CompSci 516 Data Intensive Computing Systems

Lecture 25

Data Mining and Mining Association Rules

Instructor: Sudeepa Roy

Announcements

HW5 due tomorrow 04/20 (Wednesday),
 11:55 pm

Additional office hour – Sudeepa - Thursdays –
 3 – 4 pm – D325 (until the exam)

Review session a few days before the final

Reading Material

Optional Reading:

- 1. [RG]: Chapter 26
- 2. "Fast Algorithms for Mining Association Rules" Agrawal and Srikant, VLDB 1994

19,496 citations on Google Scholar (as of April, 2016 - ~800 increase in eight months)!

One of the most cited papers in CS

Acknowledgement:

The following slides have been prepared adapting the slides provided by the authors of [RG] and using several presentations of this paper available on the internet (esp. by Ofer Pasternak and Brian Chase)

Data Mining - 1

- Find interesting trends or patterns in large datasets
 - to guide decisions about future activities
 - ideally, with minimal user input
 - the identified patterns should give a data analyst useful and unexpected insights
 - can be explored further with other decision support tools (like data cube)

Data Mining - 2

- Related to
 - exploratory data analysis (Statistics)
 - Knowledge Discovery (KD)
 - Machine Learning
- Scalability is important and a new criterion
 - w.r.t. main memory and CPU
- Additional criteria
 - Noisy and incomplete data (Lecture 24)
 - Iterative process (improve reliability and reduce missing patterns with user inputs)

OLAP vs. Data Mining

- Both analyze and explore data
 - SQL queries (relational algebra)
 - OLAP (multidimensional model)
 - Data mining (most abstract analysis operations)
- Data mining has more flexibility
 - assume complex high level "queries"
 - few parameters are user-definable
 - specialized algorithms are needed

Four Main Steps in KD and DM (KDD)

Data Selection

Identify target subset of data and attributes of interest

Data Cleaning

 Remove noise and outliers, unify units, create new fields, use denormalization if needed

Data Mining

extract interesting patterns

Evaluation

 present the patterns to the end users in a suitable form, e.g. through visualization

Several DM/KD (Research) Problems

- Discovery of causal rules
- Learning of logical definitions
- Fitting of functions to data
- Clustering
- Classification
- Inferring functional dependencies from data
- Finding "usefulness" or "interestingness" of a rule
 - See the citations in the Agarwal-Srikant paper
 - Some discussed in [RG] Chapter 27

More: Iceberg Queries

SELECT P.custid, P.item, SUM(P.qty)

FROM Purchases P

GROUP BY P.custid, P.item

HAVING SUM(P.qty) > 5

- Output is much smaller than the original relation or full query answer
- Computing the full answer and post-processing may not be a good idea
- Try to find efficient algorithms with full "recall" and high "precision"

ref. "Computing Iceberg Queries Efficiently"

Fang et al.

VLDB 1998

Our Focus in this Lecture

- Frequent Itemset Counting
- Mining Association Rules
 - using frequent itemsets
 - Both from the Agarwal-Srikant paper

 Many of the "rule-discovery systems" can use the association rule mining ideas

Mining Association Rules

- Retailers can collect and store massive amounts of sales data
 - transaction date and list of items
- Association rules:
 - e.g. 98% customers who purchase "tires" and "auto accessories" also get "automotive services" done
 - Customers who buy mustard and ketchup also buy burgers
 - Goal: find these rules from just transactional data (transaction id + list of items)

Applications

Can be used for

- marketing program and strategies
- cross-marketing
- catalog design
- add-on sales
- store layout
- customer segmentation

Notations

- Items $I = \{i_1, i_2, ..., i_m\}$
- D: a set of transactions
- Each transaction T ⊆ I
 - has an identifier TID
- Association Rule
 - $-X \rightarrow Y$
 - $-X,Y\subseteq I$
 - $-X \cap Y = \emptyset$

Confidence and Support

Association rule X→Y

- Confidence c = |Tr. with X and Y|/|Tr. with |X|
 - c% of transactions in D that contain X also contain Y
- Support s = |Tr. with X and Y| / |all Tr.|
 - s% of transactions in D contain X and Y.

