CompSci 516
Data Intensive Computing Systems

Lecture 13
Transactions

Instructor: Sudeepa Roy

CompSci 516: Data Intensive Computing

Duke CS, Spring 2016
Systems

Announcements

 Midterm, next Tuesday, March 1, in class
— Everything up to Lecture 12
— Practice problems on Friday/Saturday

e Extra office hours on Monday (also posted on
Piazza)
— Xiaodan: 10-11am, D301
— Sudeepa: 5-6 pm, D325

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Announcements

* Please submit your certification of maintaining course
policy with each homework
— the pdfisin HomeworkResources on Sakai
— to avoid confusion or ignorance of course policies

e If you are not sure what a HW question asks for

— you need to make sure you understand it fully by asking
guestions on Piazza prior to the deadline

— Also | encourage you to have immediate notification of all
Piazza posts

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 3

What will we learn?

e Last lecture:

— Intro to transactions

* Next:

— Concurrency Control
— (+ some review for midterm)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Reading Material

* [RG]
— Chapter 17.1-17.4

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 5

What we did in the last lecture

Transaction

— Ry(A), W,(A), ...

— Commit/abort

— Lock/unlock: S;(A), X;(A), US;(A), UX,(A)

ACID properties
— what they mean, whose responsibility to maintain each of them

Conflicts: RW, WR, WW

2PL/Strict 2PL

— alllock acquires have to precede all lock releases

— but, they don’t have to be consecutive actions on the schedule
— exclusive locks (X) for write

— Strict 2PL: release X locks only after commit or abort

Review: Scheduling Transactions

e Serial schedule: Schedule that does not interleave the

actions of different transactions

* Equivalentschedules: Forany d

effect (ont
executingt
executingt

ne set of objectsint

atabase state, the
ne database) of

ne first scheduleis ic

ne second schedule.

entical to the effect of

* Serializable schedule: A schedule that is equivalentto

some serial execution of the committed transactions

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems 7

Review: Serializable Schedule

* |f theeffect onanyconsistentdatabaseinstanceisguaranteed to beidentical
that of “some” complete serial schedule for a set of “committed trs”

* However, noguaranteeonT1->T2o0rT2->T1

R(A) R(A) R(A)
W(A) W(A) W(A)
R(B) R(A) R(A)
bl W(A) R(B)
COMMIT R(B) W(B)
R(A) W(B) W(A)
W(A) R(B) R(B)
R(B) W(B) W(B)
W(B) COMMIT COMMIT
COMMIT comMIT COMMIT
serial schedule serializable schedules

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 8

Conflict Equivalent Schedules

 Two schedules are conflict equivalent if:
— Involve the same actions of the same transactions

— Every pair of conflicting actions of two committed
transactions is ordered the same way

- Conflicting actions:

— both by the same transaction
- Ri(X), Wi(Y)
— both on the same object by two transactions, at least one action
Is a write
+ Ri(X), Wj(x)
* Wi(X), Rj(x)
* Wi(X), Wj(x)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 9

Conflict Equivalent Schedules

* Two conflict equivalent schedules have the
same effect on a database

— all pairs of conflicting actions are in same order

— one schedule can be obtained from the other by
swapping “non-conflicting” actions
* either on two different objects
e or both are read on the same object

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

10

Conflict Serializable Schedules

* Schedule S is conflict serializable if S is conflict
equivalent to some serial schedule

* |n class:

* r1(A); Wi(A); r2(A); Wo(A); r1(B); wy(B); ra(B); wo(B)
e to

* r(A); wy(A); ry(B); wy(B); ra(A); wa(A); ra(B); wo(B)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 11

Example

e A schedulethatis not conflict serializable:

T1:
T2:

R(A), W(A),

R(A), W(A), R(B), W(B)

R(B), W(B)

canwriteitin

Rl(A)I Wl(A)I RZ(A)i WZ(A)I RZ(B)I WZ(B)I Rl(B)I Wl(B)

this equivalent
way as well

@

7@ Precedence graph

B
* The cyclein the graph reveals the problem.

The output of T1 depends on T2, and vice-

versa.

