CompSci 516
Data Intensive Computing Systems

Lecture 11
Parallel DBMS
and
Map-Reduce

Instructor: Sudeepa Roy

CompSci 516: Data Intensive Computing

Duke CS, Spring 2016
Systems

Announcements

* Map-Reduce and Parallel DBMS have been moved
earlier in the schedule
— will be helpful for HW3 (and HW4)

* An anonymous poll will be posted soon

— please give your feedback

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

What will we learn?

e Last lecture:

— We finished query execution and query
optimization

* Next:
— Parallel DBMS and Map Reduce (MR)

— Will discuss some more MR in the next lecture

Reading Material

* [RG]
— Chapter22.1-22.5
c [GUW]

— Chapter20.1-20.2

e Recommended readings:

— Chapter 2 (Sections 1,2,3) of Mining of Massive Datasets, by Rajaraman and
Ullman: http://i.stanford.edu/~ullman/mmds.html

— Original Google MR paper by Jeff Dean and Sanjay Ghemawat, OSDI’ 04:
http://research.google.com/archive/mapreduce.html

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 4

Parallel DBMS

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Basics of Parallelism

* Units: a collection of processors
— assume always have local cache

— may or may not have local memory or disk (next)

A communication facility to pass information
among processors

— a shared bus or a switch

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

today

Parallel vs. Distributed DBMS

later, after we do

Parallel DBMS

Distributed DBMS transactions

Parallelization of various | |® Datais physically stored across

operations

— e.g. loadingdata,
buildingindexes,
evaluating queries

differentsites

— Each siteis typically managed by an
independent DBMS

* Location of data and autonomy of
sites have impact on Query opt.,

Data may or may not be Conc. Controland recovery

distributed initially

 Also governedby other factors:

Distribution is governed — increased availability for system

by performance
considertaion

crash
— local ownership and access

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems 7

Why Parallel Access To Data?

At 10 MB/s 1,000 x parallel
1.2 days to scan 1.5 minute to scan.

Parallelism: .
divide a big problem
iInto many smaller ones
to be solved in parallel.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 8

Parallel DBMS

* Parallelism is natural to DBMS processing

— Pipeline parallelism: many machines each doing
one step in a multi-step process.

— Data-partitioned parallelism: many machines doing
the same thing to different pieces of data.

— Both are natural in DBMS!

Any Any
Sequential Sequential
Pipeline Program Program
Partition | ‘ Sengntial " Seélr}gntial
Program Program

outputs split N ways, inputs merge M ways
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 9

DBMS: The parallel Success Story

* DBMSs are the most successful application of
parallelism

— Teradata (1979), Tandem (1974, later acquired by HP),..

— Every major DBMS vendor has some parallel server
 Reasons for success:

— Bulk-processing (= partition parallelism)

— Natural pipelining

— Inexpensive hardware can do the trick

— Users/app-programmers don’t need to thinkin parallel

Some || Terminology et

linear speed-up
Ideal graphs —
S o
* Speed-Up 23
5
— More resources means —
proportionally less time H#CPUs
for given amount of data. (degree of ||-ism)
Ideal:
° Sca|e—Up — linear scale-up
: : £
— If resources increased in g =
. . . S »n
proportion to increase in G <
data size, time is constant. g’f

HCPUs + size of database

degree of | [-ism
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 11

Some || Terminology e

linear speed-up
In practice =
o >
g 2 et
* Duetooverheadin parallel processing & % s ,
S o Actual: sub-linear
<)
e Start-up cost = speed-up
Startingthe operation on many processor, #CPU's
might need to distribute data (degree of ||-ism)
* Interference
Different processors may compete for the I_deaI:
— linear scale-up
same resources E T
g= | 77 ~
* Skew <9 | :
. S5 Actual: sub-linear
The slowest processor (e.g. with a huge » g scale-up
fraction of data) may become the £
bottleneck #HCPUs + size of database
| . . . degree of | [-ism
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 12

Architecture for Parallel DBMS

* Among different computing units

— Whether memory is shared
— Whether disk is shared

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

13

Shared Memory

©&® E

{ Interconnection Network J

memory { Global Shared Memory

o [0 [

Shared Disk

local
memory M M M

) @ @

{ Interconnection Network

Shared Nothing

jocal { Interconnection Network }

memory
and disk

no two
CPU canaccess <P> <P> P
the same

storage area

all communication M M M

through a
network connection

o [0 [

Architecture: At A Glance

we will assume shared nothing

Shared Memory Shared Disk Shared Nothing
(SMP) (network)
| CLIFNTIS CLIENTS CLIENTS

Memory
./ ﬁ h ﬁ ﬁ SR
- Easy to program » Trade-off but still * Hard to program and
« Expensive to build interference like design paral!el algos
« Low communication shared-memory « Cheap to build
overhead: shared mem. (contention of memory ~ * Easy to scaleup and

 Considered to be the
best architecture

Sequent, SGI, Sun VMScluster, Sysplex Tandem, Teradata, SP2

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 17

(memory contention)

What Systems Worked This Way
NOTE: (as of 9/1995)!