Support Example

TID	Cereal	Beer	Bread	Bananas	Milk
1	X		X		X
2	Χ		X	X	X
3		X			X
4	Χ			X	
5			X		X
6	X				X
7		X		X	
8			X		

- Support(Cereal)
 - 4/8 = .5
- Support(Cereal → Milk)
 - 3/8 = .375

Confidence Example

TID	Cereal	Beer	Bread	Bananas	Milk
1	Χ		X		X
2	Χ		X	X	X
3		X			X
4	Χ			X	
5			X		X
6	X				X
7		X		X	
8			X		

- Confidence(Cereal → Milk)
 - 3/4 = .75
- Confidence(Bananas → Bread)
 - 1/3 = .33333...

For functional dependencies

- F.D. = two tuples with the same value of of X must have the same value of Y
 - $X \rightarrow Y => XZ \rightarrow Y$ (concatenation)
 - $X \rightarrow Y, Y \rightarrow Z => X \rightarrow Z \text{ (transitivity)}$

For association rules

- X → A does not mean XY→A
 - May not have the minimum support
 - Assume one transaction {AX}
- $X \rightarrow A$ and $A \rightarrow Z$ do not mean $X \rightarrow Z$
 - May not have the minimum confidence
 - Assume two transactions {XA}, {AZ}

Problem Definition

- Input
 - a set of transactions D
 - Can be in any form a file, relational table, etc.
 - min support (minsup)
 - min confidence (minconf)

- Goal: generate all association rules that have
 - support >= minsup and
 - confidence >= minconf

Decomposition into two subproblems

- 1. Apriori and AprioriTID:
 - for finding "large" itemsets with support >= minsup
 - all other itemsets are "small"
- 2. Then use another algorithm to find rules X → Y such that
 - Both itemsets X ∪ Y and X are large
 - $X \rightarrow Y$ has confidence >= minconf
- Paper focuses on subproblem 1
 - if support is low, confidence may not say much
 - subproblem 2 in full version

Basic Ideas - 1

- Q. Which itemset can possibly have larger support: ABCD or AB
 - i.e. when one is a subset of the other?

- Ans: AB
 - any subset of a large itemset must be large
 - So if AB is small, no need to investigate ABC, ABCD etc.

Basic Ideas - 2

- Start with individual (singleton) items {A}, {B}, ...
- In subsequent passes, extend the "large itemsets" of the previous pass as "seed"
- Generate new potentially large itemsets (candidate itemsets)
- Then count their actual support from the data
- At the end of the pass, determine which of the candidate itemsets are actually large
 - becomes seed for the next pass
- Continue until no new large itemsets are found
- Benefit: candidate itemsets are generated using the previous pass, without looking at the transactions in the database
 - Much smaller number of candidate itemsets are generated

Apriori vs. AprioriTID

- Both follow the basic ideas in the previous slides
- AprioriTID has the additional property that that the database is not used at all for counting the support of candidate itemsets after the first pass
 - An "encoding" of the itemsets used in the previous pass is employed
 - Size of the encoding becomes smaller in subsequent passes – saves reading efforts
- More later

Notations

- Assume the database is of the form <TID, i1, i2, ...> where items are stored in lexicographic order
- TID = identifier of the transaction
- Also works when the database is "normalized": each database record is <TID, item> pair

k-itemset	An itemset having k items.
	Set of large k-itemsets
L_k	(those with minimum support).
	Each member of this set has two fields:
	i) itemset and ii) support count.
	Set of candidate k-itemsets
C_k	(potentially large itemsets).
	Each member of this set has two fields:
	i) itemset and ii) support count.
	Set of candidate k -itemsets when the TIDs
\overline{C}_k	of the generating transactions are kept
	associated with the candidates.

