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Announcements

e HWS5 released (last onel)
— Due on 04/20
— No extension

* No class on Thursday 04/14

— Make-up lecture on Monday 04/18, 4:30-5:45 pm, LSRC
A247 (different room, same building, A-wing)

— If you cannot make it —slides will be posted, or come to my
office later

* We will do an optional review session before the final
— will poll for topics to be reviewed on piazza and the date
— material will be posted
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Advanced Topics/Research Areas

* Lecture 21:
— Datalog, NOSQL
e Lecture 22 (today 04/07):

— Data Warehouse, OLAP, Data Cube
e Pipehash algorithm at the end (fromslide 54) is optional

* Lecture 23 (04/12, Tues):

— Data Privacy
— Guest lecture by Xi He

* Lecture 24 (04/18, Mon):

— View selection

— overview of Crowdsourcingin Databases, Data Integration, Data
Cleaning, Incomplete Data and repairs, uncertain data, ...

* Lecture 25 (04/19, Tues):

— Datamining and association rule mining
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Data Warehousing
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Reading Material

e Optional:
— (To be added)
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Introduction

* Organizations analyze current and historical data
— to identify useful patterns
— to supportbusiness strategies

 Emphasis is on complex, interactive, exploratory
analysis of very large datasets

* Created by integrating data from across all parts of an
enterprise

* Data is fairly static

* Relevant once again for the recent “Big Data analysis”
— to figure out what we can reuse, what we cannot
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Three Complementary Trends

 Data Warehousing (DW):
— Consolidatedata from manysourcesin one large repository
— Loading, periodic synchronization of replicas
— Semanticintegration

* OLAP:
— ComplexSQL queries and views.

— Queries based on spreadsheet-style operationsand
“multidimensional” view of data.

— Interactive and “online” queries.
* Data Mining:

— Exploratorysearch forinteresting trends and anomalies
— Another lecture!
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Data Warehousing

* A collection of decision support technologies

 To enable peopleinindustry/organizationsto make better
decisions
— Supports OLAP (On-Line Analytical Processing)
e Applicationsin
— Manufacturing
— Retail
— Finance
— Transportation
— Healthcare

e Typically maintained separately from “Operational Databases”
— Operational Databases support OLTP (On-Line Transaction Processing)
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OLTP

Data Warehousing/OLAP

Applications:
Order entry, sales update,
bankingtransactions

Applications:
Decision supportinindustry/organization

Detailed, up-to-date data

Summarized, historical data
(from multiple operational db, grows over
time)

Structured, repetitive, short tasks

Query intensive, ad hoc, complex queries

Each transactionreads/updates
only a few tuples (tens of)

Each querycan accesses many records, and
perform manyjoins, scans, aggregates

Important:

Consistency, recoverability,
Maximizingtransaction
throughput

Important:
Query throughput
Responsetimes
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Data Marts

* Data marts
— subsets of data on selected subjects

— e.g. Marketing data mart can include customer,
product, sales

— Department-focused, no enterprise-wide
consensus heeded

— But may lead to complex integration problems in
the long run



ROLAP and MOLAP

e Relational OLAP (ROLAP)
— On top of standard relational DBMS
— Data is stored in relational DBMS

— Supports extensions to SQL to access multi-
dimensional data

 Multidimensional OLAP (MOLAP)

— Directly stores multidimensional data in special
data structures (e.g. arrays)



Data Warehousing e aTA

to Mining D D

* Integrated data spanning ——
long time periods, often TRANSFORM
augmented with summary LOAD
. . REFRESH
information

* Several gigabytes to : .
terabytes common Mo DATA
* Interactive response Repository WAREHOUSE

: e
times expected for

complex queries; ad-hoc T

updates uncommon »

DATA OLAP
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Warehousing Issues

* Semantic Integration: When getting data from
multiple sources, must eliminate mismatches

— e.g., different currencies, schemas

* Heterogeneous Sources: Must access data from a
variety of source formats and repositories

— Replication capabilities can be exploited here

* Load, Refresh, Purge: Mustload data, periodically
refresh it, and purge too-old data

 Metadata Management: Must keep track of source,
loading time, and other information for all data in the
warehouse
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DW Architecture

