CompSci 516
Data Intensive Computing Systems

Lecture 25
Data Mining
and
Mining Association Rules

Instructor: Sudeepa Roy

CompSci 516: Data Intensive Computing

Duke CS, Spring 2016
Systems

Announcements

* HW5 due tomorrow 04/20 (Wednesday),
11:55 pm

e Additional office hour — Sudeepa - Thursdays —
3 -4 pm—D325 (until the exam)

* Review session a few days before the final

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 2

Reading Material

Optional Reading:
1. [RG]: Chapter 26

2. “Fast Algorithms for Mining Association Rules”
Agrawal and Srikant, VLDB 1994

19,496 citations on Google Scholar (as of April, 2016 - ~¥800 increase in eight
months)!

One of the most cited papersin CS

 Acknowledgement:

The following slides have been prepared adapting the slides
provided by the authors of [RG] and using several
presentations of this paper available on the internet (esp. by
Ofer Pasternak and Brian Chase)

Data Mining - 1

* Find interesting trends or patternsin large
datasets
— to guide decisions about future activities
— ideally, with minimal user input

— the identified patterns should give a data analyst
useful and unexpected insights

— can be explored further with other decision
support tools (like data cube)

Data Mining - 2

* Related to
— exploratory data analysis (Statistics)
— Knowledge Discovery (KD)
— Machine Learning
e Scalability is important and a new criterion
— w.r.t. main memory and CPU

e Additional criteria
— Noisy and incomplete data (Lecture 24)

— |terative process (improve reliability and reduce missing
patterns with user inputs)

OLAP vs. Data Mining

* Both analyze and explore data
— SQL queries (relational algebra)
— OLAP (multidimensional model)
— Data mining (most abstract analysis operations)

* Data mining has more flexibility
— assume complex high level “queries”
— few parameters are user-definable
— specialized algorithms are needed

Four Main Steps in KD and DM (KDD)

Data Selection
— |dentify target subset of data and attributes of interest
Data Cleaning

— Remove noise and outliers, unify units, create new
fields, use denormalization if needed

Data Mining
— extract interesting patterns
Evaluation

— present the patterns to the end users in a suitable
form, e.g. through visualization

Several DM/KD (Research) Problems

* Discovery of causal rules

* Learning of logical definitions

* Fitting of functions to data

e Clustering

* Classification

* Inferring functional dependencies from data

* Finding “usefulness” or “interestingness” of a rule

— See the citations in the Agarwal-Srikant paper
— Some discussed in [RG] Chapter 27

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 8

More: Iceberg Queries

SELECT P.custid, P.item, SUM(P.qty)
FROM Purchases P

GROUP BY P.custid, P.item

HAVING SUM(P.qty) >5

Outputis much smaller than the original relation or full query
answer

Computing the full answer and post-processing may not be a
good idea

Try to find efficient algorithms with full “recall” and high

“" HP- ”
Precision ref. "Computing Iceberg Queries Efficiently”

Fang et al.
VLDB 1998

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Our Focus in this Lecture

* Frequent Itemset Counting

* Mining Association Rules
— using frequent itemsets
— Both from the Agarwal-Srikant paper

 Many of the “rule-discovery systems” can use
the association rule mining ideas

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

10

Mining Association Rules

e Retailers can collect and store massive amounts
of sales data

— transaction date and list of items

e Association rules:

— e.g. 98% customers who purchase “tires” and “auto
accessories” also get “automotive services” done

— Customers who buy mustard and ketchup also buy
burgers

— Goal: find these rules from just transactional data
(transaction id + list of items)

Applications

* Can be used for
— marketing program and strategies
— cross-marketing
— catalog design
— add-on sales
— store layout
— customer segmentation

Notations

ltems | ={i,i,,...,i}
D : a set of transactions

Each transaction T © |
— has an identifier TID

Association Rule
—-X=2Y

— X, Y C|
—XNY= 0o

13

Confidence and Support

Association rule X=2Y

Confidence c = |Tr. with X and Y| /| Tr. with |X]

c% of transactions in D that contain X also contain Y

Supports = |Tr. with Xand Y| / |all Tr.|

s% of transactions in D contain X and Y.