Shared Nothing CLIENTS

| 1 | | |
Teradata: 400 nodes
Tandem: 110 nodes
IBM / SP2 / DB2: 128 nodes
Informix/SP2 48 nodes |

ATT & Sybase ? nodes

. CLIENTS
Shared Disk
Oracle 170 nodes
DEC Rdb 24 nodes
C I X

Shared Memory

Informix 9 nodes CLIENTS
RedBrick ? nodes t

| Pio®:sSsSore

Memory

élééélél

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Different Types of DBMS Parallelism
* |ntra-operator parallelism

— get all machines working to compute a given

operation (scan, sort, join) T
— OLAP (decision support) @

* |Inter-operator parallelism

— each operator mayrun concurrentlyona ’ Y 1
differentsite (exploits pipelining)

— For both OLAP and OLTP l><1,

* |nter-query parallelism

— differentqueries run on different sites Y \

— For OLTP

<
* WEe’'ll focus on intra-operator parallelism /\ ’\

Ack:
Slide by Prof. Dan Suciu ;i/

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

19

Data Partitioning

Horizontally Partitioning a table (why horizontal?):
Range-partition Hash-partition Block-partition
or Round Robin

lllll PA880 BAARE
TITT RARSE RARAE

EFJK.ND.SIT.Z A EIF.JIK.NID SIT..Z

* Good for equijoins, « Good for equijoins * Send i-th tuple to
range queries, group-by « But only if hashed I-mod-n processor
« Can lead to data skew on that attribute « Good to spread
« Can lead to data load
skew (Good when the
entire relation is
accessed

Shared disk and memory less sensitive to partitioning,
Shared nothing benefits from "good" partitioning

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 20

Example
* R(Key, A, B)

* Can Block-partition be skewed?
— no, uniform

 Can Hash-partition be skewed?
— on the key: uniform with a good hash function

— on A: may be skewed,
* e.g. when all tuples have the same A-value

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

21

Parallelizing Sequential
Evaluation Code

e “Streams” from different disks or the output of
other operators

— are “merged” as needed as input to some operator

— are “split” as needed for subsequent parallel
processing

* Different Split and merge operations appear in
addition to relational operators

e No fixed formula for conversion
* Next: parallelizing individual operations

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 22

Parallel Scans

* Scanin parallel, and merge.

e Selection may not require all sites for range or
hash partitioning
— but may lead to skew
— Suppose o, . ;oR and partitioned accordingto A

— Then all tuples in the same partition/processor

* Indexes can be built at each partition

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 23

|dea:

* Scan in parallel, and range-partition as you go
— e.g. salary between 10 to 210, #processors = 20
— salary infirst processor: 10-20, second: 21-30, third: 31-40,

* Astuples comein, begin “local” sorting on each

* Resulting data is sorted, and range-partitioned

* Visit the processors in order to get a full sorted order
* Problem: skew!

* Solution: “sample” the data at start to determine partition
points.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 24

Parallel Joins

Need to send the tuples that will join to the same
machine

— also for GROUP-BY

Nested loop:

— Each outer tuple must be compared with each inner tuple
that might join.
— Easy for range partitioningon join cols, hard otherwise

Sort-Merge:
— Sorting gives range-partitioning
— Merging partitioned tables is local

Phase 1

Duke CS, Spring 2016

Parallel Hash Join

OUTPUT
1
INPUT .
R hash

Original Relations | , , , function 00 0
(R then S) " B

=) B-1

Disk B main memory buffers

Pﬁrg%ions

S~V
Disk

In first phase, partitions get distributed to

different sites:

— A good hash function automatically distributes

work evenly

Do second phase at each site.

Almost always the winner for equi-join

CompSci 516: Data Intensive Computing Systems

1
2

B-1

26

Dataflow Network for parallel Join

Ail A Bi| Bj Ai Aj Bi Bj
b i i i

SCaM SCaM SCAN SCAN
&,______F_-F" ‘h____—__,-#‘
A’ B A B
H_\-\-h‘___‘__‘_'_'_'_.—l-'-'_‘_. H_\-\-h‘___‘__‘_'_'_'_.—l-'-'_‘_.