Extract data from multiple
operational DB and external
sources

Clean/integrate/transform/store

refresh periodically Monkoring & Admmisrai
— update baseand derived data Repository
— admin decides when and how > Data Warehouse
el | Transform il
Load Tl
Operational Refresh e Serve
Main DW and several data marts % V2 L 5y
(pOSSibly) Dati_;urccs BBB
Data Marts Tools
Managed by one or more servers Figure 1. Data Warehousing Architecture

and front end tools

Additional meta data and
monitoring/admin tools
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ROLAP: Star Schema

e To reflect multi-dimensional
views of data

e Single facttable
e Single table for every dimension

 Eachtuplein the fact table
consists of

— pointers (foreign key) to each
of the dimensions (multi-
dimensional coordinates)

— numericvalue forthose
coordinates

e Eachdimensiontable contains

Order
OrderNo
OrderDate
Fact table
Customer OrderNo
CustomerNo SalespersonlD
CustomerName I()m;?qifm
CustomerAddress| > | 00
City DateKey
CityName
Salesperson Quantity
SalespesonName /
City
Quota

<— Date

ProdNo
ProdName
ProdDescr
Category
CategoryDesct|
UnitPrice
QOH
Date

DateKey

Month
Year

City

Figure 3. A Star Schema.

CityName
State
Country

No support for attribute
Duke (?S.,tgprr!l!:g) %‘I-G)es Of that dime@o?nipgcﬂl& Data Intbw!@@(pgmg gé(ems
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Dimension Hierarchies

 For each dimension, the set of values can

be organized in a hierarchy:

PRODUCT TIME
year
q uaIrter
category Week/ m\onth

~

pname date
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ROLAP: Snowflake Schema

Refines star-schema

Dimensional hierarchy s
explicitly represented

(+) Dimension tables easier

to maintain

— suppose the “category
description is being changed

(-) De-normalized structure
— may be easier to browse

Fact Constellations

— Multiple fact tables share
some dimensional tables

— e.g. Projected and Actual
Expenses may share many
dimensions

Duke CS, Spring 2016

Order Category
ProdN
OrderNo ﬁme CategoryName
OrderDate 4 CategoryDescr
Fact table FrodDescr
P Category
Customer OrderNo UnitPrice
CustomerNo SalespersonID QOH
CustomerNo
CustomerName
CustomerAddress ’ %Y Date Month  Year
. ityName
City ProdNo «{DateKey _ [ Month
Quanti Date ~ Year
Salesperson TotalPrti)::e Month
SalespersonID Ci
SalespesonName / ity State
City CityName
Ouota 7 State il
Figure 4. A Snowflake Schema.
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OLAP Queries

* Influenced by SQL and by spreadsheets.

* Acommon operation is to aggregate a measure
over one or more dimensions.
— Find total sales.
— Find total sales for each city, or for each state.
— Find top five products ranked by total sales.

* Roll-up: Aggregating at different levels of a
dimension hierarchy.

— E.g., Given total sales by city, we can roll-up to get
sales by state.
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OLAP
and
Data Cube
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Sales (Model, Year, Color, Units)

Motivation: OLAP Queries

e Data analysts are interested in exploring trends and
anomalies

Possibly by visualization (Excel) - 2D or 3D plots

“Dimensionality Reduction” by summarizing data and computing
aggregates

Influenced by SQL and by spreadsheets.

A common operationisto aggregate a measure over one or more
dimensions.

* Find total unit sales for each

B w N e

5.

Model
Model, broken into years
Year, broken into colors

Year
Model, broken into color, ....
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Sales (Model, Year, Color, Units)

Naive Approach

Run a number of queries ]
Total Unit sales

SELECT sum(units)
FROM Sales

SELECT Color, sum(units) ’
FROM Sales '

GROUP BY Color

SELECT Year, sum(units)
FROM Sales
GROUP BY Year

SELECT Model, Year, sum(units)
FROM Sales C

Model

GROUP BY Model, Year > olor
Year
e Data cube generalizes Histogram, Roll-Ups, *  How many sub-queries?
Cross-Tabs .
* More complex to do these with GROUP-BY * How manysub-queries for

8 attributes?
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Sales (Model, Year, Color, Units)

Histograms

A tabulated frequency of computed values

SELECT Year, COUNT (Units) as total
FROM Sales

GROUP BY Year
ORDER BRY Year

total ->

Year ->

May require a nested SELECT to compute



Sales (Model, Year, Color, Units)

