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Announcements

e Solution of Homework-1 has been posted on sakai

— Many equivalent solutionsof the queries are possible

e Homework-2 has been posted
— Due on February 29, Monday, 11:55 pm

— Goal:review all key concepts covered so far, and practice for exams
— Start early
— Ask questions on piazza
e Xiaodan’s office hour canceled this week
— Willbe rescheduled

Lecture Pdfs will be (mostly) posted right before the class
— Don’ t forgetto see the updated version after the class
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What will we learn?

e Last lecture:

— Estimating cost of all operators and join
algorithms

* Next:
— Combine cost in a plan
— Query Optimization



Reading Material

e [GUW]
— Chapter 16.2-16.7

* Original paper by Selinger et al. :
— P Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path
Selectionin a Relational Database Management System
Proceedings of ACM SIGMOD, 1979. Pages 22-34

— No need to understand the whole paper, but take a look atthe example
(link on the course webpage)

Acknowledgement:
Some of the following slides have been created by adapting
slides by Profs. Shivnath Babu and Magda Balazinska



Notation

* T(R) : Number of tuplesinR
 B(R) : Number of blocksin R
* V(R, A): Number of distinct values of attribute
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Query Optimization Problem

Pick the best plan from the space of
physical plans




Cost-based Query Optimization

Pick the plan with least cost

Challenge:
Do not want to execute more than one plans

* Need to estimate the cost without executing the
plan

“heuristic-based” optimizer (e.g. push selections down) have
limited power and not used much



Cost-based Query Optimization

Pick the plan with least cost

Tasks:
1. Estimate the cost of individual operators

done

2. Estimate the size of output of individual operators
today

3. Combine costs of different operatorsin a plan
today

4. Efficiently search the space of plans .,



Task 1 and 2
Estimating cost and size
of different operators

* Size = #tuples, NOT #pages
* Cost=#pagel/O

* but, need toconsider whether theintermediate relation fitsin
memory, is written back to/read from disk (or on-the-fly goes to
the next operator), etc.



Desired Properties of
Estimating Sizes of Intermediate Relations

deally,

* should give accurate estimates (as much as
possible)

* should be easy to compute

* should be logically consistent

— size estimate should be independent of how the
relation is computed

— e.g. which join algorithm/join order is used

e But, no “universally agreed upon” ways to meet
these goals

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems
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Cost of Table Scan

Cost: B(R)
Size: T(R)

T
|

T (R) : Number of tuplesinR
B (R) : Number of blocksin R

CompSci 516: Data Intensive Computing
Systems
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Cost of Index Scan

Cost: B (R) —if clustered
T(R) — if unclustered

R

[ Size: T(R)

R
T (R) : Number of tuplesinR
B (R) : Number of blocksin R

Note: size is independent of the implementation of the scan/index

CompSci 516: Data Intensive Computing
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Cost of Index Scan with Selection

= Ora>s50R

Cost: B(R) * f —if clustered

- T(R) * f — if unclustered
R

Size: T(R) * f

T (R) : Number of tuplesinR

B(R): Numb fblocksin R
Reduction factor (R) : Number of blocks in

f = Max(R.A) - 50) / (Max(R.A) - Min(R.A))

(assumes uniform distribution)
CompSci 516: Data Intensive Computing
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Cost of Index Scan with Selection
(and multiple conditions)

X =Oras>s50andrRB=cC R assume index on

(A, B)
T What is f1 if the first condition is 100 > R.1 > 507
Cost: B(R) * f —if clustered
- T(R) * f —if unclustered
[ Size: T(R) * f
R

T (R) : Number of tuplesinR

Reduction factors range selection B (R) : Number of blocksin R
f1 = Max(R.A) - 50) / (Max(R.A) - Min(R.A)) V(R, A) : Number of distinct
f2=T(R)/V(R, B) . e selection values of attribute AinR

f=11* f2 (assumes independence and uniform distribution)

CompSci 516: Data Intensive Computing 14
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Cost of Index Scan with Selection
(and multiple conditions)

X =Oras>s50andrRB=cC R assume index on

T What is f if &8
Cost: B(R) * f —if clustered
T(R) * f —if unclustered
[ Size: T(R) * f
R