14

Support Example
TD | cercal |peer |oread | Bananas |mik
X X X

1

2 X X X
3 X

4 X X
5 X

6 X

7 X X
8 X

* Support(Cereal)
e 4/8=.5

* Support(Cereal = Milk)
« 3/8=.375

Confidence Example

To lcereal lveer lbreod | Gananas |Mik
X X X

1

2 X X X
3 X

4 X X
5 X

6 X

7 X X
8 X

* Confidence(Cereal = Milk)
e 3/4=.75

» Confidence(Bananas = Bread)
e 1/3=.33333..

16

X =2 Y is not a Functional Dependency

For functional dependencies

F.D. = two tuples with the same value of of X must have the
same value of Y

— X=2Y => XZ-Y(concatenation)

— X=2YY>Z => X=2Z/(transitivity)

For association rules

X = A does not mean XY=2A

— May nothavethe minimum support
— Assumeone transaction {AX}

X=>Aand A2 Zdonotmean X 2 Z

— May not have the minimum confidence
— Assumetwo transactions {XA}, {AZ}

17

Problem Definition

* Input
— a set of transactions D

« Canbeinanyform—afile, relational table, etc.
— min support (minsup)
— min confidence (minconf)

* Goal: generate all association rules that have
— support >= minsup and
— confidence >= minconf

Decomposition into two subproblems

* 1. Aprioriand AprioriTID:
— for finding “large” itemsets with support>=minsup
— all other itemsets are “small”

e 2.Then use another algorithm to find rules X = Y such that
— Both itemsets X U Y and X are large
— X =2 Y hasconfidence >= minconf

e Paper focuses on subproblem 1
— if supportis low, confidence may not say much
— subproblem 2 in full version

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 19

Basic Ideas - 1

Q. Which itemset can possibly have larger
support: ABCD or AB

— i.e. when one s a subset of the other?

* Ans: AB

— any subset of a large itemset must be large

— So if AB is small, no need to investigate ABC, ABCD
etc.

Basic Ideas - 2

e Start with individual (singleton) items {A}, {B}, ...

* Insubsequentpasses, extend the “large itemsets” of the previous
passas “seed”

 Generate new potentially large itemsets (candidate itemsets)
e Then counttheir actual supportfromthe data

* At the end of the pass, determine which of the candidateitemsets
are actually large

— becomes seed forthe next pass
* Continueuntilno new large itemsets are found

* Benefit: candidateitemsets are generated using the previous pass,
without looking at the transactionsin the database

— Much smallernumber of candidate itemsets are generated

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 21

Apriori vs. AprioriTID

Both follow the basic ideas in the previous slides

AprioriTID has the additional property that that
the database is not used at all for counting the
support of candidate itemsets after the first pass

— An “encoding” of the itemsets used in the previous
pass is employed

— Size of the encodingbecomes smaller in subsequent
passes — saves reading efforts

e More later

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 22

Notations

Assume the database is of the form <TID, i1, i2, ...> where items are stored in

lexicographic order
TID = identifier of the transaction

Also works when the database is “normalized”: each database record is <TID, item> pair

k-itemset | An itemset having £ items.

Set of large k-itemsets
Lk (those with minimum support).
Fach member of this set has two fields:

1) itemset and 1) support count.

Set of candidate k-itemsets

', (potentially large itemsets).

Flach member of this set has two helds:
1) itemset and 1) support count.

Set of candidate k-itemsets when the TIDs
C'y. of the generating transactions are kept

assoclated with the candidates.