Roll-Ups

Analysis reports start at a coarse level,

) Roll-ups
go to finer levels >
Order of attribute matters < :
: Drill-downs
Not relational data (empty cells no
GROUPBY
keys)
/l\
Model Year Color Model, Year, Color Model, Year Model
Chevy 1994 Black 50
Chevy 1994  White 40
90
Chevy 1995 Black 115
Chevy 1995  White 85
200

290




Sales (Model, Year, Color, Units)
Roll-Ups
 Anotherrepresentation(Chris Date’96)
 Relational, but

— long attribute names

— hard to expressin SQL and repetition

GROUP BY
_— [

Model Year Color Model, Year, Color MY(;:(:I’ Model

Chevy 1994 Black 50 90 290

Chevy 1994  White 40 90 290

Chevy 1995 Black 85 200 290

Chevy 1995 Black 115 200 290




Sales (Model, Year, Color, Units)

‘ALL’ Construct

Easier to visualize roll-up if allow ALL to fill in the super-aggregates

SELECT Model, Year, Color, SUM(Units)

FROM Sales Model Year Color Units
WHERE Model = ‘Chevy’
GROUP BY Model, Year, Color Chevy 1994 Black 50
UNION
SELECT Model, Year, ‘ALL’, SUM(Units) Chevy 1994 White 40
FROM Sales
WHERE Model = ‘Chevy’ Chevy 1994 ALL 90
GROUP BY Model, Year
UNION Chevy 1995 Black 85
UNION Chevy 1995 White 115
SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Units)
FROM Sales Chevy 1995 ‘ALL 200

WHERE Model = ‘Chevy’;
Chevy ‘AL ‘ALL 290




Sales (Model, Year, Color, Units)

Traditional Roll-Up ‘ALL’ Roll-Up
Model Year Color Model, Year, Color Model, Year Model Model Year Color Units
Chevy 1994  Black 50 Chevy 1994 Black >0
Chevy 1994 White 40
Chevy 1994 White 40
Chevy 1994 ‘ALL 90
90
Chevy 1995 Black 85
Chevy 1995  Black 115
Chevy 1995 White 115
Chevy 1995 White 85
Chevy 1995 ‘ALL 200
200
Chevy ‘ALL ‘ALL 290
290

* Roll-upsareasymmetric



Sales (Model, Year, Color, Units)

Cross Tabulation

If we made the roll-up symmetric, we would get a cross-tabulation
Generalizes to higher dimensions

SELECT Model, ‘ALL’, Color, SUM(Units) Chevy 1994 1995 Total (ALL)
FROM Sales
WHERE Model = ‘Chevy’ Black 50 85 135
GROUP BY Model, Color
White 40 115 155
Total (ALL) 90 200 290

Is the problem solved with Cross-Tab and GROUP-BYs with ‘ALL?
 Requiresalot of GROUP BYs (64 for 6-dimension)
 Toocomplexto optimize (64 scans, 64 sort/hash, slow)



Sales (Model, Year, Color, Units)

Data Cube: Intuition

SELECT ‘ALL’, ‘ALL’,
FROM Sales

UNION

SELECT *‘ALL’, ‘ALL’,
FROM Sales

GROUP BY Color
UNION

SELECT ‘ALL’, Year,
FROM Sales

GROUP BY Year

UNION

SELECT Model, Year,
FROM Sales

GROUP BY Model, Year

UNION

Duke CS, Spring 2016

‘ALL',

Color,

‘ALL",

‘ALL',

Total Unit sales

sum (units)

sum (units) ' ‘

O
©
, o
sum (units) :E
sum (units) Year
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Data Cube

duy
=7

g

Product Mgr. View Regional Mgr. View

°
t
©

/.

1)

Financial Mgr. View Ad Hoc View

Ack: from slides by Laurel Orr and Jeremy Hyrkas, UW



Data Cube

Computesthe aggregate on all possible combinations of
group by columns.

If there are N attributes, there are 2N-1 super-aggregates.

If the cardinality of the N attributesare C,,..., Cy, then there
are a total of (C;+1)...(Cy+1) values in the cube.

