CompSci 516
Data Intensive Computing Systems

Lecture 21 (b)
NoSQL

(and Column Store)

Instructor: Sudeepa Roy

CompSci 516: Data Intensive Computing

Duke CS, Spring 2016
Systems

Column Store

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Row vs. Column Store

Row store

— storeall attributes of a tuple together

— storage like “row-major order” in a matrix
Columnstore

— storeall rows for an attribute (column) together

— storage like “column-majororder”in a matrix
e.g.

— MonetDB, Verica (earlier, C-store), SAP/Sybase |1Q, Google Bigtable
(with column groups)

Optional reading:
— VLDB 2009 tutorial (linkon course webpage)
— onlya few slides are taken from that tutorial in this lecture

Focse pessilad when scknowiedging the origind © Stawos Hr2opodos, Daslel Abed, Peter Bonez (2000)

What is a column-store?

row-store column-store

=== LU

+ easy to add/modify a record + only need to read in relevant data

- might read in unnecessary data - tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, larae data renositories
Ack: Slide from VLDB 2009 tutorial
on Column store

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 4

Focse pessilad when acknowiedgieg the orgind © Shaeos Hrzopouos, Daslel Abed, Peter Bonez (2000)

Telco Data Warehousing example

1 Typical DW installation | dimension tables

1 Real-world example

“One Size Fits All? - Part 2: Benchmarking
Results™ Stonebraker et al. CIDR 2007

QUERY 2
SELECT account.account_number,
sum (usage.toll_airtime),
sum (usage.toll_price)
FROM usage, toll, source, account
WHERE usage.toll_id = tolltoll_id
AND usage.source_id = source.scurce_id
AND usage.acoount_id = account.account_id
AND wiltype_ind In ("AE". “AA")
AND usage.toll_price >0
AND source.type != ‘CIBER’
AND wilrating_method = ‘IS’
AND usage.invoice_date = 20051013
GROUP BY accountaccount_number

usage source

star schema

Column-store Row-store

Query 1 2.06
Query 2 2.20
Query 3 0.09
Query 4 5.24
Query 5 2.88

Why? Three main factors (next slides)

Ack: Slide from VLDB 2009 tutorial
on Column store

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 5

Fowse pesslled when scknowiedgieg the orgind © Shawos Har2opodos, Daslel Abed, Peter Bonez (2000)

Telco example explained (1/3):

read efficlency
row store

read pages containing entire rows
one row = 212 columns!

is this typical? (it depends)

What about vertical partitioning?
(it does not work with ad-hoc
_Hapasl

Duke CS, Spring 2016

column store

read only columns needed

in this example: 7 columns

caveats:
“select * " not any faster
clever disk prefetching
clever tuple reconstruction

Ack: Slide from VLDB 2009 tutorial on
Column store

CompSci 516: Data Intensive Computing systems b

Ro-cse pessillad when scknowiedging the torigind © Staw s Har2opodos, Dastel Abed, Peter Bonez (2000)

Telco example explained (2/3):
compression efficlency

1 Columns compress better than rows
. Typical row-store compression ratio 1:3
. Column-store 1 : 10

1 Why?
. Rows contain values from different domains
=> more entropy, difficult to dense-pack
. Columns exhibit significantly less entropy

Examples: Male, Female, Female, Female, Male
1998, 1998, 1999, 1999, 1999, 2000

. Caveat: CPU cost (use lightweight compression)

Ack: Slide from VLDB 2009 tutorial on

Column store
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing systems /

Ro-ce pessilad when scknowiedging the origind © Staeos Hr2opodos, Dastel Abed, Peter Boncz (2000)

Telco example explained (3/3):
sorting & Indexing efficlency

1 Compression and dense-packing free up space
Use multiple overlapping column collections
. Sorted columns compress better
Range queries are faster

Use sparse clustered indexes

What about heavily-indexed row-stores?
(works well for single column access,

Ack: Slide from VLDB 2009 tutorial on
Column store

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 8

NoSQL

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Reading Material: NoSQL

Main:
1. “Scalable SQL and NoSQL Data Stores”
Rick Cattell, SIGMOD Record, December 2010 (Vol. 39, No. 4)

Optional:

2. “Dynamo: Amazon’s Highly Available Key-value Store” By
Giuseppe DeCandia et. al. SOSP 2007

3. “Bigtable: A Distributed Storage System for Structured Data”
Fay Chang et. al. OSDI 2006

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 10

So far -- RDBMS

 Relational Data Model
* Relational Database Systems (RDBMS)
e RDBMSs have

— a complete pre-defined fixed schema
— a SQLl interface

— and ACID transactions

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

11

Today

* NoSQL: "new” database systems
— not typically RDBMS

— relax on some requirements, gain efficiency and
scalability

— new systems choose to use/not use several

concepts we learnt so far

* e.g. System X does not use locks but use multi-version
CC (MVCCQC)or,

* System Y uses asynchronous replication

— therefore, it is important to understand the basics
(Lectures 1-20) even if they are not used in some
new systems

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 12

Warnings!