ACTUAL

POTENTIAL

Used in both Apriori and AprioriTID

Used in AprioriTID

Algorithm Apriori

 $Answer = \bigcup L_k;$

Apriori-Gen

- Takes as argument L_{k-1} (the set of all large k-1)-itemsets
- Returns a superset of the set of all large k-itemsets by augmenting L_{k-1}

Join step

 $L_{k-1} \bowtie L_{k-1}$

insert into C_k select $p.item_1$, $p.item_2$, $p.item_{k-1}$, $q.item_{k-1}$ from $L_{k-1}p,L_{k-1}q$

p and q are two large
(k-1)-itemsets identical in all k-2
first items.

where $p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}$

Prune step

for all itemsets $c \in C_k$ do

for all (k-1)-subsets s of c do if $(s \notin L_{k-1})$ then delete c from C_k

Join by adding the last item of q to p

Check all the subsets, remove all candidate with some "small" subset

Apriori-Gen Example - 1

```
Step 1: Join (k = 4)
```

Assume numbers 1-5 correspond to individual items

```
L<sub>3</sub> C<sub>4</sub>

• {1,2,3}

• {1,2,4}

• {1,3,4}

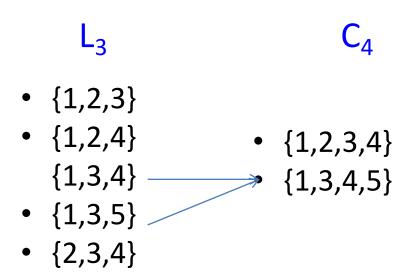
• {1,3,5}

• {2,3,4}
```

Apriori-Gen Example - 2

```
Step 1: Join (k = 4)
```

Assume numbers 1-5 correspond to individual items



Apriori-Gen Example - 3

```
Step 2: Prune (k = 4)
```

 Remove itemsets that can't have the required support because there is a subset in it which doesn't have the level of support i.e. not in the previous pass (k-1)

 L_3

 C_{4}

- {1,2,3}
- {1,2,4}
 - {1,3,4}
- {1,3,5}
- {2,3,4}

- {1,2,3,4}
- {1,3,4,5}

No $\{1,4,5\}$ exists in L₃ Rules out $\{1, 3, 4, 5\}$

Comparisons with previous algorithms (AIS, STEM)

L_{k-1} to C_k

- Read each transaction t
- Find itemsets p in L_{k-1} that are in t
- Extend p with large items in t and occur later in lexicographic order

L₃

 C_4

- {1,2,3}
- {1,2,4}
- {1,3,4}
- {1,3,5}
- {2,3,4}

• {1,2,3,4}

- {1,2,3,5}
- {1,2,4,5}
- {1,3,4,5}
- {2,3,4,5}

t = {1, 2, 3, 4, 5} all 1-5 large items (why?)

5 candidates compared to 2 (after pruning 1) in Apriori

Correctness of Apriori

insert into C_k

join

 $select \ p.item_1, p.item_2, p.item_{k-1}, q.item_{k-1}$

from $L_{k-1}p$, $L_{k-1}q$

where $p.item_1 = q.item_1$,..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

Show that $C_k \supseteq L_k$

- Any subset of large itemset must also be large
- for each p in L_k , it has a subset q in L_{k-1}
- We are extending those subsets q in Join with another subset q' of p, which must also be large
 - equivalent to extending L_{k-1} with all items and removing those

whose (k-1) subsets are not in L_{k-1}

Prune is not deleting anything from L_k

prune

for all *itemsets* $c \in C_k$ do

forall (k-1)-subsets s of c do

if $(s \notin L_{k-1})$ then

delete c from C_k

Variations of Apriori

- Counting candidates of multiple sizes in one pass
- In the k-th pass
 - Not only update counts of C_k
 - update counts of candidates C'_{k+1}
 - $-C'_{k+1} \supseteq C_{k+1}$ since it is generated from L_k
 - Can help when the cost of updating and keeping in memory C'_{k+1} C_{k+1} additional candidates is less than scanning the database

Problem with Apriori

Every pass goes over the entire dataset

```
L_{1} = \{large \ 1\text{-}itemsets\}
For(k = 2; L_{k-1} \neq \phi; k++) \text{ do begin}
C_{k} = \text{apriori-gen}(L_{k-1});
\text{forall transactions } t \in D \text{ do begin}
C_{t} = \text{subset}(C_{k}, t)
\text{forall candidates } c \in C_{t} \text{ do}
c.count + +;
\text{end}
\text{end}
L_{k} = \{ c \in C_{k} | c.count \geq minsup \}
```