ROLL-UP is similar but just looks at N aggregates



Sales (Model, Year, Color, Units)

Data Cube Syntax

e SQL Server

SELECT Model, Year, Color, sum(units)
FROM Sales

GROUP BY Model, Year, Color

WITH CUBE



Types of Aggregates

Distributive: input can be partitioned into disjoint sets

and aggregated separately
o COUNT, SUM, MIN

Algebraic: can be composed of distributive aggregates
o AVG

Holistic: aggregate must be computed over the entire
input set
o MEDIAN

e Efficient computation of the CUBE operator dependson
the type of aggregate

— Distributive and Algebraicaggregates motivate optimizations



“Lattice” Framework for Data Cube

Can model group-by queries well

— Users typically go along the edges pSC
— Drill-down (going up) and Roll-up (going down) T —— 6M
along a path e e
- 1
The order of “materializing views”: PC6M DS 0.8M SC ¢
— Suppose a set S of views has to be o - _="1
materialized ll //’x"': ~~~~~ ol i
— We do not need to go to raw data to L " “heaa
materialize every view Po0.2M S 0.01M c “01M
— “Topological order” sort in S (first all "‘*\\ \ /,—*"' (size)
ancestors are materialized, then a node is ‘“~~\‘5/,—*"
materialized
) none 1

— Then, materialize from the smallest ancestor

— e.g. materializing s from ps needs to read 0.8
M, but from sc needs to read 6M tuples

However, further consideration:
— sorted order of ancestors
— pipeline or not — see the pipesort algo

More on View selection in Lecture 24
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Hierarchies

 Some dimensions (attributes) are organized in hierarchies

* Shouldbe considered while deciding materialization of views

Hierarchy of time attributes

Day
o Month
Week i
\\ 1
Functional dependencies-.. Y '
ear
Month -> Year s, . !
) “ -
1 _> 2 1 \\\ ”’f
(Jan 5) 015 - R0||_up
none

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems
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Combining Two Hierarchical Dimensions

part (p):
size(z), type(t) )

lattice structure between part (p) and customer (c)

without hierarchy

¢
N

none

customer (c):
nation(n)

C
I
I
I
I
n
i
]

Duke CS, Spp CompSci 516:
o

How can we extend the lattice structure to include the
hierarchy for parts + hierarchy for customers?

Solution: use product lattice

pC

~
/' S
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Combining Two Hierarchical Dimensions

part (p): cp
. ”»
size(z), type(t : - N
(), type(t)  piract Product Lattice AN
4 >
E * Select onelattice, say forp « ™
S . . . .
RN, e Combineitwith each valueinthe €2 ct
s > ) >, /’
i M hierarchy ofc .. /
S ’
Z t nAp s,
. . Y
\\\ 4! 4 // \\ c
S % // S
N/ ’ \\
none nz nt
\\ ,/
\\ ¢
P My /'
customer (c): s SN
. >
nation(n) < M, n
// \\\
¢ i t
1 o .
: \\\ ,/l
1 S 4
\\ ,l
n RN
| none

Duke CS, Spﬁr@ﬁ)@ CompSci 516: Data Intensive Computing Systems
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Combining Two Hierarchical Dimensions

part (p):
size(z), type(t)

none
customer(c):
nation(n)

C
I
I
I
I

n
i
]

Duke CS, Spﬁ'@ﬁ)éﬁ

cp

Then add edges from
the hierarchy of c

: ct
 With the same value of p, z, t i
//
S
\\‘\ //
C
y t
N Va
\\\\ //
~ ¢
\\ Vi
>N
none
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Combining Two Hierarchical Dimensions

part: cp

size(z), type(t)

Complete A
P Direct Product Lattice
Z t
\\\\\ ,l’/’
\\\ ,/
SN
none
customer: o~
nation(n) o
c yA t
1 . "
1 \\
1 >
1 ‘\\
n \\‘\/
i non
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Implementing Data Cube

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems
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Basic Ideas

Compute GROUP-BYs from previously computed GROUP-BYs
— e.g. ABCDto (ABCor ACD) to (AB or AC) ...