T (R) : Number of tuplesinR

Reduction factors range selection B (R) : Number of blocksin R
f1 = Max(R.A) - 50) / (Max(R.A) - Min(R.A)) V(R, A) : Number of distinct
f2=T(R)/V(R, B) . e selection values of attribute AinR

f=11* f2 (assumes independence and uniform distribution)
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Cost of Projection

X =1TAR

|
|

Duke CS, Spring 2016

Cost: depends on the method
of scanning R
B(R) for table scan or clustered index scan

Size: T(R)
But tuples are smaller

If you have more informationon thesize of the
smaller tuples, can estimate #1/0 better

CompSci 516: Data Intensive Computing
Systems
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Size of Join

Quite tricky
« If disjoint A and B values
« thenO
« |fAis key of R and B is foreign key of S
RA=S.B (g *  then T(S)
« |f all tuples have the same value of R A= S.B = x

. then T(R) * T(S)

T (R) : Number of tuplesinR
B (R) : Number of blocksin R
V(R, A) : Number of distinct
values of attribute Ain R

CompSci 516: Data Intensive Computing
Systems
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Size of Join

Two assumptions

1. Containment of value sets:

« ifV(R, A) <=V(S, B), then all A-values of R
are included in B-values of S
RA=SB M « e.g. satisfied when A is foreign key, B is key

2 Preservation of value sets:
« VRS, AorB)=V(R, A)=V(S, B)
. No value is lost in join

T (R) : Number of tuplesinR
B (R) : Number of blocksin R
V(R, A) : Number of distinct
values of attribute AinR

CompSci 516: Data Intensive Computing
Systems
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Size of Join

Reduction factor
f=1/max(V(R, A), V(S, B))

|

R.A=S.B M

R

S

Size = T(R) * T(S) * f

T (R) : Number of tuplesinR
B (R) : Number of blocksin R
V(R, A) : Number of distinct
values of attribute Ain R

CompSci 516: Data Intensive Computing
Systems
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Size of Join

Reduction factor
f=1/max(V(R, A), V(S, B))

|

R.A=S.B M

£ o
A

Duke CS, Spring 2016

Size = T(R) * T(S) * f

Why max?
Suppose V(R, A) <=V(S, B)
The probability of a A-value joining with a B-value is
1/V(S.B) = reduction factor
Under the two assumptions stated earlier + uniformity

T (R) : Number of tuplesinR
B (R) : Number of blocksin R
V(R, A) : Number of distinct
values of attribute AinR

CompSci 516: Data Intensive Computing
Systems
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Task 3: Combine cost of different
operators in a plan

With Examp
“Given” the

* Size = #tuples, NOT #pages
* Cost = #tpage I/0

es

ohysical plan

* but, need to consider whether the intermediate relation fits in memory,
is written back to disk (or on-the-fly goes to the next operator) etc.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 21



Example Query

Student (sid, name, age, address)
Book(bid, title, author)
Checkout(sid, bid, date)

Query:
SELECT S.name
FROM StudentS, Book B, Checkout C
WHERE S.sid = C.sid
AND B.bid = C.bid
AND B.author="'0Olden Fames'
AND S.age > 12
AND S.age< 20

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems
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S(sid,name,age,addr)

i bt ot Assumptions

Student:S, Book: B, Checkout: C

Sid, bid foreign key in Creferencing S and B resp.

There are 10,000 Student records stored on 1,000 pages.
* There are 50,000 Book records stored on 5,000 pages.

e There are 300,000 Checkout records stored on 15,000
pages.

 There are 500 different authors.

e Studentages range from 7 to 24.

Warning: a few dense slides next ©

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 23



S(sid,name,age,addr)  T(S)=10,000 B(S)=1,000 V(B,author) = 500

B(bid, title,author) T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid.bid,date) T(C)=300,000 B(C)=15,000

Physical Query Plan—1

Q. Compute
d H name [ . .
(On the fly) (d) 1. the cost and cardinality in

steps (a) to (d)
(On the ﬂy) (C) O 12<age<20 A author =‘Olden Fames’ 2. the total cost

(Tuple-based nested loop Assumptions:
- < b « Datais not sorted on
B Inner) bid (b) any attributes
(Page_orlented O For bOtI’: in (a) ?nd (b),
outer relations fit in
-nested loop, = () memory

S outer, C inner)/ e \

Student S Checkout C Book B
(File scan)  (File scan) File scan)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 24