- Database of transactions is massive
 - Can be millions of transactions added an hour
- Scanning database is expensive $Answer = \bigcup L_k$;
 - In later passes transactions are likely NOT to contain large itemsets
 - Don't need to check those transactions

AprioriTid

- Also uses Apriori-Gen
- But scans the database D only once.
- Builds a storage set C*_K
 - "bar" in the paper instead of *
- Members of C*_K are of the form < TID, {X_k} >
 - each X_k is a potentially large k-itemset present in the transaction TID
 - For k=1, C*₁ is the database D
 - items i as {i}
- If a transaction does not have a candidate k-itemset,
 C*_K will not contain anything for that TID
- C*_K may be smaller than #transactions, esp. for large values of k
 - For smaller values of k, it may be large

See the examples in the following slides and then come back to the algorithm

Algorithm AprioriTid

```
L_1 = \{large \ l - itemsets\} \leftarrow
C_1^{\wedge} = database D; \leftarrow
For (k = 2; L_{k-1} \neq \phi; k++) do begin
           C_k = \operatorname{apriori-gen}(L_{k-1}); \longleftarrow
           C_k^{\hat{}} = \phi;
           for all entries t \in C_{k-1}^{\hat{}} do begin
                      C_{t} = \{c \in C_{t} | (c - c/k) \in t.set - of - items\}
                                 \land (c-c(k-1)) \in t.set-of-items\};
                      for all candidates c \in C_t do
                                 c.count + +;
                                 if (C_t \neq \varphi) then C_k^{\hat{}} + = < t.TID, C_t > ;
                      end
           end
           L_{\iota} = \{ c \in C_{\iota} | c.count \ge minsup \}
end
```

Count item occurrences

The storage set is initialized with the database

Generate new k-itemsets candidates

Build a new storage set

Determine candidate itemsets which are containted in transaction TID

Find the support of all the candidates

Remove empty entries

Take only those with support over minsup

 $Answer = \bigcup L_k$;

AprioriTid Example Min support = 2

Database

TID	Items
100	1 3 4
200	2 3 5
300	$1\ 2\ 3\ 5$
400	2 5

 \overline{C}_1

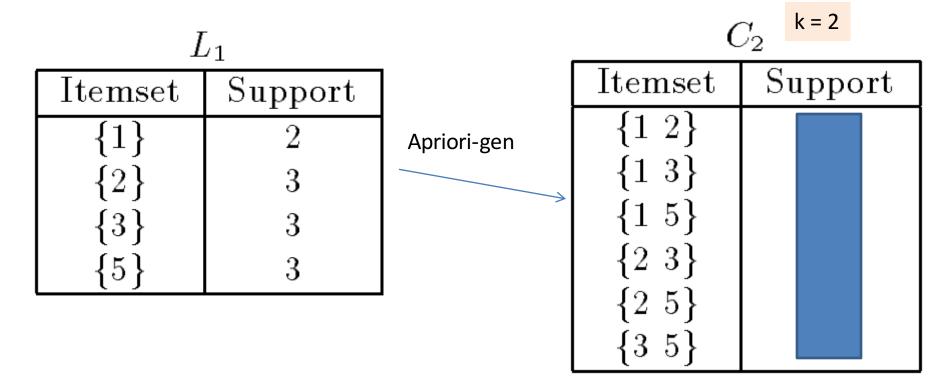
TID	Set-of-Itemsets
100	{ {1}, {3}, {4} }
200	$\{ \{2\}, \{3\}, \{5\} \}$
300	$\{ \{1\}, \{2\}, \{3\}, \{5\} \} $
400	$\{ \{2\}, \{5\} \}$

 L_1

Itemset	Support
{1}	2
{2}	3
{3}	3
{5 }	3

Min support = 2

AprioriTid Example



Now we need to compute the supports of C_2 without looking at the database D from C_1^*