Which order ABCD is sorted, matters for subsequent

computations
— if (ABCD) is the sorted order, ABCis cheap, ACD or BCD is expensive

Next, some generic optimizations



Optimization 1: Smallest Parent

+ Compute GROUP-BY from A RS
the smallest (size) A{”" é’ c \\D
previously computed I e T
GROUP-BY as a parent Pt W e S
AB‘ :\A'c ~~~~~~ AD‘(:/ C\;; /E;E\ P ;D
— AB can be computed from RN e e g
ABC, ABD, or ABCD ABC ABD ACD  BCD
— ABC or ABD better than ABCD o A
— Even ABC or ABD may have ABCD
differentsizes, try to choose
the smaller parent
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 41



Optimization 2: Cache Results

all
* Cache result of one GROUP- A R
1 a"” 4 \\ NNNN\
BY in memory to reduce - ‘ > -
. A B C D
disk I/O e e T BEL_-WR
I I St Ll ST
— Compute AB from ABC while P Y S e O e R
ABC is stillin memory AB AC AD BC  BD CD
‘~~ . A”’ : "’7*; —’a
\\\~“~'. - ”,~ ,.~~\\><,—’ \\"*a’ R4
\\q",f’.—.~~~."’,f’ ~~\~V”” \\\*///
ABC ABD ACD BCD
S A 2 LT =T 4
L ENC IRl
ABCD
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Optimization 3: Amortize Disk Scans

all
e Amortize disk reads for e TA R
. ”,f’ ’/ \\ ~~~~~
multiple GROUP-BYs ‘ ‘ . ~~
A B C D
— Supposetheresult for ABCD ,;m\-\x,,/7"1:..::'?,&:&,:—71&\
. . - > ’f" So : : ~*§~
is stored on disk Pt W e SN SN
— Compute all of ABC, ABD, AB AC AD  BC '},E ;D
H : Bou. TNl *:’ —1 o oy
ACD, BCD simultaneouslyin RN TP A PP T T
s o el 7 P S i N W4
\q‘,f - .‘4” ~~V¢’ \w

one scan of ABCD

-_—
----
-
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Optimization 4, 5 (next)

all
* 4. Share-sort T R
. f”” /’ \\ ~~~N~
— for sort-based algorithms A B ~,C§ la?
H : ~ e ‘"\“s - Ss =" TR
— pipe-sortalgorithm /,”'f et _SRELLL \’,\s\\
. /’f” \ ’ff’v~~~ ’,—’ Sy ~~~‘~I ~~~A
— coveredin class -
AB  AC AD BC  BD CD
“Lattice” Frameworkﬁgr.Datﬂ‘Cube.Jy TR e
g A
e 5. Shared-partition ABC  ABD  ACD  BCD
. ) LTy A 2 A - 4
— for hash-based algorithms BRGNP Sty
ABCD

— pipe-hashalgorithm

— not covered - optional
slides atthe end

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 44



P i peSO rt : | d ea i°n tlhr;zicif parenthesis (...): tuples sorted

No parentiesis: order can be arbitrary

(A)
A
Combine two optimizations: “shared- (AB)
sorts” and “smallest-parent” i
(ABC)
(ABCD)

Also include “cache-results” and
“amortized-scans”

— Compute one tuple of ABCD, propagate upward in
the pipeline by a single scan



PipeSort: Share-sort optimization

Data sorted in one order (A
Compute all GROUP-BYs prefixed in that order
Example: (A?B)
—  GROUP-BY over attributes ABCD (AléC)
— Sortraw data by (ABCD) 4

— Compute (ABCD)-> (ABC) -> (AB) -> (A) in pipelined fashion
No additional sort needed

BUT, may have a conflict with “smallest-parent”
optimization
— ABD-> AB could be a better choice

— Figure out the best parent choice by runninga weighted-
matchingalgorithm layer by layer



* No parenthesis: order of

Sea rC h La ttice tuples can be arbitrary

Directed edge => one attribute all Level 0
less and possible computation

Level k contains k attributes A B C D Level 1

— all=0 attribute /;“\:}('/7:?2\:::"?:: *::’?R\
Two possible costs for each A NP SRt i v N
edge e; =i --->] Ali:\ A"*C‘ ~~~~~ AD‘:/‘Q% :\/E[k); B ;D Level 2
A(e;): i is sorted for \:I::»::: h ::;-?:‘;;;,:h:j{, o
S(e;): iis NOT sorted for ABC ABD ACD  BCD Level 3

N A
Dat’
Sorted Not Sorted ABCD Level 4
sum sum

al |bl |cl |5 a2 |b2 |[c3 |11
al |bl |c2 |10 al |[bl |c2 |10 sum
al |b2 |c3 |8 a2 b2 |cl1 |2 :> al |bl |15
a2 (b2 |cl |2 al |bl |cl |5 al (b2 |8
a2 (b2 |[c3 |11 al |[b2 [c3 |8 a2 |[b2 |13