ACTUAL

POTENTIAL

Used in both Apriori and
AprioriTID

Used in AprioriTID

23

Algorithm Apriori

L, = {large I-itemsets} <€ Countindividual item occurrences

For(k=2;L_, =¢, k++) dobegin
C, = [apriori— gen(L, ,);] Generate new k-itemsets candidates

forall transactions & D do begin

C, %subset (C..t)]
forall candidates ¢ € C, do Find the support of all the candidates

count=0

c.count + +; C, = candidates containedint
end

increment count

end
L, = { ¢ €ECJc.count = minsup} Take only those with support >= minsup

end
Answer = ULk;
k

Apriori-Gen

* Takes asargumentl,, (the set of all large k-1)-itemsets
* Returnsa superset ofthe set of all large k-itemsets by augmentingL, ,

® Join step LuxiLa

p and g are two large

insert into C, (k-1)-itemsets identical in all k-2
select p.item,, p.item,, p.item,_,,q.item,_, first items.

fromL, p L, ,q

where p.item, = q.item, ,..., p.item,_, =Q\N¢em,_,, p.item,_, < q.item, _,

® Prune ste
2

forall itemsets ¢ € C, do
forall (k- 1)-subsets s of ¢ do
if (s & L, ,) then
delete ¢ from C, Check all the subsets, remove all

candidate with some “small” subset

Apriori-Gen Example - 1

Step 1:Join (k = 4)

Assume numbers 1-5 correspond to
individual items

L3 C4
* {1,2,3
. {1,2,4\- {1,2,3,4)
11,3,4}
* 11,3,5}

{2,3,4}

Apriori-Gen Example - 2

Step 1:Join (k = 4)

Assume numbers 1-5 correspond to
individual items

L3 C4
« {1,2,3}
* {1,2,4} e {1,2,3,4}

{1,3,4} {1,3,4,5}
{1,3,5} /

{2,3,4}

Apriori-Gen Example - 3

Step 2: Prune (k = 4)
e Removeitemsetsthatcan’t havethe

required support becausethereis a subset
in it which doesn’t have the level of support
i.e.notin the previous pass (k-1)

L, C,

- {1,2,3} o
hae LEZ meedsdy
* {1,3,5}

{2,3,4}

Comparisons with previous algorithms
(AIS, STEM)

L., to C,
* Readeach transactiont
* FinditemsetspinlL,,thatareint
* Extend p with large itemsin t and occur laterin lexicographicorder

L, o
t = {1I 2’ 3) 41 5}

« {1,2,3} * {1,2,3,4} all 1-5 large items (why?)
* {1,2,4} * {1,2,3,5}

* {134} * {1,2,4,5} 5 candidates comparedto 2 (after
* 11,3,5} * 11,3,4,5} pruningl)in Apriori

{2,3,4} {2,3,4,5}

29

Correctness of Apriori

insert into C;,

Check yourself

select p.item,, p.item,, p.item,_,,q.item, _,

join from L, ,p,L,_,q

where p.item, = q.item, ,...,

Show thatC, =2 L,

Any subset of large itemset must also be
large

foreachpinl,, ithasasubsetqinl,

We are extendingthose subsets g inJoin
with anothersubset g’ of p, which must
also be large

* equivalenttoextendingl, , withall
items and removingthose

whose (k-1) subsetsare notin L, ,

Pruneis not deletinganythingfrom L,

p.item,_, =q.item,_,, p.item, , <q.item,_,

prune
forall itemsets ¢ € C, do
forall (k- 1)-subsets s of ¢ do
if (s & L, ,) then
delete ¢ from C,

30

Variations of Apriori

* Counting candidates of multiple sizes in one
pass

* |n the k-th pass
— Not only update counts of C,
— update counts of candidates C',,,
— C',1 =2 C,qsince it is generated from L,

— Can help when the cost of updating and keeping in
memory C’,,, - C,,; additional candidates is less
than scanning the database

Problem with Apriori

* Every pass goes over the entire & - flage l-itemsers;

For(k=2,L,_, =¢; k++) dobegin
d ata S et C, = aprori-gen(L,,);
{orall transactions t € D do begin]
C, =subset(C,,?)
forall candidates c € C, do

e Database of transactions is massive count + +:
— Can be millions of transactions added end
an hOUI’ L, = {c €C|c.count = minsup}

. . . end
* Scanning database is expensive | ..