 Material from Cattell’s paper (2010-11) —
some info will be outdated

 \We will focus on the basic ideas of NoSQL
systems

* Optional reading slides
— posted on the webpage
— a few slides on MongoDB too (in HW5)

— there are also comparison tables in the Cattell’s
paper though if you are interested

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

13

New Systems

e We will examine a number of SQL and so- called
“NoSQL” data stores

— designed to scale simple OLTP-style application loads
in contrast to traditional DBMSs and data warehouses

— aside: OLAP vs. OLTP?

— to provide good horizontal scalability for simple
read/write database operations distributed over many
servers

— Originally motivated by Web 2.0 applications, these
systems are designed to scale to thousands or millions
of users

— To do updates as well as reads

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 14

New Systems vs. RDMS

* Contrast the new systems with RDBMS on their
— data model
— consistency mechanisms
— storage mechanisms
— durability guarantees
— availability
— query support
— and other dimensions.

 These systems typically sacrifice some of these
dimensions

— e.g. database-wide transaction consistency, in order to
achieve others, e.g. higher availability and scalability

NoSQL

* Many of the new systems are referred to as
“NoSQL” data stores

 NoSQL stands for “Not Only SQL” or “Not
Relational”

— not entirely agreed upon

e Next: six key features of NoSQL systems

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

16

NoSQL: Six Key Features

1. the ability to horizontally scale “simple operation”
throughputover many servers

2. the ability to replicate and to distribute (partition) data over
many servers

3. asimplecall level interface

a weaker concurrency model than the ACID transactions of
most relational (SQL) database systems

5. efficientuse of distributed indexes and RAM for data storage

the ability to dynamically add new attributes to data records

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 17

Important Examples of New Systems

* Memcached
— popularopen source cache
— supportsdistributed hashing

— demonstratedthatin-memoryindexes can be highlyscalable,
distributingand replicatingobjects over multiple nodes

* Dynamo

— pioneered theidea of eventual consistency as a way to achieve higher
availability and scalability

— datafetched are not guaranteed to be up-to-date, but updates are
guaranteed to be propagatedto all nodes eventually

 Google’sBigTable

— demonstratedthat persistentrecord storage could be scaled to
thousands of nodes

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 18

BASE (not ACID ©)

* Basically Available, Soft state, Eventually
consistent

e Recall ACID for RDBMS desired properties of
transactions:
— Atomicity, Consistency, Isolation, and Durability

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 19

ACID vs. BASE

* Theideais that by giving up ACID constraints, one
can achieve much higher performance and scalability

 The systems differ in how much they give up

— e.g. most of the systems call themselves “eventually
consistent”, meaning that updates are eventually
propagated to all nodes

— but many of them provide mechanisms for some degree of
consistency, such as multi-version concurrency control
(MVCC)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 20

“CAP” Theorem

e Often Eric Brewer’s CAP theorem cited for NoSQL

* Asystem can have only two out of three of the following
properties:

— Consistency,
— Availability
— Partition-tolerance

* The NoSQL systems generally give up consistency

— However, the trade-offs are complex

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 21

“Simple” Operations

* Reading or writing a small number of related records in
each operation

— e.g. key lookups, reads and writes of one record or a small
number of records

* This is in contrast to complex queries or joins

* |nspired by web, where millions of users may both read
and write data in “simple database operations”
— e.g. applications may search and update multi-server
databases of electronic mail, personal profiles, web

postings, wikis, customer records, online dating records,
classified ads, and many other kinds of data

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 22

Horizontal Scalability

* Shared-Nothing Horizontal Scaling

* The ability to distribute both the data and the load of
these simple operations over many servers

— with no RAM or disk shared among the servers

I”

* Not “vertical” scaling

— where a database system utilizes many cores and/or CPUs
that share RAM and disks

 Some of the systems we describe provide both vertical
and horizontal scalability

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 23

End of lecture 21

Horizontal vs. Vertical Scaling

e Effective use of multiple cores (vertical scaling) is
Important

— but the number of cores that can share memory is
limited

* horizontal scaling generally is less expensive
— Cdn use commodity servers

* Note: horizontal and vertical partitioning are not
related to horizontal and vertical scaling