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

12

Precedence Graph

* Precedence graph:

— Also called dependency graph, conflict graph, or
serializability graph
— One node per transaction

— Edgefrom T, to T, if an action of T; precedes and conflicts
with one of T;'s actions
* Wi(A)--R;(A), or
* Ri(A) - W;(A), or
© W;i(A) - Wi(A)
— T, must precede T, in any serial schedule

 Theorem: Schedule is conflict serializable if and only if
its precedence graph is acyclic

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 13

Theorem: Conflict Serializability

* Theorem: Schedule is conflict serializable if
and only if its precedence graph is acyclic

Ri(A), W1(A), Ry(A), W,(A), Ry(B), W,(B), Ry1(B), W4(B)

A

O

A B

r1(A); wi(A); r2(A); wa(A); r(B); wi(B); r2(B); wa(B)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 14

Review: Two-Phase Locking (2PL)

 Two-Phase Locking Protocol

— Each tr. must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

— A transaction can not request additional locks

once it re

— Ifatr. ho
can get a

Duke CS, Spring 2016

eases any locks.

ds an X lock on an object, no other tr.
ock (S or X) on that object.

CompSci 516: Data Intensive Computing Systems 15

Review: Strict 2PL

e Strict Two-phase Locking (Strict 2PL) Protocol:

— 2PL + All locks held by a transaction are released
when the transaction completes

e Strict 2PL allows only schedules whose
precedence graph is acyclic

* Can never allow cycles as the X locks are being
held by one tr

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 16

Strict 2PL and Conflict Serializability

e Strict 2PL allows only schedules whose
precedence graph is acyclic

* Can never allow cycles as the X locks are being
held by one transaction

* However, it is sufficient but not necessary for
serializability

* Relaxed solution: View serializability

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 17

View Serializability

* Schedules S1 and S2 are view equivalent if:

— If Tl reads initial value of A in S1, then T1 also reads initial
value of Ain S2

— If T1 reads value of A written by Tjin S1, then T1 also
reads value of A written by Tj in S2

— For all data object A, if T1 writes final value of Ain S1,
then T1 also writes final value of Ain S2

- Sisview serializable, if it is view equivalent to some
serial schedule

S1 S2

T1: R(A) W(A) T1: R(A),W(A)

T2: W(A) T2: W(A)

T3: W(A) T3: W(A)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 18

More on View Serializability

* Every conflict serializable schedule is view
serializable (check it yourself)

* But the converse may not be true

* If VS but not CS, would contain a “blind write”
(see below)

S1 S2
T1: R(A) W(A) T1: R(A),W(A)

T2: W(A) T2: W(A)

T3: W(A) T3: W(A)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

19

Lock Management

* Lock and unlock requests are handled by the lock
manager

* Locktable entry:
— Number of transactions currently holding a lock
— Type of lock held (shared or exclusive)

— Pointer to queue of lock requests (if the shared or exclusive lock
cannot be granted immediately)

* Locking and unlocking have to be atomic operations

e Lock upgrade: transaction that holds a shared lock can be
upgraded to hold an exclusive lock

* Transaction commits or aborts
— all locks released

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 20

Deadlocks

* Deadlock: Cycle of transactions waiting for
locks to be released by each other.

 Two ways of dealing with deadlocks:
— Deadlock detection
— Deadlock prevention

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

21

Deadlock Detection

Example:

T1: S(A), R(A), S(B)

T2: X(B),W(B) X(C)

T3: S(C), R(C) X(A)
T4: X(B)

Duke CS, Spring 2016 CompSci 516: Data Inte e Computing Sy stems

Deadlock Detection

1. Create a waits-for graph:
— Nodes are transactions

— Thereisanedge fromT1 to Tjif T1is waiting for Tj to releasea
lock

* Periodically check for cycles in the waits-for graph
 Abort atransaction on a cycle and release its locks, proceed
with the other transactions
— severalchoices
— one with the fewest locks
— one has donethe least work/farthestfrom completion
— if beingrepeatedlyrestarted, should be favored at some point

2. Use timeout, if long delay, assume (pessimistically) a
deadlock

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 23

Deadlock Prevention

* Assign priorities based on timestamps
e Assume T1 wants a lock that Tj holds. Two policies are
possible:

— Wait-Die: It T1 has higher priority, T1 waits for Tj;
otherwise T1 aborts

— Wound-wait: If T1 has higher priority, Tj aborts; otherwise
T1 waits

- Convince yourself that no cycle is possible

e |f a transaction re-starts, make sure it has its original
timestamp

— each transaction will be the oldest one and have the
highest priority at some point

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 24

Multiple-Granularity Locks

* Hard to decide what granularity to lock
(tuples vs. pages vs. tables).

e Shouldn’t have to decide!

e Data “containers” are nested:

Database

_ Tables
contains

Pages

Tuples

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