— In later passes transactions are likely k
NOT to contain large itemsets

— Don’t need to check those transactions

32

See the examples in the following slides

. o my=e and then see this slide for an overview
AprioriTid

Also uses Apriori-Gen
But scans the database D only once.

Builds a storage set C*,
— “bar” in the paper instead of *

Members of C* are of the form < TID, {X,} >

— each X, is a potentially large k-itemset present in the
transaction TID

— For k=1, C*, isthe database D

— itemsi as {i}

If a transaction does not have a candidate k-itemset,
C* will not contain anything for that TID

C* may be smaller than #transactions, esp. for large
values of k

— For smaller values of k, it may be large

33

See the examples in the following slides
and then come back to the algorithm

Algorithm AprioriTid
L, = llarge Il-itemsets} <

C, = database D; < The storage set is initialized
For(k=2;L,_, =¢,; k++) dobegin with the database

C, = apriori-gen(L, ,);«— Generate new k-itemsets
C, =@ < candidates

forall entries t€ C,_, do begin P Build a new storage set

C, = {ce(C\|(c—c[k] Et.set—of —ite
A(c—cl[k-1])ELset—of —items);

Determine candidate itemsets

forall candid which are containted in
orall candidates ¢ € ¢, dg transaction TID

c.count + +;
if (C, = @) then C,:+ =<tTID,C, >, Find the support of all the
candidates
end \
end Remove empty entries

L, = {c €Cc.count = minsupg—

end Take only those with
Answer = ULk; support over minsup
k

AprioriTid Example

Min support=2

Database
TID | Items
100 | 134
200 | 235
300 [1235
400 | 25

C,
TID | Set-of-Itemsets
100 | { {1}, {3}, {4} }
200 | { {2}, {3}, {5} }
300 | { {1}, {2}, {3}, {5} }
400 | { {2}, {5} }

Ly
Itemset | Support
{1} 2
{2} 3
{3} 3
{5} 3 |

Min support=2

AprioriTid Example

Ly
Itemset | Support Itemset
{1} 2 Apriori-gen {1 2}
{3} 3 }1 5%
2 3
6 | s 23}
(3 5)

Now we need to compute the supports of C,
without lookingat the database D
from C*;

36

Min support=2

. AprioriTid Example

[temset | Support -
{12} 1 C

{1 3} TID | Set-of-Itemsets

{1 5} \ 100 { {1}3 {3}3 {4} }
(23) 200 | { {2}, {3, {5})
{25} 300 | { {1}, {2}, {3}, {5} }
{35} 400 | { {2}, {5} }

Ci00= {{1,3}}

C00 = {{2’ 3}’ {2’ 5}’ {3’ 5}} forall cutrics-f = F/.,-_.l do 'begill . 1 '
C.op =1, 2}, {1, 3}, {1, 5, {2, 3}, {2, 5}, {3, 5}} // 'determme Canc?ldate_ltel.nsets. In (;. Fontalned
Caoo = 112, 51} // in the transaction W»lth 1dent1h.e.r t.'I'lD
Cy = {c € Cx | (c — c[k]) € t.set-of-itemsets A
(¢ — c[k—1]) € t.set-of-itemsets};
Only 300 has both {1} and {2} forall candidates ¢ € C; do
Support =1 c.count+;

if (Cy #0) then Cx += < t.TID, C, >;
end 37

Min support=2

AprioriTid Example

C2 k=2
[temset | Support —
{12} 1 ¢
(13) TID | Set-of-ltemsets

2

100 [{{1}, 3}, {4} }
| 200 | { {2}, {3}, {5} }
300 | { {1}, {2}, {3}, {5} }
100 | { {2}, {5} }