Sorted (A)

Not-Sorted (S) === Plpesort OUtpUt

A subgraph O

-—=

— each node has a single parent

- each node has a sorted order of

attributes

if parent’s sorted order is a prefix, cost =
A(ej), else S(ey)
— Mark by Aor S
— At most one A-out-edge

- Note: for some nodes, there may be

no green A-out-edge

Goal: Find O with min total cost

Sorted
sum
al (bl |cl |5
al | bl |c2 |10
al |b2 |c3 |8
b (a2 | b2 |cl |2
a2 | b2 [c3 |11

all Level O
P 7 A y-\v\ §
f”’ l,, \\\ ~~~~~~
A 7B D Level 1
,7"\-\:><: - “S"‘ m><‘%
I’,//*\\—": ': ~’,:“’ Ss 4 ~~~\
AB AC 3C BD CD Level 2
W :\2 - :,,R;*";ﬂ
\\i;a "~~¢,:‘ ‘:g - "\\v/
ACB ABD ACD BDC Level 3
<~~__ “.\“,—/Z—__—?
Not Sorted ACBD Level 4
sum
a2 | b2 |c3 |11
al (bl |[(c2 |10 sum
a2 |b2 |c1 |2 :> al |bl |15
al |bl |(cl1l |5 al |b2 |8
al (b2 |[c3 |8 a2 | b2 |13




Outline: PipeSort Algorithm (1)

all Level O
- ”’7;‘ R\F\‘\*
Go from level O to N-1 e S N T
_ _ A B C D Level 1
here N =4 ”"\x"/?‘"‘?‘:/»'ﬁ\ =
. ¢ NSl TN <:" Ssuo \\
For each level k, find the best - et Dof™ el 77,
way to construct it from levelAB  AC ~ AD B BD D level2
k+1 N e B
s | S I DS Al Y W
SeT TNa LT TS Y
— use “min-cost weighted ABC ABD ACD  BCD Level 3
bipartite matching” (known algo) R L S, P ny e >
. Bipartite graph ABCD Level 4¢
. vertices U, V
. edges E with cost Here V is large enough so that
. choose a set of edges every vertex in U has a match
with min cost from E such that (a parent node)

each vertexis matched with at
most one vertex



Outline: PipeSort Algorithm (2)

A weighted bipartite all Level 0
. P 4 R .
matching between level k P AR N
" 4 \\ ~~\~
and k+1 A B C D Level 1
. b2/, 2 ’a”7‘~\;“¢:"im~~&”’,h§\
Make k new copies of each e S SN i Y
nodein level k+1 B AC D BC BD  CD L evel 2
—  k+1 copies for each in total ‘f:;\_f ~~~~~ w ,:—\1"7"1(—*’7
RN Bl o P A Y
— replicate edges N . N
.. ABC ABD ACD BCD level 3
Original copy = cost A(e;) = W*—
sorted ABCD H Level 4¥
—  sorted order of i fixed
according to Make new 2 copies

. Total 3 copies each
New copies = cost S(g;) =

not sorted

— need tosorti for j



Outline: PipeSort Algorithm (3)

* Illustration with a smaller example j)‘L Level O
a” 1 \\x\\
e Levelk=1fromlevelk+1 =2 et ". s
— one new copy (dotted edges) 'i_ E; 7CA Level 1
— one existing copy (solid edge) L’::;‘:::: \::x:,: “‘
. . . . Sae” at
* Assumption for simplicity AB AC BC | evel 5
—  same cost for all outgoing edges 2, 10\:\\ > 12’-“ 13, 29
> 1 Ky
- Aley) = Aley) R Level 3
- S(eij) = S(eij') \\ll /’
N7
ABC
A N 4 \ N;/VB/
: BC AB \ AB AC AC BC BC
A AB AS Alg 13 20 10 5 12 13 20

(a) Transformed search lattice (b) Minimum cost matching



Outline: PipeSort Algorithm (4)