A E.i] JEJ

a1 A Bi| B Aj
L) ¥ ¥ ¥ L B)
MEEGE MEERCGE MEECE MERGE
JOr JTOTN
"-\-_____'_'_,_,_,-F" “-\-_____'_'_,_,_,-F"
Al =] BI A] =<1 B
"-—-_.___‘__ﬂ__ﬂdaf" "-—-_.___‘__ﬂd__.fﬂ-"

* Good use of split/merge makes it easier to
build parallel versions of sequential join code.

Parallel Aggregates

* For each aggregate function, need a decomposition:

— count(S) = Z count(s(i)), ditto for sum()
— avg(S) = (X sum(s(i))) / = count(s(i))
— and soon...
* Forgroup-by:
— Sub-aggregate groups close to the source.

— Pass each sub-aggregate to its group’s site.
e Chosenviaa hashfn.

Which SQL aggregate operators are not
good for parallel execution?

A.E F..J K...N O..S T..Z

Jim Gray & Gordon Bell: VLDB 95 Parallel Database Systems Survey

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

28

Best serial plan may not be best ||

e Why?
* Trivial counter-example:

— Table partitioned with local secondary index
at two nodes

— Range query: all of node 1 and 1% of node 2.
— Node 1 should do a scan of its partition.

— Node 2 should use secondary index.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 29

Duke CS, Spring 2016

Map-Reduce

CompSci 516: Data Intensive Computing Systems

30

The Map-Reduce Framework

* A high level programming paradigm

— allows many important data-oriented processes to
be written simply

e A master controller
— divides the data into chunks

— assigns different processors to execute the map
function on each chunk

— other/same processors execute the reduce
functions on the outputs of the map functions

Storage Model|

 Datais storedin large files (TB, PB)
— e.g. market-basket data (more when we do data
mining)
— or web data

* Files are divided into chunks
— typically many MB (64 MB)

— sometimes each chunk is replicated for fault
tolerance (later)

Map-Reduce Steps

Map Shuffle Reduce output
Input . sort by key lists
key-value pairs "
—_— same key —
— S —
— S ——
— " >

* Input is typically (key, value) pairs
— but could be objects of any type

 Map and Reduce are performed by a number of processes
— physically located in some processors

Map-Reduce Steps

Map Shuffle Reduce output
Input | sort by key . lists
key-value pairs >
e same key —
— S —
— S ——
— R ———
1. ReadData 4. Reduce
2. Map —extract some info of interest — operate on the values of the same key
in (key, value) form :
— e.g.transform, aggregate, summarize,
3. Shuffle and sort filter
- send same keys to the same reduce _
process 5. Output the results (key, final-result)

Simple Example: Map-Reduce

 Word counting
 |Inverted indexes

Duke CS, Spring 2016

Com

Page A A map output
This; A
This page page: A'
contains so == CONAINS: A
much text S0:A
much: A
text: A
Page B B map output
My: B
My page page: B
contains text == CONtains: B
too text: B
too: B
pSci516: DataIntensive Computing Systems

Reduced output

contains: A, B
much: A

My: B
page:A B
s0:A

text: A, B
This : A

too: B

Ack:
Slide by Prof. Shivnath Babu

35

Map Function

Map Shuffle Reduce output
Input _ sort by key lists
key-value pairs "
—_— same key —
— —
— —
— " >

* Each map process works on a chunk of data
* Input:(input-key, value)
* Qutput: (intermediate-key, value) -- may not be the same as input key value

* Example:listalldocids containinga word

— output of map (word, docid) — emits each such pair
— word is key, docid is value
— duplicate elimination can be done at the reduce phase

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 36

Reduce Function

Map Shuffle Reduce output
Input _ sort by key lists
key-value pairs "
—_— same key —
— S —
— —
— " >

* Input: (intermediate-key, list-of-values-for-this-key) — list caninclude duplicates

— each map process can leave its output in the local disk, reduce process can retrieve its
portion

e Output: (output-key, final-value)
 Example: list all doc ids containing a word
— output will be a list of (word, [doc-id1, doc-id5,])

— if the count is needed, reduce counts #docs, output will be a list of (word, count)
Duke CS, Spring 2016 CompSci 516: Data IntenSive Computing Systems

More Terminology

however, there is no uniform
terminology across systems

* A Map-Reduce “Job”

— e.g. countthe words in all docs
— complex queries can have multiple MR jobs

 Map or Reduce “Tasks”
— A group of map or reduce “functions”
— scheduled on a single “worker”

e Worker

— a process that executes one task at a time
— one per processor, so 4-8 per machine

Ack:
Slide by Prof. Dan Suciu

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 38

Duke CS, Spring 2016

Examples

CompSci 516: Data Intensive Computing Systems

39

Example problem: Parallel DBMS

R(a,b) is horizontally partitioned across N = 3 machines.
Each machinelocally stores approximately 1/N of the tuplesin R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this queryand how it will be executed acrossthe N =3
machines.