15}
12 3}
125}
{35}

forall entries t € Cx_, do begin

Ci00= {{1,3}} // determine candidate itemsets in Cy contained
Ca00 = {2, 3}, {2, 5}, {3, 5}1} // in the transaction with identifier ¢."I'lD

Co00 =1{{1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 5}, {3, 5] Cy = {c € Ck | (c — ([L]) € t.set-of-1temsets A
Ca00 = {2, 51} (c —c[k—1]) € t.set-of—itemsets}:

forall candidates ¢ € C; do
c.count++:
if (C; #0) then Cx += < t. 11D, C, >;
end

Min support =2

AprioriTid Example

Co

C
Itemset | Support !

TID | Set-of-ltemsets
E g% ; 100 | { {1}, {3}, {4} }
{15} L | 20000 {2} {3), {5})

{2 5)] - 400 | { {2}, {5} }

(2 3)) %%300 { {1}, {2}, {3}, {5} }

{3 5} 2 forall entries t € Cr_, do begin
// determine candidate itemsets in Cy contained
// in the transaction with identifier ¢."I'lD
Ci00= {{1, 3}} Cy = {c € Cx | (c — c[k]) € t.set-of-itemsets A
Ca00 =112, 3}, {2, 5}, {3, 5}} (¢ — c[k—1]) € t.set-of-itemsets};
Caoo ={{1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 5}, {3, 5} forall candidates ¢ € C, do
Cy00 =112, 5}} c.count+-+:

if (C; #0) then Cx += < t. 11D, C, >;
end

AprioriTid Example

Min support=2

k=2

C How C*, looks —
2 C'o
Itemset [Support TID | Set-of-ltemsets
{12} 1 100 | { {13} !
{13} 2 200 | { {23}, {25}, {35}
{15} 1 300 | { {12}, {13}, {15},
12 3} 2 {23}, {25}, {35})
{2 5} 3 | 400 | { {25}
{3 5) 2 / — .
forall entries t € Cy_; do begin
// determine candidate itemsets in Cy contained
// in the transaction with identifier ¢."I'lD
Ci00= {{1, 3}} Cy = {c € Cx | (c — c[k]) € t.set-of-itemsets A
Ca00=1{2, 3}, {2, 5}, {3, 5}} (¢ — c[k—1]) € t.set-of-itemsets};
Cs0={{1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 5}, {3, 5}} forall candidates ¢ € C;, do

Cs00= {{2, 51}

ccount-4-:

[if (C; #0) then Cx += < . 11D, C, >;]

end

Min support=2

AprioriTid Example

k=2
CQ L2
Itemset | Support Itemset | Support

12} 1 11 3) >

{1 3} 2 . {2 3} 2
{15) L 25 3

{2 3} 2 {3 5} 2

{2 5) 3

{3 5} 2 How L, looks

(entries above threshold)

The supportsarein place
Can computel, from C,

41

Min support=2

AprioriTid Example

k=3
Lo - Cs
Itemset | Support Apriorreen Itemset | Support
{1 3} 2 {2 35}
{2 3} 2
{2 5} 3
{3 5} 2

Next step

42

Min support=2

AprioriTid Example

03 62

Itemset | Support TID | Set-of-Itemsets

{235}\\§ 100 | {{13}}
—200 | { {23}, {25}, {35} }
~300 [{ {12}, {13}, {15},

Look for transactions {2 3}’ {2 5}’ {3 5} }
containing{2,3} and {2, 5} 400 { {2 5} }

forall entries t € C'x_; do begin
Add <200, {2,3,5}> and // determine candidate itemsets in Cjx contained
<300, {2,3,5}> to C*, // in the transaction with identifier ¢."I'lD

Cy = {c € Ck | (c — c[k]) € t.set-of-itemsets A

(¢ — c[k—1]) € t.set-of-itemsets};
forall candidates ¢ € C; do
c.count++:

if (C; #0) then Cy += < t. 11D, C, >; 13

end

Min support =2

AprioriTid Example

Itemset

{235)