S(sid,name,age,addr)  T(S)=10,000 B(S)=1,000 V(B,author) = 500

B(bid, title,author) T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid.bid,date) T(C)=300,000 B(C)=15,000

(a ) Cost =

B(S) + B(S) * B(C)
= 1000 + 1000 * 15000
(On the ﬂY) (d) IT hame = 15,001,000

Cardinality =
(On the fIy) (C) O 12<age<20 A author = ‘Olden Fames’ T(C) — 300¥000

« foreign key join, output
(Iuple-based nested |OOp Al .
ipelined to next join

B inner) (b) Can apply the formula as

e well
(Page-oriented / \

-nested loop, = (a) T(S) * T(C)/max (V(S, sid),
Book B |v(C, sid))

. sid
S outer, C |nney \ (File scan) |=T(S)

since V(S, sid) > = V(C, sid)
Student S Checkout C and

(File scan)  (File scan) T(S) = V(S, sid)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 25



S(sid,name,age,addr) T(S)=10,000
B(bid,title,author) T(B)=50,000
C(sid.bid,date) T(C)=300,000

(On the ﬂy) (d) M name

(On the ﬂy) (C) O 12<age<20 A author = ‘Olden Fames’

(Tuple-based nested loop

B inner) >bd< (b)
(Page-oriented / \
-nested loop, = (a)

S outer, C inney e

Student S  Checkout C
(File scan)  (File scan)

Duke CS, Spring 2016

B(S)=1,000
B(B)=5,000
(C)=15,000

(b)

V(B,author) = 500
[/ <=age <=24

Cost =
T(S > C) * B(B)
= 300,000 * 5,000 =15*108

Cardinality =
T(S > C) = 300,000

« foreign key join, don’t need
scanning for outer relation

Book B

\ (File scan)

CompSci 516: Data Intensive Computing Systems 26




S(sid,name,age,addr)  T(S)=10,000 B(S)=1,000 V(B,author) = 500

B(bid, title,author) T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid.bid,date) T(C)=300,000 B(C)=15,000

(c, d)

Cost =
(On the fly) (d) I hame 0 (on the fly)
(On the ﬂy) (C) O 12<age< author = ‘Olden Fames’ Cardinality =~
125agesel f aufhor= Dident 300,000 * 1/500 * 7/18
(Tuple-based nested loop = 234 (approx)
B inner) ] (b) (assuming uniformity and

P e /bid\ independence)
age-oriente

-nested loop, =<1 @) Book B

S outer, C inney ) \ (File scan)

Student S  Checkout C
(File scan)  (File scan)
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S(sid,name,age,addr)  T(S)=10,000 B(S)=1,000 V(B,author) = 500

B(bid,title,author) T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid.bid,date) T(C)=300,000 B(C)=15,000
(Total)
Total cost =
(On the fly) (d) T hame 1,515,001,000

Final cardinality =
(On the ﬂy) (C) O 12<age<20 A author = ‘Olden Fames'’ 234 (apprOX)

(Tuple-based nested loop
B inner) =< )

bid
(Page-oriented / \

-nested loop, =<1 @) Book B

S outer, C inney ) \ (File scan)

Student S  Checkout C
(File scan)  (File scan)
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S(sid,name,age,addr)  T(S)=10,000 B(S)=1,000 \7/(5_,autho<r)_=245rOO
B(bid,title,author) T(B)=50,000 B(B)=5,000 -age ==
C(sid.bid,date) T(C)=300,000 B(C)=15,000 V(B,author) = 500
. 7 <=age<=24
Physical Query Plan — 2
(0n the fly) () IT name Q. Compute
1. the cost and cardinality in
(On the fly) (fy G 12<hge<20 steps (a) to (9)

2. the total cost

(Block nested loop —J— (g

S inner) - Assumptions:
* Unclustered B+tree
(d) nsidm/eﬂy) index on B.author
«  Clustered B+tree index
(Indexed-nested loop, ‘ on C bid
B outer, C inner) > (¢ - Allindex pages are in
/ bid memory
Unlimited memory

(On the fly) (b) IlI bid
(a) O author=‘Olden Fames’ CheCkOUt C StUdent S
Book B (Index scan) (File scan)

Duke CS, Sp(||nng?x Scan) CompSci 516: Data Intensive Computing Systems 29



S(sid,name,age,addr) T(8)=10,000  B(S)=1,000 /(B author) = 500
B(bid, title,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000
(©nthefly) (9) ITname (a )
Cost =
(On the fly) (f) O 12<hge<20 T(B) / V(B, author)
= 50,000/500
(Block nested IoopD (e) =100 (unclustered)

