both to be black). We have the following:

• The number of red edges is still 1.

11-2

• The number of blue edges is at most log4/3 n.

To calculate the probability of an edge being black, we split the array into four equal parts:

If the pivot is selected from the shaded quadrants, one of the edges will be blue and the other will be black.
If the pivot is selected from the non-shaded quadrants, both edges will be blue. Therefore, regardless of
which element e ∈ S we pick, the probability that the next edge on e’s path is black is at most 1

2 .
Now, we can bound the number of black edges in a path. Let Xi a random variable, equal to the number

of black edges between the ith and the (i+1)st blue edge. As we have seen,

E[Xi]≤
1

psuccess
≤ 1

1/2
= 2.

By linearity of expectation, we have

E[total number of black edges] = E

[
∑

i
Xi

]
= ∑

i
E [Xi]≤ 2

(
log4/3 n

)
= O(logn).

We now need to bound the total running time, T . Let Te be the amount of running time charged to e
(which is proportional to the number of sets e appears in).

E[T] = E
[
∑
e

Te

]
= ∑

e
E [Te] = ∑

e
O(logn) = O(n logn).

3 Monte Carlo Algorithms

Definition 2. A randomized algorithm is called a Monte Carlo algorithm if it may fail or return incorrect
answers, but has runtime independent of the randomness.

3.1 Global Minimum Cut

Definition 3. Let G = (V,E) be an undirected, unit-capacity graph, where |E|= m and |V |= n. The global
minimum cut problem is to find the smallest non-trivial cut in G. In other words, a complete partitioning of
V into (S,T) which minimizes:

|{(v,w) | (v,w) ∈ E ∩ (S×T)}|

where both S and T are nonempty.

3.1.1 Karger 1993

A Monte Carlo algorithm by Karger in 1993 gives the global min-cut, with high probability, in O(m) time.
This algorithm is based around edge contractions:

Definition 4. Let G = (V,E) be a (multi)graph, and (u,v) ∈ E. Contracting edge (u,v) produces a new
multigraph where:

11-3

1. Both u and v are replaced by a single new supervertex w = {u,v}.

2. Each edge between u and v is replaced by a self-loop (w,w). Edges which have u or v as an endpoint
now have w as that endpoint.

The resulting graph may include multi-edges and self-loops.

Edge contractions can simplify the graph while preserving a cut (S,T).

Fact 1. Let (S,T) be a cut in G. Let (v,w) be an edge where both v,w ∈ S or both v,w ∈ T . Then if G′ is the
graph after contracting (v,w), then |(S,T)| is the same in G′ as in G.

Lemma 2. Let G′ be the graph after contracting e in G. Every cut in G′ corresponds a cut of the same size
in G, on the same supervertices.

Proof. This follows directly from Fact 1. Note, however, that the opposite direction does not hold: not every
cut in G′ reappears as a cut in G. In particular, the cuts in G which included e disappear in G′.

Contraction preserves the size for cuts which don’t use the contracted edge. Intuitively, contraction
doesn’t produce smaller cuts in G′, which means the minimum cut remains the minimum cut.

Corollary 3. Let (S,T) be the global minimum cut of G, and let G′ be the graph after contracting e 6∈ (S,T).
Then (S,T) is the global minimum cut of G′, and has the same size.

The algorithm is as follows:

Algorithm 1 (Karger 1993)
1: Gn← G
2: for i = (n−1) to 2 do
3: Gi← Gi+1
4: Contract e ∈ Ei, picked uniformly at random, and remove all self-loops.
5: return Cut represented by two remaining supervertices of G2.

3.1.2 Success Probability

First, we relate the size minimum cut to the number of edges:

Lemma 4. Let λ be the size of the minimum cut. On a graph with i vertices, |E| ≥ (iλ)/2.

Proof. Let deg(v) be the degree of v. Summing over all vertices double counts every edge.

∑
v∈V

deg(v) = 2|E|

The degree cut of any vertex gives an upper bound on the size of the minimum cut.

∑
v∈V

deg(v)≥ iλ

Rearranging:

|E| ≥ iλ
2

11-4

Theorem 5. For any given global mincut (S,T =V \S), Karger’s algorithm outputs (S,T) with probability
Ω
(
1/n2

)
.

Proof. For any cut to be output by the algorithm, none of its edges must be contracted before the end (G2).
Let λ be the number of edges in global min-cut (S,T). Let Gi = (Vi,Ei) be the graph at i vertices.

(S,T) disappears in Gi if one of its edges are contracted. Let Ei be the event that no (S,T) edge is
contracted in the contraction on Gi to form Gi−1.

Pr((S,T) successfully output) = Pr(En∩En−1∩·· ·∩E2)

= Pr(En)Pr(En−1 | En)Pr(En−2 | En,En−1) · · ·

Lemma 4 tells us that:

|Ei| ≥
iλ
2

Since the edges are chosen uniformly from Ei:

Pr
(
Ei | ∩i+1

k=nEk
)

= 1− λ

|Ei|

≥ 1− λ

(iλ)/2

= 1− 2
i

Replacing:

Pr((S,T) successfully output) = Pr(En)Pr(En−1 | En)Pr(En−1∩EnEn−1) · · ·

≥
(

1− 2
n

)(
1− 2

n−1

)
· · ·
(

1− 2
3

)
=

n−2
n
× n−3

n−1
× n−4

n−2
×·· ·× 3

5
× 2

4
× 1

3

=
2 ·1

n(n−1)

=

(
n
2

)−1

= Θ(1/n2)

Corollary 6. There are at most
(n

2

)
unique minimum cuts in a graph.

How can we obtain a high probability bound? Repeat the algorithm O(n2 logn) times and output the
smallest cut.

Pr(None of the outputs were global minimum cut) ≤
n2c logn

∏
t=1

(
1− 1

n2

)
≤

(
e−1/n2

)n2c logn

= O(1/nc)

Pr(At least one output was global minimum cut) = Ω(1−1/poly(n))

11-5

3.1.3 Running Time

The contraction algorithm we described can be implemented in O(mn2 logn) time.

11-6

	Overview
	Las Vegas Algorithms
	Randomized Quicksort Analysis

	Monte Carlo Algorithms
	Global Minimum Cut
	Karger 1993
	Success Probability
	Running Time

