CompSci 516
Data Intensive Computing Systems

Lecture 12
Intro to Transactions

Instructor: Sudeepa Roy

CompSci 516: Data Intensive Computing

Duke CS, Spring 2016
Systems

What will we learn?

e Last lecture:
— Parallel DBMS and Map Reduce
— Might be discussed more later for HW3 and HW4

* Next:
— An introduction to Transactions
— Will be continued for 4-5 lectures

Reading Material

* [RG]
— Chapter 16.1-16.3, 16.4.1

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 3

Motivation: Concurrent Execution

* Concurrent execution of user programs is essential for good
DBMS performance.
— Disk accesses are frequent, and relatively slow

— itisimportant to keep the CPU busy by working on several user
programs concurrently

— short transactions may finish early if interleaved with long ones

— may increase system throughput (avg. #transactions per unit
time) and response time (avg time to complete a transaction)

* A user’s program may carry out many operations on the data
retrieved from the database

— but the DBMS s only concerned about what data is read/written
from/to the database.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 4

Transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

e Atransaction is the DBMS’s abstract view of a user
program

— a sequence of reads and write

— the same program executed multiple times would be
considered as different transactions

— DBMS will enforce some ICs, depending on the ICs declared
in CREATE TABLE statements.

— Beyond this, the DBMS does not really understand the
semantics of the data. (e.g., it does not understand how the
interest on a bank account is computed).

Example

e Consider two transactions:

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06"B END

Intuitively, the first transaction is transferring $100
from B’s account to A’s account. The second is
crediting both accounts with a 6% interest payment.

There is no guarantee that T1 will execute before T2
or vice-versa, if both are submitted together.
However, the net effect must be equivalent to these
two transactions running serially in some order.

Example

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

* Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06"B

< This is OK. But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06"B

< The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Duke (S, Spring 2016 CompSci 516: Data Intensive Computing Systems

Commit and Abort

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

e A transaction might commit after completing
all its actions

e orit could abort (or be aborted by the DBMS)
after executing some actions

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Concurrency Control and Recovery

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

* Concurrency Control
— (Multiple) users submit (multiple) transactions

— Concurrency is achieved by the DBMS, which interleaves actions
(reads/writes of DB objects) of various transactions

— user should think of each transaction as executing by itself one-
at-a-time
— The DBMS needs to handle concurrent executions
- Recovery

— Due to crashes, there can be partial transactions

— DBMS needs to ensure that they are not visible to other
transactions

ACID Properties

* Atomicity

* Consistency
* |solation

* Durability

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 10

Atomicity

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

* A usercan think of a transaction as always
executing all its actions in one step, or not
executing any actions at all

— Users do not have to worry about the effect of
incomplete transactions

— DBMS logs all actions so that it can undo the actions of
aborted transactions.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 11

Consistency

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

e Each transaction, when run by itself with no
concurrent execution of other actions, must
preserve the consistency of the database

— e.g. if you transfer money from the savings account to
the checking account, the total amount still remains the
same

— ensuring this property is the responsibility of the user

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 12

Isolation

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

A usershould be able to understand a transaction
without considering the effect of any other
concurrently running transaction
— even if the DBMS interleaves their actions

— transaction are “isolated or protected” from other
transactions

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 13

Durability

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

* Once the DBMS informs the user that a transaction
has been successfully completed, its effect should
persist even if the system crashes before all its
changes are reflected on disk

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 14

Durability

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

* Once the DBMS informs the user that a transaction
has been successfully completed, its effect should
persist even if the system crashes before all its
changes are reflected on disk

Next, how we maintain all these four properties
But, in detail later

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 15

When can a transaction abort

* Transactions can be incomplete due to several
reasons

— Aborted (terminated) by the DBMS because of
some anomalies during execution

* in that case automatically restarted and executed anew
— The system may crash (say no power supply)

— A transaction may decide to abort itself
encountering an unexpected situation

e e.g. read an unexpected data value or unable to access
disks

Atomicity and Durability

* Atomicity

— A transactioninterruptedin the middle can leave the database
in an inconsistentstate

— DBMS has to remove the effects of partial transactions from the
database

— DBMS ensures atomicity by “undoing” the actions of incomplete
transactions

— DBMS maintainsa “log” of all changes to do so

e Durability
— Thelog also ensures durability

— If the system crashes before the changes made by a completed
transactions are written to the disk, the log is used to remember
and restorethese changes when the system restarts

— “recovery manager” will be discussed later

Consistency and Isolation

* Consistency
— e.g. Moneydebit and credit between accounts
— User’s responsibility to maintain the integrity constraints

— DBMS may not be able to catch such errorsin user program’s
logic

— However, the DBMS may be in inconsistentstateduring a
transaction between actions

e |solation
— DBMS guaranteesisolation (later, how)

— IfT1 and T2 are executed concurrently, either the effect would
be T1->T2 or T2->T1 (and from a consistent state to a consistent
state)

— But DBMS provides no guarantee on which of these orderis
chosen

Notations

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06"A, B=1.06"B END

* Transaction is a list of “actions” to the DBMS
— includes “reads” and “writes”
— R{(O): Reading an object O by transaction T
— W(O): Writing an object O by transaction T
— also should specify Commit; and Abort;

— T is omitted if the transaction is clear from the
context

Assumptions

* Transactions communicate only through READ
and WRITE

— i.e. no exchange of message among them

* A database is a fixed collection of independent
objects

— i.e. objects are not added to or deleted from the
database

— this assumption can be relaxed

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 20

Schedule

* An actual or potential sequence for executing
actions as seen by the DBMS

e A list of actions from a set of transactions
— includes READ, WRITE, ABORT, COMMIT

 Two actions from the same transaction T
MUST appear in the schedule in the same
order that they appearin T

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

21

Serial Schedule

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)
W(A)
R(B)
W(B)

COMMIT

Duke CS, Spring 2016

* |If the actions of different
transactions are not
interleaved

— transactions are executed
from start to finish one by
one

CompSci 516: Data Intensive Computing Systems 22

Scheduling Transactions

* Serial schedule: Schedule that does not interleave the actions
of different transactions

* Equivalent schedules: For any database state, the effect (on
the set of objects in the database) of executing the first
schedule is identical to the effect of executing the second
schedule.