S inner) sid
Cardinality =
(d) HS, On the fly) 100

(Indexed-nested loop,

B outer, C inner) N (¢)  Student S
(File scan)
(On the fly) (b) 1|FIb|d

(a) O author = ‘Olden Fames’ CheCkOUt C

Bocgk B (Index scan)
(Index scan)
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S(sid,name,age,addr) T(S)=10,000 B(S)=1,000
B(bid, title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000

V(B,author) = 500
[/ <=age <=24

©Onthefy) () I name ( b)
Cost =

Onthe ) (f) & 15<hgecao 0 (on the fly)

(Block nested loop—~|— (g Cardinality =

S inner) /d 100
(d)HSI On the fly)

(Indexed-nested loop,

B outer, C inner) N (¢)  Student S

v \ (File scan)

(On the fly) (b) Il“[ bid
(a) O author = ‘Olden Fames’ CheCkOUt C

Bocgk B (Index scan)
(Index scan)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

31




S(sid,name,age,addr) T(S)=10,000
B(bid,title,author): Un. B+ on author T(B)=50,000
C(sid,bid,date): Cl. B+ on bid

(Onthefly) (g) IThame

(c)

(Onthe fly) (fo 12<age<20

(Block nested loop—~|— (g

S inner) /d
(d)HS, On the fly)

(Indexed-nested loop,
B outer, C inner)

N (©)

e

(On the fly) (b) 11 bid
|

Student S
(File scan)

Checkout C
(Index scan)

(a) O author = ‘Olden Fames’

|
Book B
(Index scan)

Duke CS, Spring 2016

B(S)=1,000
B(B)=5,000
T(C)=300,000 B(C)=15,000

V(B,author) = 500
[/ <=age <=24

« one index lookup per outer B
tuple

1 Dbook has T(C)/ T(B) =
checkouts (uniformity)

« # C tuples per page =
T(C)/B(C) =

« 6 tuples fit in at most 2
consecutive pages (clustered)
could assume 1 page as well

Cost <=

100 * 2= 200

Cardinality =
100 * 6 = 600

=100 * T(C)/ MAX(100, V(C, bid))
assuming

V(C, bid) = V(B, bid) = T(B) =
50,000

CompSci 516: Data Intensive Computing Systems 32




S(sid,name,age,addr) T(8)=10,000  B(S)=1,000 /(B author) = 500
B(bid, title,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000
©nthefly) (9) ITname (d )
(On the fly) (f) O 12<hge<20 Cost =

(Block nested 100p~1_— () 0 (on the fly)

S inner) /d Cardinality =
(d) HS, On the fly) 600

(Indexed-nested loop,

B outer, C inner) N (¢)  Student S

v \ (File scan)

(On the fly) (b) Il“[ bid
(a) O author = ‘Olden Fames’ CheCkOUt C

Bocgk B (Index scan)
(Index scan)
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S(sid,name,age,addr) T(S)=10,000  B(S)=1,000 V(B,author) = 500
B(bid, title,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid.bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

©Onthefy) () I name ( e )

Outer relation is already in
(O (£) 6 12<bge<20 (unlimited) memory
need to scan S relation

(Block nested loop—~|— (g

S inner) /d Cost =
(d) lFIs| On the fly) B(S) = 1000

(Indexed-nested loop, Cardinality =

B outer, C inner) N © Students |69

v \ (File scan)

(On the fly) (b) ]iI bid
(a) O author = ‘Olden Fames’ CheCkOUt C

Bocl)k B (Index scan)
(Index scan)
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S(sid,name,age,addr) T(S)=10,000
B(bid,title,author): Un. B+ on author T(B)=50,000

B(S)=1,000 V(B,author) = 500
B(B)=5,000 7 <= age <= 24

C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000

©nthefly) (g) ITname (f)

(Onthe fly) (fo 12<age<20

(Block nested loop—~|— (g

S inner) /d
(d)HSI On the fly)

(Indexed-nested loop,

B outer, C inner) N (¢)  Student S

v \ (File scan)

(On the fly) (b) Il“[ bid
(a) O author = ‘Olden Fames’ CheCkOUt C

Bocgk B (Index scan)
(Index scan)