AprioriTid Example

300

400

Itemset	Support
$\{1\ 2\}$	1
$\{1\ 3\}$	
$\{1\ 5\}$	
$\{2\ 3\}$	
$\{2\ 5\}$	
$\{3\ 5\}$	

k = 2

```
\overline{C}_1
         Set-of-Itemsets
100
         { {1}, {3}, {4}
         { {2}, {3}, {5} }
200
         \{ \{1\}, \{2\}, \{3\}, \{5\} \}
```

 $\{ \{2\}, \{5\} \}$

```
C_{100} = \{\{1, 3\}\}
C_{200} = \{\{2, 3\}, \{2, 5\}, \{3, 5\}\}\
C_{300} = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}\}\}
C_{400} = \{\{2, 5\}\}\
```

```
Only 300 has both {1} and {2}
Support = 1
```

```
forall entries t \in C_{k-1} do begin
    // determine candidate itemsets in C_k contained
    // in the transaction with identifier t.TID
   C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets } \land
         (c - c[k-1]) \in t.set-of-itemsets};
   forall candidates c \in C_t do
      c.count++:
   if (C_t \neq \emptyset) then \overline{C}_k += \langle t.\text{TID}, C_t \rangle;
end
```

AprioriTid Example

1		•
l	J	9
_		_

k	=	2

			k = 2
Itemset	Support		\overline{C}
{1 2} {1 3} {1 5} {2 3} {2 5}		TID > 100 200 - 300 400	C_1 Set-of-Itemsets $\{\ \{1\},\ \{3\},\ \{4\}\ \}$ $\{\ \{2\},\ \{3\},\ \{5\}\ \}$ $\{\ \{1\},\ \{2\},\ \{3\},\ \{5\}\ \}$
$\{3\ 5\}$		400	[{ { ² }, { ⁹ } }

```
C_{100} = \{\{1, 3\}\}
C_{200} = \{\{2, 3\}, \{2, 5\}, \{3, 5\}\}\
C_{300} = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}\}
C_{400} = \{\{2, 5\}\}\
```

```
for all entries t \in \overline{C}_{k-1} do begin
    // determine candidate itemsets in C_k contained
    // in the transaction with identifier t.TID
   C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets } \land
         (c - c[k-1]) \in t.set-of-itemsets};
   forall candidates c \in C_t do
      c.count++:
   if (C_t \neq \emptyset) then \overline{C}_k += \langle t.\text{TID}, C_t \rangle;
end
```

AprioriTid Example

k = 2

	7
l	10
`	

Itemset	Support
{1 2}	1
{1 3}	2
$\{1\ 5\}$	1
{2 3}	2
$\{2\ 5\}$	3
${35}$	2

	<u> </u>
TID	Set-of-Itemsets
100	{ {1}, {3}, {4} }
200	$\{ \{2\}, \{3\}, \{5\} \}$
300	$\{ \{1\}, \{2\}, \{3\}, \{5\} \}$
→ 4 00	$\{ \{2\}, \{5\} \}$

for all entries $t \in \overline{C}_{k-1}$ do begin

```
// determine candidate itemsets in C_k contained

// in the transaction with identifier t.TID

C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets} \land (c - c[k-1]) \in t.\text{set-of-itemsets}\};

forall candidates c \in C_t do

c.\text{count}++;

if (C_t \neq \emptyset) then \overline{C}_k += \langle t.TID, C_t \rangle;

end
```

```
C_{100} = \{\{1, 3\}\}\
C_{200} = \{\{2, 3\}, \{2, 5\}, \{3, 5\}\}\}
C_{300} = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}\}\}
C_{400} = \{\{2, 5\}\}
```

AprioriTid Example

 C_2

Itemset	Support
$\{1\ 2\}$	1
$\{1\ 3\}$	2
$\{1\ 5\}$	1
$\{2\ 3\}$	2
$\{2\ 5\}$	3
$\{3\ 5\}$	2

```
C_{100} = \{\{1, 3\}\}\
C_{200} = \{\{2, 3\}, \{2, 5\}, \{3, 5\}\}\
C_{300} = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}\}\
C_{400} = \{\{2, 5\}\}\
```