L

Itemset

Support

{235)

()

dd

Cs
TID | Set-of-ltemsets
200 | { {235} }
300 [{ {235} }

C*; has only two transactions
(we started with 4)

L; has the largest itemset

C, is empty

Stop

Optional: read the correctness proof, buffer managements, data structure from the paper

44

Discovering Rules
(from the full version of the paper)

Naive algorithm:

* For every large itemset p
— Find all non-empty subsets of p

— For every subset q

* Produce rule q =2 (p-q)
* Accept if support(p) / support(q) >= minconf

Checking the subsets

 For efficiency, generate subsets using recursive
DFS. If a subset g does not produce a rule, we do
not need to check for subsets of g

Example

Given itemset : ABCD

If ABC = D does not have enough confidence
then AB = CD does not hold

46

Reason

For efficiency, generate subsets using recursive DFS. If a
subset g does not produce a rule, we do not need to
check for subsets of g

For any subset q’ of q:
Support(q’) >= support(q)

confidence (9" =2 (p-q’))

= support(p) / support(q’)

<= support(p) / support(q)
= confidence (q =2 (p-q))

47

optional slide

Simple Algorithm =p

a=q

foralllarge itemsets |, k=2 do < Check all the large itemsets

genrules(l,,l,)

procedure genrules (1, large k-itemset, a, : large m-itemset}—f Check all the subsets

A= {(m-1)-itemseta, |a ,Ca, }

- m-1 mJ 2
foralla, , & A do begin Check clonfldence of
conf = support(l,)/support(a,) newrue
if (conf = minconf) then begin Outputthe rule

output the rule a, , = (I, -
" 75 7) th Continue the depth-first
if (m—-1>1) then search over the subsets.

call genrules(l ,a,),

end(If not enough confidence, the
DFS branch cuts here

end

Faster Algorithm

* If (p-q) 2 q holdsthan all the rules
(p-9’) 2 q’ must hold

— where g’ & qand is non-empty

Example:
If AB = CD holds,
then so do ABC > Dand ABD =2 C

Idea

e Start with 1-item consequentand generate larger
consequents

* If aconsequentdoes nothold, do notlook for bigger ones
 The candidate set will be a subset of the simple algorithm

49

Performance

T5.12.D100K

80 .
SETr\é —dve
. 70 t AIS
* Support decreases =>time pororTid -
60 1
increases o
» AprioriTID is “almost” d P "
prioriTID is “almost” as goodas ¢
.. Foaof P
Apriori, BUT Slower for larger S
20
problems ol
— C*,does not fit in memory and o E—t— . -
. . . 2 1.5 1 0.75 0.5 033 0.25
increases with #transactions T90.12. D 100K
T10.12.D100K 1000 o ‘
e | | . AIS " 900 ¢ Aprioril?'lig : ------
140 }+ Apr,lﬁ?pnriTolﬁ _:_ 1 800 | Apriori —+— |
120 | 700 +
5 100 | ’8‘ 600
% 80 % 500 r
E E 400 |
60t
300
40 |
20
0 : : : : . 0 ' : ' .
2 15 1Mmm?l']7,33uppo,$'5 033 025 2 1.5 1Minin(1)ﬁ7n?8uppor(t).5 033 0.25

50

Performance

e AprioriTid is effective in

1 r T . . ;
later passes 1: ApronTid —— |
— Scans C*,instead of the o
original dataset G
— becomes small compared ; : | |
to original dataset -
Al
)
* When fits in memory, N
AprioriTid is faster than bR e

Apriori

51

AprioriHybrid

T10.12.D100K

Use Aprioriin initial passes

Switch to AprioriTidwhen it can fitin
memory

Switch happens at the end of the pass
— Has some overhead to switch

Still mostly better or as good as apriori

Time (sec)

40

3Br

30t

25

20

15

10

AprioriTig-~=="
_______ Apriori —— |
AprioriHybrid e

T10.14.D100K

Time (sec)

55

1 0.75 05 033 025

Minimum Support

50
45 +
40
35t
30
25

AprioriTid ===)
Apriori
AprioriHybriQ,.v.h,...]