Cost =
0 (on the fly)

Cardinality =
600 * 7/18 = 234 (approx)
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S(sid,name,age,addr) T(8)=10,000  B(S)=1,000 /(B author) = 500
B(bid, title,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid.bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000
©nthefly) (Q) ITname (g)
Cost =
©Onthe M) (f) & 4pchge<a 0 (on the fly)

(Block nested loop T~ (e) Cardinality =

S inner) /d 234
(d)HSI On the fly)

(Indexed-nested loop,

B outer, C inner) N (¢)  Student S

v \ (File scan)

(On the fly) (b) Il“[ bid
(a) O author = ‘Olden Fames’ CheCkOUt C

Bocgk B (Index scan)
(Index scan)
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S(sid,name,age,addr) T(S)=10,000  B(S)=1,000 /(B guthor) = 500
B(bid, title,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid.bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

(Onthefly) (9) ITname (tOta I )

Total cost =
Onthe ) (f) G 4<hge<a0 1300

(Block nested IoopD ©) (compare with 1,515,001,000

S inner) /d for plan 1!)
(d)Hs. On the fly) Final cardinality =

234 (approx)
(same as plan 1!)

(Indexed-nested loop,

B outer, C inner) N (¢)  Student S
(File scan)

(On the fly) (b) H bid

(a) 0author=‘OIden Fames’ CheCkOUt C
Bocgk B (Index scan)

(Index scan)
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Task 4:
Efficiently searching the plan space

Use dynamic-programming based
Selinger’s algorithm

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems
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Heuristics for pruning plan space

* Predicates as early as possible
* Avoid plans with cross products
* Only left-deep join trees

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems
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Physical Plan Selection

Logical Query Plan

\ Physical
P1 P2 ... Pn olans
| |
Cl C2 .... Cn Costs

T

Pick minimum cost one

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 40



Join Trees
Query: R1Dd R2P><d R3 b1 R4 b1 R5

Ao ReTA

R3 R2 R3 R2
(logical plan space)
« Several possible structure of the trees
« [Each tree can have n! permutations of relations
(physical plan space)
« Different implementation and scanning of intermediate
operators for each logical plan

CompSci 516: Data Intensive Computing
Systems

left-deep join tree
/><\bushy join tree
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Selinger Algorithm

* Dynamic Programming based

* Dynamic Programming:
— Generalalgorithmic paradigm
— Exploits “principle of optimality”
— Useful reading:

— Chapter 16, Introduction to Algorithms,
Cormen, Leiserson, Rivest

e Considers the search space of left-deep join trees
— reduces search space (only one structure), still n! permutations
— interacts well with join algos (esp. NLJ)
— e.g. might not need to write tuples to disk if enough memory

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 42



Principle of Optimality

Optimal for “whole” made up from
optimal for “parts”




Principle of Optimality

Query: R1D<1 R2P< R3 b1 R4 <1 R5

R3 R2 Suppose,
this is an Optimal Plan
for joining R1...R5:



Principle of Optimality

Query: R1D<1 R2P< R3 b1 R4 <1 R5

R3 R2 Suppose,
this is an Optimal Plan
for joining R1...R5:



Principle of Optimality

Query: R1D<1 R2D< R3 b1 R4 b1 R5

Then, what can you say LS

about this sub-plan? /./'Am'\\jj%

’//' R3 R2 .~ Suppose,
memememe— T of this is an Optimal Plan
This has to be tHe for joining R1...R5:

optimal plan for joining R3, R2, R4, R1

CompSci 516: Data Intensive Computing
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Principle of Optimality

Query: R1D<1 R2D< R3 b1 R4 b1 R5

Then, what can you say

about this sub-plan? ',~'\’/2><\ R5
’ N,
s R1
We are using the R4 /><\ RN

associativity and . R4
commutativity of joins 2
. R3 R2 .+  Suppose,

. this is an Optimal Plan

This has to be tHe for joining R1...R5:
optimal plan for joining R3, R2, R4

. C Sci 516: Data Intensive C ti
Duke CS, Spring 2016 ompSci ata Intensive Computing 47
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Exploiting Principle of Optimality

Query: R1D<1 R2 D ><1 Rn

Both are giving the same result
R2 D<I R3D<1 R1=R3 <1 R1 X1 R2

/X\ R1 /><\ R2

R2 R3 | R3 R1
Optimal Sub-Optimal
for joining R1, R2, R3 ' for joining R1, R2, R3