How C*₂ looks

 \overline{C}_2

k = 2

_		
	TID	Set-of-Itemsets
ſ	100	{ {1 3} }
١	200	$\{ \{2\ 3\}, \{2\ 5\}, \{3\ 5\} \}$
١	300	$\{ \{1 \ 2\}, \{1 \ 3\}, \{1 \ 5\}, $
١		$\{2\ 3\},\ \{2\ 5\},\ \{3\ 5\}\ \}$
1	400	{ {2 5} }

for all entries $t \in \overline{C}_{k-1}$ do begin

```
// determine candidate itemsets in C_k contained

// in the transaction with identifier t.TID

C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets} \land (c - c[k-1]) \in t.\text{set-of-itemsets}\};

forall candidates c \in C_t do

c.\text{count} + +;

if (C_t \neq \emptyset) then \overline{C}_k += \langle t.TID, C_t \rangle;
```

end

AprioriTid Example

k = 2

^		f
[J	9
_		_

Itemset	Support
{1 2}	1
$\{1\ 3\}$	2
$\{1\ 5\}$	1
$\{2\ 3\}$	2
$\{2\ 5\}$	3
$\{3\ 5\}$	2

 L_2

Itemset	Support
{1 3}	2
→ {2 3}	2
$\{2\ 5\}$	3
${35}$	2

How L₂ looks (entries above threshold)

The supports are in place Can compute L₂ from C₂

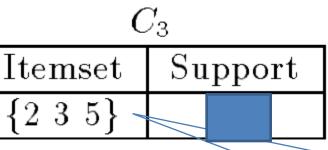
AprioriTid Example Min support = 2

k = 3

L_2		- Anriori gon	C_3		
	Itemset	Support	Apriori-gen	Itemset	Suppor
	{1 3}	2		{2 3 5}	
	$\{2\ 3\}$	2			
	$\{2\ 5\}$	3			
	$\{3\ 5\}$	2			

Next step

AprioriTid Example



Look for transactions containing {2, 3} and {2, 5}

Add <200, {2,3,5}> and <300, {2,3,5}> to C*₃

	C_2			
	TID	Set-of-Itemsets		
	100	{ {1 3} }		
_	\Rightarrow 200	$\{ \{2\ 3\}, \{2\ 5\}, \{3\ 5\} \}$		
/	>300	$\{ \{1 \ 2\}, \{1 \ 3\}, \{1 \ 5\}, $		
		$\{2\ 3\},\ \{2\ 5\},\ \{3\ 5\}\ \}$		
	400	{ {2 5} }		

```
forall entries t \in \overline{C}_{k-1} do begin

// determine candidate itemsets in C_k contained

// in the transaction with identifier t.TID

C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets} \land (c - c[k-1]) \in t.\text{set-of-itemsets}\};

forall candidates c \in C_t do

c.\text{count}++;

if (C_t \neq \emptyset) then \overline{C}_k += \langle t.\text{TID}, C_t \rangle;

43

end
```

AprioriTid Example

C_3	
Itemset	Support
{2 3 5}	2

L_3	
Itemset	Support
{2 3 5}	2

\overline{C}_3		
TID	Set-of-Itemsets	
200	$\{ \{2 \ 3 \ 5\} \}$	
300	$\{ \{2 \ 3 \ 5\} \}$	

C*₃ has only two transactions (we started with 4) L₃ has the largest itemset C₄ is empty Stop

Optional: read the correctness proof, buffer managements, data structure from the paper

Discovering Rules (from the full version of the paper)

Naïve algorithm:

- For every large itemset p
 - Find all non-empty subsets of p
 - For every subset q
 - Produce rule $q \rightarrow (p-q)$
 - Accept if support(p) / support(q) >= minconf

Checking the subsets

 For efficiency, generate subsets using recursive DFS. If a subset q does not produce a rule, we do not need to check for subsets of q

Example

Given itemset: ABCD

If ABC → D does not have enough confidence

then AB -> CD does not hold

Reason

 For efficiency, generate subsets using recursive DFS. If a subset q does not produce a rule, we do not need to check for subsets of q

```
For any subset q' of q:
Support(q') >= support(q)

confidence (q' → (p-q'))

= support(p) / support(q')
<= support(p) / support(q)
= confidence (q → (p-q))
```