After computingthe plan, execute all pipelines

1. First pipeline is executed by one scan of the data

}I —2 pipeline edges 2. Sort (CBAD) -> (BADC),
C
4

) , TTT weredge all compute the second pipeline

2 68 418 413 ? 3

(A S B c s >
CB BA AC DB AD cD 1‘ 1‘ 1‘ f
618 515 414 5156 516 1020

1 1 _Jf_-"’", -7 > c B A v 0 D

- - - - A A

CBA BAD ACD DBC —- A —
1030 1540 520 451%0 cBa  Bap  ac0 pec  (ep) (acp) Gamp
? ,7 .= .--="7]A, S costs A ,f A

e cpo
"

(a) The minimum cost sort plan (b) The pipelines that are executed



Outline: PipeSort Algorithm (5)

Observations:

* Findsthe best plan for computinglevel k
from level k+1

BC
— Assumingthe cost of sorting “BAD” does not
depend on how the GROUP-BY on “BAD” has been T
computed
— Generatingplan k+1-> k does not prevent ABC ';‘(M
generating plan k+2 -> k+1 from finding the best [ T
choice v i

 However, a heuristicand not provably ABCD -> (BCAD)

globally optimal solution

If the green edge is chosen,
the sorted order of ABCD
will be BCAD



(Optional — additional slides)
PipeHash Algorithm

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems
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Optional material

PipeHash: Basic Idea (1) +-.

|
 Use hashtablestocompute smaller /,,-,; RS
GROUP-BYs e S S T
. iti A B C D
If the hash tables for AB.and ACfitin S N - 4
memory, compute bothinonescan of ABC <"\ Za<I_ __-"%17~- <—‘“’“~7'\‘ N
'ga” 8 ,—”vN ~ ,—”v\ﬂ . Ssy ~~~\§
. Wi icti AB  AC AD c BD CD
With no memory restrictions .. A *,/Q"‘;\/n e
RN o e A
for k=N...0: R S Vi
For each k+1-attribute GROUP BY g AB‘C_ AB‘_D A,,CD E,CD
Compute in one scan of g all k-attribute GROUP IRt
BY where g is smallest parent ABCD
Save g to disk and destroy the hash table of g sum |
- sum al |bl |cl |5
- um al [cl |- |5 al |bl |c2 |10
al |bl | =15 al [c2 |, |10 <—‘ a2 |b2 |3 |8
al |b2 |—> 8 a2 [c3 | |19 a2 |b2 |c1 |2
a2 | b2 |13 a2 |cl [—»|2 a2 |b2 |c3 |11 v




Optional material

PipeHash: Basic Idea (2) +-.

e But, data might be large, Hash Tables all
oy T4 R
may not fit in memory L= M TN
e Solution:optimization “shared-partition” Aj B C B
—  partition data on one or more ,?7"\'*:,<:"'7f§“:’2?f:: - ™
attributes eI PN TN T
B : " C BD CD
| Suppose the data is partitioned on AB‘ AA\C‘\~ AD /,ag\\ TN 3
attribute A Sl ~:_‘_;L§i~\></,—\\ T
Y] il P Lem TN
—  All GROUP-Bys containing A (AB, AC, et it ZCD E
AD, ABC...) can be computed AB(C\ AB‘.D 7 _,Ii D
independently on each partition B A
—  Cost of partitioning is shared by ABCD
multiple GROUP-BYs |
sum
- sum al |bl |cl |5
- um al [cl |- |5 al |bl |c2 |10
al |bl |=> |15 a1 |2 | |10 <— a2 |b2 |c3 |8
al |b2 |8 a2 [c3 | |19 a2 |b2 |c1 |2
a2 | b2 |13 a2 |cl [—»|2 a2 |b2 |c3 |11 v




Optional material

PipeHash: Basic Idea (3) ...

 Input:search lattice all
> ¢71 R\"\
* Foreach group-by, select smallest parent ~ __--=" N e
* Result: Minimum Spanning Tree (MST) A B C D
2/, 8 a”7‘h\‘~ 4”m~~ —”m
,/, 1 :><: > s s '<,¢ ~o l4 \\
P ”,\' ,} :— ’:v: =~ - / ~~~~\\
W i &~ " ~——" o ~ =\
| AB AC AD _BC BD (D
, " [ *:~~~ 4'“€~~~~ *:—’ ’\’\,a’ A: "’Ia
~F~~ Pt "~~ Sy _»” \\*r“’ V4
2 % TR ‘Ds‘ | R . i
' Tea ' ABC ABD ACD BCD
I C C AD (D | Yo Doas etfoeam=="" 7
A ' ! R LISCTP A
10 }zo- 'ﬁm » 20 ,}n,_‘--%% -
e X JASPEL ABCD
80 R 0 D Size of GROUP-BY
ABC X
,% A\so ,5’50,"3%0 .
Tty et  But, all Hash Tables (HT) in the MST may not
ABCD fitin the memory together
100 * To consider:
—  Which GROUP-BYs to compute together?
Raw Daa

(a) Minimum spanning tree

When to allocate-release memory for HT?