CompSci 516: Data Intensive Computing
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Exploiting Principle of Optimality

Suppose you chose
the sub-optimal one

Duke CS, Spring 2016

e AN
4 A Y
4

N, Leads to sub-Optimal

0/. \ [ ] [ ] [ ]
//><\ Rg/,/ for joining R1,...,Rn
/ .
. /

A sub-optimal sub-plan cannot lead to an
optimal plan

CompSci 516: Data Intensive Computing
Systems
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Notation

OPT ({R1, R2, R3}):

Cost of optimal plan to join R1,R2,R3

T({R1, R2, R3}):

Number of tuples in R1p><1 R2p<1 R3



Selinger Algorithm;

Query: R1b<1d R2b><1 R3 b1 R4

e.g. All possible permutations of R1, R2, R3
have been considered Progress
after OPT({R1, R2, R3}) has been computed of
{R1, R2, R3, R4} algorithm

[R1,R2R3} {R1,R2, R4} {R1,R3, R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2_ R3} {R2 R4} {R3, R4}

{R1} {R2} { R3} {R4}
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Simple Cost Model

Cost (R D<I S) = T(R) + T(S)

All other operators have 0 cost

Note: The simple cost model used for illustration only,
it is not used Iin practice
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Cost Model Example

X e T+ T(T)

> T
/ \ TR+ T(S)
R S

Total Cost: T(R) + T(S) + T(T) + T(X)




Selinger Algorithm:

OPT ({R1,R2, R31}):
/OPT({R’I,RZ}) +T({R1,R2})+ T(R3)

Min' < OPT({R2,R3}) +T({R2,R3})+T(R1)

\OPT({R’I,RB}) +T({R1,R3})+ T(R2)

Note: Valid only for the simple cost model




Selinger Algorithm:

Query: R1 D1 R2D<d R3 <1 R4

Progress
of
{R1, R2, R3, R4} algorithm

[R1,R2R3} {R1,R2,R4} {R1,R3, R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2_ R3} {R2 R4} {R3, R4}

{R1} {R2} { R3} {R4}




Selinger Algorithm:

Query: R1 D1 R2D<d R3 <1 R4

Progress
of
{R1, R2, R3, R4} algorithm

[R1,R2R3} {R1,R2,R4} {R1,R3, R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

{R1} {R2} { R3} {R4}




Selinger Algorithm:

Query: R1b<1d R2b><1 R3 b1 R4

Q. How to optimally compute join of {R1, R2, R3, R4}?

Progress

Ans: First optimally join {R1, R3, R4} then join with R2 asinner. of
{ R1, R2, R3, R4 } algorithm

[R1,R2R3} {R1,R2,R4} {R1,R3, R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

{R1} {R2} { R3} {R4}
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Selinger Algorithm:

Query: R1b<1d R2b><1 R3 b1 R4

Q. How to optimally compute join of {R1, R3, R4}?

Progress

Ans: First optimally join {R1, R3}, then join with R4 asinner. of
{R1, R2, R3, R4} algorithm

{R1,R2R3} {R1,R2 R4} {R1,R3,R4} {R2, R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

{R1} {R2} { R3} {R4}
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Selinger Algorithm:

Query: R1b<1d R2b><1 R3 b1 R4

Q. How to optimally compute join of {R1, R3}?

Progress

Ans: First optimally join {R3}, then join with R1 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2R3} {R1,R2 R4} {R1,R3 R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2_ R3} {R2 R4} {R3, R4}

{R1} {R2} { R3} {R4}
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Selinger Algorithm:

Query: R1b<1d R2b><1 R3 b1 R4

Q. How to optimally compute join of {R3}?

Progress

Ans: Single relation —so optimally scan R3. of
{R1, R2, R3, R4} algorithm

{R1,R2R3} {R1,R2 R4} {R1,R3 R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

{R1} {R2} {R3} {R4}
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Selinger Algorithm:

Query: R1b<1d R2b><1 R3 b1 R4

R3 R1

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2)
and the above left deep plan
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Selinger Algorithm:

Query: R1b><1 R2D><1 R3 < R4

NOTE: (*VERY IMPORTANT*)

 Thisis *NOT* done by top-down recursive calls.