Simple Algorithm

$$I = p$$

 $a = q$

forall large itemsets
$$l_k$$
, $k \ge 2$ do $procedure genrules(l_k, l_k)$

procedure genrules $(l_k: large \ k-itemset, \ a_m: large \ m-itemset)$

Check all the large itemsets

 $A = \{(m-1)-itemset \ a_{m-1} | \ a_{m-1} \subset a_m\};$

forall $a_{m-1} \in A$ do begin

 $conf = support(l_k)/support(a_{m-1})$

if $(conf \ge minconf)$ then begin

output the rule $a_{m-1} \Rightarrow (l_k - a_{m-1});$

if $(m-1 > 1)$ then

Check all the large itemsets

Check all the subsets

Check confidence of new rule

Output the rule

call $genrules(l_k, a_{m-1})$;

end end If not enough confidence, the DFS branch cuts here

search over the subsets.

Faster Algorithm

```
    If (p-q) → q holds than all the rules
    (p-q') → q' must hold
    – where q' ⊆ q and is non-empty
```

Example:

```
If AB \rightarrow CD holds,
then so do ABC \rightarrow D and ABD \rightarrow C
```

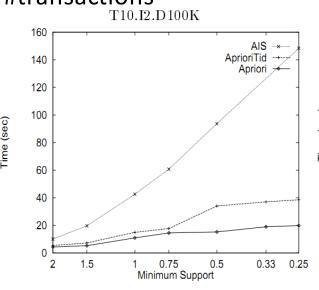
Idea

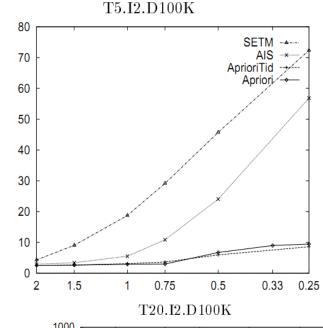
- Start with 1-item consequent and generate larger consequents
- If a consequent does not hold, do not look for bigger ones
- The candidate set will be a subset of the simple algorithm

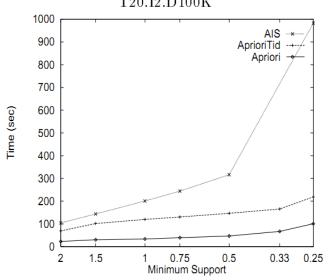
Performance

Time (sec)

- Support decreases => time increases
- AprioriTID is "almost" as good as Apriori, BUT Slower for larger problems
 - C*_k does not fit in memory and increases with #transactions



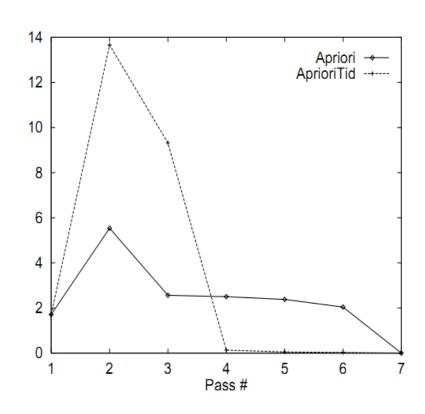




Performance

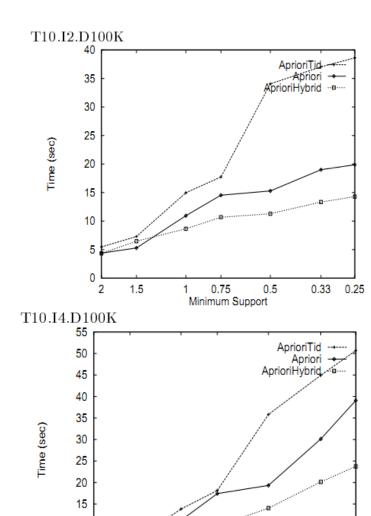
- AprioriTid is effective in later passes
 - Scans C*_k instead of the original dataset
 - becomes small compared to original dataset

When fits in memory,
 AprioriTid is faster than
 Apriori



AprioriHybrid

- Use Apriori in initial passes
- Switch to AprioriTid when it can fit in memory
- Switch happens at the end of the pass
 - Has some overhead to switch
- Still mostly better or as good as apriori