What attributes to partition on?



Optional material

Outline: PipeHash Algorithm (1)

* Once again, a combinatorial optimization problem

* This problemis conjecturedto be NP-complete in the paper

— something to explore!

e Use heuristics

Trade-offs
1. Chooseas large sub-tree of MIST as possible (“cache-results”, “amortized
scan”

2. The sub-tree mustinclude the partitioning attribute(s)

Heuristic

Choose a partitioning attribute that allows selection of the largest subtree of MST



Algorithm

* |Input:search lattice
 worklist={MST}
 while worklist not empty

e select one tree T from the worklist
e T =select-subtree(T)
Compute-subtree(T’)

Next, through examples
* Select-subtree(T)

— May add more subtrees to worklist

e Compute-subtree(T’)

-~
-—
-,

Optional material

Outline: PipeHash Algorithm (2)

all
~TA RS
V4 S S
V4 \\ LS
V4 (N S

2 200,

Lt . L
AQC BD ACD D
L T e

N

ABCD
fo

Raw Daw

() Minimum spanning tree

7w 5> 4
@*:’ \a\\:‘ A: ‘gfja
il T et
- ~~“~‘—”’ “:gv,f’ \\‘*,/
ABD ACD BCD
¥, LT T o
~-~.\M/__———
'l” i
p |
R
.‘ . V'\Q |
wokK B BB



Optional material

Outline: PipeHash Algorithm (3)

« T =Select-Subtree(T) =T,

Partition Tx
) 0r 0
e Compute-Subtree(T’) For each partition,
Compute GROUP-BY ABCD
e s={A}issuch that Scan ABCD to compute ABC, ABD, ACD
cpr G O Save ABCD, ABD to disk
i — T, per partition in P fits in ’
HaSh Table memoi PErp S Compute AD from ACD
in memory y Save ACD, AD to disk
until all P.= #partitions Compute AB, AC from ABC
children are — T =T.isthe largest Save ABC, AC to disk
ted Compute A from AB
create * Creates new sub-trees to add
Ll :Save AB, A from disk
1 |
\ o D A )
14 ' .’Bs 4 5‘ | A L
L JRREEN | ' . 0 A B o .
‘ A
1CP .F:.”A.(z'o_.---ﬁ(;o -’,yM':I)o ”,'s-:lg‘_,v%% IP 'A ’,,'1' : V\\ ‘;7
- ‘. L. . E PC D BD
"".f'“'./’. ‘, \\Q\\\“ ’// 1 \‘1/
ABCD T E\icj BED
?100 ABCD i
e ABCD

Raw Daa _i |
(a) Minimum spanning tree iRI' Data

(b) First subtree: partitioned on A (c) Remaining subtrees
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Experiments

NH:NaiveHash PH:PipeHash NS:NaiveSort PS:PipeSort

cube algorithms on several real-life datasets and an-
alyze the behavior of these algorithms on tunable syn-
thetic datasets. These experiments were performed on

1 Lower-bound E Exva

T N .
| = os

5 Experimental evaluation ' i
In this section, we present the performance of our \ ii e
| f — 0.4

f

o 8

ks

a RS/6000 250 workstation running AIX 3.2.5. The

workstation had a total physical memory of 256 MB. | eis ifi® IeiE
We used a buffer of size 32 MB. The datasets were
stored as flat files on a local 2GB SCSI 3.5” drive with DatasetA  DatasetB  DataeebC  DataserD  DatasstE
] f 1.5 MB L Figure 5: Performance of the cube computation algorithms
on the five real life datasets. The y-axis denotes the total

time normalized by the time taken by the NaiveHash algo-
rithm for each dataset.

 Heresort-based better than hash-based (new hash-tablefor each
GROUP-BY)

 Anotherexperimenton synthetic data (see paper)
* Forlesssparsedata, hash-based better than sort-based