 Thisis done BOTTOM-UP computingthe optimal cost of *all* Progress
nodesin this lattice only once (dynamic programming). of

{ R1, R2, R3, R4 } algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3, R4} { R2, R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2, R4} {R3, R4}

bz

{R1} {R2} {R3} {R4}
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Full Example: Optimization with Selinger’s

Sailors (sid, sname, srating, age)
Boats(bid, bname, color)

. . See yourself how to
ReserVES(Sld, bld; date; rname) include actual operator

algorithms and
scanning methods

Query: while running
SELECT S.sid, R.rname Selinger's
FROM Sailors S, Boats B, Reserves R (Simple cost model is
WHERE S.sid = R.sid not useful in practice)
AND B.bid = R.bid
AND B.color =red
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S (sid, sname, srating, age)

> o bname, oo Available Indexes

 Sailors:S, Boats: B, Reserves: R

e Sid, bid foreign key in R referencingS and B resp.
e Sailors
— Unclustered B+ tree index on sid
— Unclustered hash index on sid
* Boats
— Unclustered B+ tree index on color
— Unclustered hash index on color
* Reserves

— Unclustered B+ tree on sid
— Clustered B+ tree on bid
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S (sid, sname, srating, age):  B+tree - sid, hash index - sid SELECT S.sid, R.rname
B (bid, bname, color) :  B+tree - color, hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) :  B+tree - sid, Clustered B+tree - bid B.bid = R.bid, B.color = red

First Pass

Where to start?

— How to access each relation, assumingit would be the first
relation being read

— File scan is also available!
Sailors?

— No selection matching an index, use File Scan (no overhead)
Reserves?

— Same as Sailors

Boats?

— Hash index on color, matches B.color = red

— B+ tree also matches the predicate, but hash indexis cheaper
* B+ tree would be cheaper for range queries

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 65



S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color) : 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

Second Pass

e What next?

— For each of the plan in Pass 1 taken as outer, consider joining
another relation as inner

 What are the combinations? How many new options?

R (file scan) B (B+-color) (hash color) (File scan)
R (file scan) S (B+-sid) (hash sid) ”
S (file scan) B (B+-color) (hash color) ”
S (file scan) R (B+-sid) (Cl. B+ bid) ,,
B (hash index) R (B+-sid) (Cl. B+ bid ”
B (hash index) S (B+-sid) (hash sid) ”
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S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color) : 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

Second Pass

e Which outer-inner combinations can be discarded?

— B,Sand S, B: Cartesian product!
mm
R (file scan) (B+-color) (hash color) (File scan)
R (file scan) S (B+-sid) (hash sid) )
L T . - e = B oY 1 = | T~ . Y ) —
S (file scan) R (B+-sid) (Cl. B+ bid) 7
B (hash index) R (B+-sid) (Cl. B+ bid): ,)

OPTION 3 is not shown on next slide,

expected to be more expensive
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S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color) : 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

R (file scan) S (B+-sid) Slower than (hash sid): likely to be faster
hash-index 2A. Index nested loop join
(need Sailor tuples matching 2B Sort Merge based join: (no index
S.sid = value, where value is sorted on sid, need to sort, output
comes from an outer Rtuple)  ¢qrted by sid, retained if cheaper)

R (file scan) B (B+-color) Not useful (hash color) Consider all methods, select

those tuples where B.color = red using the
color index (note: no index on bid)

S (file scan) R (B+-sid) Consider all (CI. B+ bid) Not useful
methods
B (hash R (B+-sid) Not useful (Cl. B+ bid)
index) 2A. Index nested loop join
(no H. I. on bid)
Keep the least cost plan between 2B. Sort-merge join
*(R,S)and (S, R) (clustered, index sorted on bid,
* (R, B)and (B, R) produces outputs in sorted order by
bid, retained if cheaper)
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S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color) : 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

Third Pass

e Join with the third relation

* For each option retained in Pass 2, join with the third
relation

* E.g.

— Boats (B+tree on color) — sort-merged-join — Reserves
(B+tree on bid)

— Join the result with Sailors (B+ tree on sid) using sort-merge-
join
* Need tosort (B joinR) by sid, was sorted on bid before
e Qutputstuplessorted bysid
* Not useful here, but will be useful if we had GROUP BY on sid

* In general, a higher cost “interesting” plans maybe retained (e.g.
sort operatoratroot, groupingattribute in group by query later, join
attriutein a laterjoin)
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