* Serializable schedule: A schedule thatis equivalent to some
serial execution of the committed transactions

(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 23

Serializable Schedule

* |f theeffect onanyconsistentdatabaseinstanceisguaranteed to beidentical
that of “some” complete serial schedule for a set of “committed trs”

* However, noguaranteeonT1->T2o0rT2->T1

R(A) R(A) R(A)
W(A) W(A) W(A)
R(B) R(A) R(A)
bl W(A) R(B)
COMMIT R(B) W(B)
R(A) W(B) W(A)
W(A) R(B) R(B)
R(B) W(B) W(B)
W(B) COMMIT COMMIT
COMMIT comMIT COMMIT
serial schedule serializable schedules

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 24

Anomalies with Interleaved Execution

* |f two consistency-preserving transactions when
run interleaved on a consistent database might

leave it in inconsistent state

* Write-Read (WR)
* Read-Write (RW)
* Write-Write (WW)

e No conflict with RR if no write is involved

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 25

WR Conflict

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), W(A), R(B), W(B), Commit
12: R(A), W(A), R(B), W(B), Commit

 Reading Uncommitted Data (WR Conflicts, “dirty reads”):

— transaction T2 reads an object that has been modified by T1 but
not yet committed

— or T2 readsan object froman inconsistentdatabase state (like
fundis being transferred between two accounts)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 26

RW Conflict

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

 Unrepeatable Reads (RW Conflicts):

— T2 changes the value of an object A that has been
read by transaction T1, which is still in progress

— If T1 tries to read A again, it will get a different
result

— Suppose two customers are trying to buy the last
copy of a book simultaneously

WW conflict

T1: W(A), W(B), C
T2: W(A), W(B), C

e Overwriting Uncommitted Data (WW Conflicts,
“lost update”):
— T2 overwrites the value of A, which has been
modified by T1, still in progress
— Suppose we need the salaries of two employees (A
and B) to be the same

e T1 sets them to $S1000
e T2 sets them to $2000

Schedules with Aborts

T1: R(A), W(A), Abort
T2: R(A), W(A) Commit

e Actions of aborted transactions have to be undone
completely

— may be impossible in some situations

e say T2 readsthe fund from an account and adds interest
* T1 aims to deposit money but aborts

— if T2 has not committed, we can “cascade” aborts by
aborting T2 as well

— if T2 has committed, we have an “unrecoverable
schedule”

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 29

Recoverable Schedule

T1: R(A), W(A), Abort
T2: R(A), W(A), R(B), W(B), Commit

* Transaction commit if and only after all
transactions they read have committed

— avoids cascading aborts

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

30

Conflict Serializable Schedules

 Two schedules are conflict equivalent if:
— Involve the same actions of the same transactions

— Every pair of conflicting actions is ordered the
same way

* Schedule S is conflict serializable if S is conflict
equivalent to some serial schedule

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 31

Example

e A schedulethatis not conflict serializable:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

@ T@ Dependency graph

B
* The cyclein the graph reveals the problem.
The output of T1 depends on T2, and vice-
versa.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Lock-Based Concurrency Control

* DBMS should ensure that only serializable and
recoverable schedules are allowed

— No actions of committed transactions are lost
* Uses alocking protocol

* Lock: associated with each “object”
— different granularity

* Locking protocol:
— a set of rules to be followed by each transaction

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Strict two-phase locking (Strict 2PL)

Two rules

1. Each transaction must obtain
— a S (shared) lock on object before reading
— and an X (exclusive) lock on object before writing

— exclusive locks also allow reading an object, additional shared
lock is not required

— If a transaction holds an X lock on an object, no other
transaction can get a lock (S or X) on that object

— transaction is suspended until it acquires the required lock

2. All locks held by a transaction are released when the
transaction completes

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 34

2PL vs. strict 2PL

2PL:

— first, acquire all locks, release none
— second, release locks, cannot acquire any other lock

Strict 2PL:
— release write (X) lock, only after it has ended (committed or aborted)

Strict 2PL allows only serializable schedules.
— Additionally, it simplifies transaction aborts
— two transactions can acquire locks on differentobjects independently

(Non-strict) 2PL also allows only serializable schedules, but
involves more complex abort processing

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 35

Example: Strict 2PL

T1: R(A), W(A), R(B), W(B), Commit
T2: R(A), W(A), R(B), W(B), Commit

 WR conflict (dirty read)
e Strict 2PL does not allow this

T1: X(A), R(A), W(A),
T2: HAS TO WAIT FOR LOCK ON A

T1: X(A), R(A), W(A), X(B), R(B), W(B), C
T2: X(A), R(A), W(A), X(B), R(B), W(B), C

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 36

Example: Strict 2PL

T1: S(A), R(A), X(C), R(C), W(C), C
T2: S(A), R(A), X(B), R(B), W(B), C

e Strict 2PL allows interleaving

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

37

e BEGIN
e <....5Q
e COMM

Duke CS, Spring 2016

Transaction in SQL

TRANSACTION

| STATEMENTS>

T or ROLLBACK

To be continued in the next lecture

CompSci 516: Data Intensive Computing Systems

38