1.5

1

0.75 0.5 33 025
Minimum Support 52]

From Apriori Algorithm

optional slide

Subset Function - 1

* Candidate itemsetsin C, are storedin a
hash-tree (like a B-tree)

interior node = hash table

each bucket pointstoanothernodeatthe
level below

leaf node = itemsets

recall that the itemsets are ordered
root at level 1 (top-most)

All nodes are initially leaves

When the number of itemsetsin a leaf-
node exceeds a threshold, convertitintoan
interior node

 To add an itemset c, start from the root
and go down the tree until reach a leaf

Given a transaction t and
a candidate set C,, compute the
candidates in C, contained in t

L, = {large I-itemsets}
For(k=2,L_, =¢,; k++) dobegin
C, = aprori-gen(L, ,);
forall transactions € D do begin
[C, =subset (C,,2)]
forall candidates ¢ € C, do

c.count + +;

end
end
L, = {c €C,|c.count = minsup}

end
Answer = ULk,'
k

53

optional slide

Subset Function - 2

* To find all candidates contained in
a transaction t
L, = {large I-itemsets}

— if we are at a leaf For(k=2;L_, =¢, k++) dobegin

. . . .) C - L L)
e find which itemsets are containedint k ap“"“'gen(1) |
forall transactions € D do begin

* addreferencesto theminthe answer set [q = subset (C.,1)]
— if we are at an interior node f"ranca:iia;ii;e € do
 we havereachedit by hashinganitemi end
* hashon each itemthatcomes afteriint end
. repair " L, = {c €C,|c.count = minsup}
— if we are at the root, hash on every Answer = {1,

itemint

54

optional slide

Subset Function - 3

* Why does it work?

* Forany itemset c in a transaction t
— thefirstitem of c mustbeint

— by hashingoneach itemint, we ensure that
we onlyignoreitemsets that start with an

itemnotint

— similarly for lower depths

— since the itemsetis ordered, if we reach by
hashingoni, we only need to consideritems

that occur afteri

L, = {large I-itemsets}
For(k=2,L_, =¢,; k++) dobegin
C, = aprori-gen(L, ,);
forall transactions € D do begin
[C, =subset (C,,2)]
forall candidates ¢ € C, do

c.count + +;
end
end
L, = {c €C,|c.count = minsup}

end

Answer = U L,
k

55

Duke CS, Spring 2016

Conclusions
(of 516, Spring 2016)

CompSci 516: Data Intensive Computing Systems

56

Take-Aways
* DBMS Basics
* DBMS Internals
* Overview of Research Areas

 Hands-on Experience in DB systems

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 57

DB Systems

 Traditional DBMS
— PostGres, SQL

* Large-scale Data Processing Systems
— Spark/Scala, AWS

* New DBMS/NOSQL
— MongoDB

* |In addition
— XML, JSON, JDBC, Python/Java

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 58

DB Basics

* SQL

* RA/Logical Plans
* RC

e Datalog

— Why we needed each of these languages

* Normal Forms

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 59

DB Internals and Algorithms

* Storage
* Indexing

e Operator Algorithms
— External Sort
— Join Algorithms

* Cost-based Query Optimization

* Transactions
— Concurrency Control
— Recovery

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 60

Large-scale Processing
and New Approaches

 Parallel DBMS
e Distributed DBMS

* Map Reduce
e NOSQL

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 61

Advanced/Research Topics

(In various levels of details)

 Data Warehouse/OLAP/Data Cube
* Data Privacy

* View Selection

* Data Provenance

* Probabilistic Databases

* Crowdsourcing

* Could not cover many more....

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 62

Hope some of you will further explore Database
Systems/Data Management/Data Analysis/Big Data...

Thank you ©

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

63