— except that they are both useful for horizontal scaling
(Lecture 19)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 24

In Lecture 22 — up to end

What is different in NOSQL systems

Points how NOSQL systems differ from each otherand from RDBMSs:

Concurrency Control
a) Locks
b) MVCC

c) None (do not provide atomicity)

d) ACID (pre-analyze transactions to avoid conflicts)
Data Storage Medium

a) Storage in RAM —snapshots or replication to disk

b) Disk storage — caching in RAM
Replication—whether mirror copies are alwaysin sync

a) Synchronous

b) Asynchronous (faster, but updates may be lost in a crash)

c) Both (local copies synchronously, remote copies asynchronously)
Transaction Mechanisms

a) support

b) do not support

c) in between — support local transactions only within a single object or shard

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 25

Data Model Terminology for NoSQL

Unlike SQL/RDBMS, the terminology for NoSQL is often
Inconsistent

— we arefollowingnotationsin Cattell’'s paper

All systems provide a way to store scalar values
— e.g. numbers and strings

Some of them also provide a way to store more complex
nested or reference values

The systems all store sets of attribute-value pairs

— butuse different data structures

Next:
1. Tuple
2. Document

3. Extensible Record
4. Object

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 26

1. Tuple

e same as before

A “tuple” is arow in a relational table
— attribute names are pre-definedin a schema
— the values must be scalar
— the values are referenced by attribute name

— in contrast to an array or list, where they are
referenced by ordinal position

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

27

2. Document

 Allows values to be nested documents or lists
as well as scalar values

* The attribute names are dynamically defined
for each document at runtime

* A documentdiffers from a tuple in that the
attributes are not defined in a global schema

— and a wider range of values are permitted

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

28

3. Extensible Record

* A hybrid between a tuple and a document
— families of attributes are defined in a schema

— but new attributes can be added (within an
attribute family) on a per-record basis

— Attributes may be list-valued

4. Object

* Analogous to an objectin programming
languages

— but without the procedural methods

* Values may be references or nested objects

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

30

Data Store Categories

The data stores are grouped according to their data model

Key-value Stores:

— store valuesandan indexto find them, based on a programmer-
defined key

Document Stores:

— store documents-- The documents are indexed and a simple
guery mechanismis provided

Extensible Record Stores:

— These systems store extensiblerecords that can be partitioned
vertically and horizontally across nodes

— Some papers call these “wide column stores”
Relational Databases:

— These systemsstore (and index and query) tuples
— e.g. the new RDBMSs that provide horizontal scaling

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 31

Duke CS, Spring 2016

SQL vs. NOSQL

Still, a controversial topic

CompSci 516: Data Intensive Computing Systems

32

Advantages: RDBMS

1. If new relational systemscan do everything that a NoSQL system
can, with analogous performance and scalability, and with the
convenience of transactions and SQL, why would you choose a
NoSQL system?

2. Relational DBMSs have taken and retained majority market share
over other competitorsin the past 30 years: network, object, and
XML DBMSs

3. Successfulrelational DBMSs have been built to handle other
specific application loadsin the past:

— read-onlyorread-mostly data warehousing
— OLTP on multi-core multi-disk CPUs

— in-memorydatabases

— distributed databases, and

— now horizontally scaled databases

4. While we don’tsee “one ssize fits all” in the SQL products
themselves, we do see a common interface with SQL,
transactions,and relational schema that give advantagesin
training, continuity, and data interchange

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 33

Advantages: NOSQL - 1

1. We haven’tyet seen good benchmarks showing that
RDBMSs can achieve scaling comparable with NoSQL
systems like Google’s BigTable

2. If youonlyrequire a lookup of objects based on a single key

— then a key-value store is adequate and probably easier to understand than a
relational DBMS

— Likewise for a document store on a simple application: you only pay the
learning curve for the level of complexity you require
3. Some applicationsrequire a flexible schema

— allowing each object in a collection to have different attributes

— While some RDBMSs allow efficient “packing” of tuples with missing
attributes, and some allow adding new attributes at runtime, this is
uncommon

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

34

Advantages: NOSQL - 2

4. A relational DBMS makes “expensive” (multi- node
multi-table) operations “too easy”

— NoSQL systems make them impossible or obviously expensive for
programmers

5. While RDBMSs have maintained majority market
share over the years, other products have
established smaller but non-trivial markets in areas

where there is a need for particular capabilities

— e.g. indexed objects with products like BerkeleyDB, or graph-following
operations with object-oriented DBMSs

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 35