10

1.5

0.75

Minimum Support

520.33

Subset Function - 1

- Candidate itemsets in C_k are stored in a hash-tree (like a B-tree)
 - interior node = hash table
 - each bucket points to another node at the level below
 - leaf node = itemsets
 - recall that the itemsets are ordered
 - root at level 1 (top-most)
 - All nodes are initially leaves
 - When the number of itemsets in a leafnode exceeds a threshold, convert it into an interior node
- To add an itemset c, start from the root and go down the tree until reach a leaf

Given a transaction t and a candidate set C_k , compute the candidates in C_k contained in t

```
L_{1} = \{large\ 1\text{-}itemsets\}
For\ (k = 2;\ L_{k-1} \neq \phi;\ k++)\ \text{do begin}
C_{k} = \text{apriori-gen}\ (L_{k-1});
forall\ transactions\ t \in D\ \text{do begin}
C_{t} = \text{subset}\ (C_{k},t)
forall\ candidates\ c \in C_{t}\ \text{do}
c.count\ ++;
end
end
L_{k} = \{\ c \in C_{k} | c.count\ \geq minsup\}
end
Answer = \bigcup_{k} L_{k};
```

Subset Function - 2

- To find all candidates contained in a transaction t
 - if we are at a leaf
 - find which itemsets are contained in t
 - add references to them in the answer set
 - if we are at an interior node
 - we have reached it by hashing an item i
 - hash on each item that comes after i in t
 - repair
 - if we are at the root, hash on every item in t

```
L_{1} = \{large\ 1\text{-}itemsets\}
For\ (k = 2;\ L_{k-1} \neq \phi;\ k++)\ do\ begin
C_{k} = apriori-gen\ (L_{k-1});
forall\ transactions\ t \in D\ do\ begin
C_{t} = subset\ (C_{k},t)
forall\ candidates\ c \in C_{t}\ do
c.count\ ++;
end
end
L_{k} = \{\ c \in C_{k} | c.count\ \geq minsup\}
end
Answer = \bigcup_{k} L_{k};
```

Subset Function - 3

- Why does it work?
- For any itemset c in a transaction t
 - the first item of c must be in t
 - by hashing on each item in t, we ensure that we only ignore itemsets that start with an item not in t
 - similarly for lower depths
 - since the itemset is ordered, if we reach by hashing on i, we only need to consider items that occur after i

```
L_{1} = \{large\ 1\text{-}itemsets\}
For\ (k = 2;\ L_{k-1} \neq \phi;\ k++)\ do\ begin
C_{k} = apriori-gen\ (L_{k-1});
forall\ transactions\ t \in D\ do\ begin
C_{t} = subset\ (C_{k},t)
forall\ candidates\ c \in C_{t}\ do
c.\ count\ ++;
end
end
L_{k} = \{\ c \in C_{k} | c.\ count\ \geq minsup\}
end
Answer = \bigcup L_{k};
```

Conclusions

(of 516, Spring 2016)

Take-Aways

DBMS Basics

DBMS Internals

Overview of Research Areas

Hands-on Experience in DB systems

DB Systems

- Traditional DBMS
 - PostGres, SQL
- Large-scale Data Processing Systems
 - Spark/Scala, AWS
- New DBMS/NOSQL
 - MongoDB

- In addition
 - XML, JSON, JDBC, Python/Java

DB Basics

- SQL
- RA/Logical Plans
- RC
- Datalog
 - Why we needed each of these languages

Normal Forms

DB Internals and Algorithms

- Storage
- Indexing
- Operator Algorithms
 - External Sort
 - Join Algorithms
- Cost-based Query Optimization
- Transactions
 - Concurrency Control
 - Recovery

Large-scale Processing and New Approaches

- Parallel DBMS
- Distributed DBMS
- Map Reduce
- NOSQL

Advanced/Research Topics

(In various levels of details)

- Data Warehouse/OLAP/Data Cube
- Data Privacy
- View Selection
- Data Provenance
- Probabilistic Databases
- Crowdsourcing
- Could not cover many more....

Hope some of you will further explore Database Systems/Data Management/Data Analysis/Big Data...

Thank you ©