Pick an efficient planthat leverages the parallelism as much as possible.

e SELECT a, max(b) as topb
* FROMR

 WHEREa>0

* GROUPBY a

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 40

SELECT a, max(b) as topb
FROM R

WHEREa >0
GROUPBY a

R(a, b)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 41

SELECT a, max(b) as topb
FROM R

WHEREa >0
GROUPBY a

R(a, b)

Machine 1

1/3 of R 1/3 of R

1/3 of R

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 42

R(a, b) SELECT a, max(b) as topb

GROUPBY a

Machine 1 Machine 2 Machine 3

43

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

SELECT a, max(b) as topb
FROM R
WHERE a >0

GROUPBY) a

R(a, b)

Machine 1 Machine 2 Machine 3

1/3 of R
44

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

SELECT a, max(b) as topb
FROM R

WHEREa >0
GROUPBY a

R(a, b)

C Hashona D

Hash on a

Machine 1

Machine 2

Machine 3

mputing Systems 1/3 of R 45

CompSci §

Duke CS, S 1/3 of R

SELECT a, max(b) astopb FROMR
R(a, b) WHERE a > 0 GROUP BY a

Machine 1 Machine 2 Machine 3

Duke CS, S 1/'3 of R mputing Systems]_/3 of R 46

CompSci §

SELECT a, max(b) astopb FROMR
R(a, b) WHERE a > 0 GROUP BY a

Ya, max(b)->topb Ya, max(b)->topb Ya, max(b)->topb

Machine 1 Machine 2 Machine 3

Duke CS, S]_/'3 of R mputing Systems]_/3 of R 47

CompSci §

Same Example Problem: Map Reduce

Explain how the query will be executed in
MapReduce

e SELECT a, max(b) as topb
* FROMR

 WHEREa>0

* GROUPBY a

Specify the computation performed in the map and
the reduce functions

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 48

SELECT a, max(b) as topb
M q FROMR
p WHERE a >0

GROUPBY a

e Each map task
— Scans a block of R
— Calls the map function for each tuple

— The map function applies the selection predicate to the
tuple

— For each tuple satisfying the selection, it outputsa record
with key =a and value=b

*When each map task scans multiple relations, it needs to output somethinglike
key = a and value = (‘R’, b)
which hasthe relation name ‘R’

SELECT a, max(b) as topb

Shuffle FROMR

GROUPBY a

 The MapReduce engine reshuffles the output of the

map phase and groups it on the intermediate key, i.e.
the attribute a

*Note that the programmer has to write only the map and reduce functions, the
shuffle phaseis done by the MapReduce engine (although the programmer can
rewrite the partition function), but you shouldstill mention thisin youranswers

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 50

SELECT a, max(b) as topb

Reduce

GROUPBY a

e Each reducetask

* computes the aggregate value max(b) = topb for each group
(1.e. a) assigned to 1t (by calling the reduce function)

* outputs the final results: (a, topb)

A local combiner can be used to compute local max before data
gets reshuffled (in the map tasks)

* Multiple aggregates can be output by the reduce phase like
key = a and value = (sum(b), min(b)) etc.

* Sometimes a second (third etc) level of Map-Reduce phase might be needed

SELECT a, max(b) as topb

Benefit of hash-partitioning . FROMR

GROUPBY a

 What would change if we hash-partitioned R
on R.a before executing the same query on
the previous parallel DBMS and MR

e First Parallel DBMS

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 52

SELECT a, max(b) astopb FROMR
(Prev:blockepartition | \ierean0 GROUPBYa

Ya, max(b)->topb

Ya, max(b)->topb Ya, max(b)->topb

Machine 1 Machine 2 Machine 3

Duke CS, S 1/'3 of R mputing Systems]_/3 of R 53

CompSci §

SELECT a, max(b) as topb
FROMR

WHERE a >0
GROUPBY a

* |t would avoid the data re-shuffling phase

* [t would compute the aggregates locally

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 54

SELECT a, max(b) astopb FROMR
Hash-partition onaforR(@b) || wieres-0 GROUPBYa

@max(b)»@ @max(b)»@ @max(b)»@

Machine 1 Machine 2 Machine 3

Duke CS, S 1/'3 of R mputing Systems 1/3 of R 55

CompSci §

SELECT a, max(b) as topb

Benefit of hash-partitioning . FROMR

GROUPBY a

* For MapReduce
— Logically, MR won’t know that the data is hash-
partitioned

— MR treats map and reduce functions as black-boxes
and does not perform any optimizations on them

e But, if alocal combineris used
— Saves communication cost:
» fewer tuples will be emitted by the map tasks

— Saves computation cost in the reducers:
* the reducers would haveto do anything

