CompSci 516
Data Intensive Computing Systems

Lecture 5
Storage and Indexing

Instructor: Sudeepa Roy

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Announcement

e Homework 1
— DueonFeb 9, 11:59 pm
— Please post any question you have on Piazza

e Lecture slides

— Book chapters will be posted on the webpage two
days before the lecture

e youdon’t have to look at the chapters before the class!
— Slides will be posted after the class

Reading Material

* [RG]
— Chapters 8.1, 8.2, 8.3, 8.5

Additional reading
e [GUW]
— Chapters 8.3, 14.1

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 3

Where are we now?

We learnt

* Relational Model and Query Languages
— RA, RC, SQL, Postgres (DBMS)
 Schema refinement
— Normalization

— (for Schema Design with E/R diagram — see the book or CompSci
316)

Next

 Database Internals
— Architecture, Storage, Indexing

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 4

What will we learn?

* How does a DBMS organize files?
* What is an index?
 What are different types of indexes?

* How do we use index to optimize
performance?

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Data on External Storage

e Data must persist on disk across program executionsin a
DBMS

— But hasto be fetched into main memory when DBMS processes the
data

 The unitof information for reading data from or writing data
to disk is a page

* Disks: Can retrieve random page at fixed cost

— But readingseveral consecutive pagesis much cheaper thanreading
them inrandom order

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

File Organization

* File organization: Method of arranging a file of
records on external storage.

— Recordid (rid) is sufficient to physically locate the page
containingthe record on disk

— Indexes are data structures that allow us to find the
record ids of records with given values in index search key
fields

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 7

Alternative File Organizations

Many alternatives exist, each ideal for some
situations, and not so good in others:

— Heap (random order) files: Suitable when typical
access is a file scan retrieving all records

— Sorted Files: Best if records must be retrieved in
some order, or only a ‘range’ of records is needed.

— Indexes: Data structures to organize records via

trees or hashing.

- Like sorted files, they speed up searches for a subset of
records, based on valuesin certain (“search key”) fields

- Updatesare much faster than in sorted files.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Indexes

 Anindexon a file speeds up selections on the
search key fields for the index

— Any subset of the fields of a relation can be the search
key for an index on the relation.

— “Search key” is not the same as “key”

key = minimal set of fields that uniquelyidentifya
tuple

 An index contains a collection of data entries, and
supports efficient retrieval of all data entries k*
with a given key value k

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Alternatives for Data Entry k™ in Index k

* In a data entry k™ we can store:

1. The actual datarecord with key valuek, or
2. <k, rid>

* rid =record of data record with search key valuek, or
3. <k, rid-list>

* listof record ids of data records with search key k>

* Choice of alternative for data entries is orthogonal
to the indexing technique used to locate data
entries with a given key value k

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 10

Alternatives for Data Entries: Alternative 1

* |nadataentryk® we can store:

1. The actual data record with key value k, or Advantages/
Disadvantages?

Index structure is a file organization for data records
— instead of a Heap file or sorted file

How many different indexes can use Alternative 1?

At most one index can use Alternative 1

— Otherwise, datarecords are duplicated, leadingto redundantstorage and
potentialinconsistency

If data records are very large, #pages with data entries is high
— Impliessize of auxiliaryinformationin theindexisalsolarge

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 11

Alternatives for Data Entries: Alternative 2, 3

* |nadataentryk® we can store:
1. The actual data record with key value k, or Advantages/
2. <k, rid> Disadvantages?
* rid =record of data record with search key value k
3. <k, rid-list>

* listof recordids of data records with search key k>

- Data entries typically much smaller than data records
— So, betterthan Alternative 1 with large data records
— Especiallyif search keys are small.

- Alternative 3 more compact than Alternative 2

— butleadsto variable-size dataentries even if search keys have fixed length.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 12

Index Classification

* Primary vs. secondary
e Clustered vs. unclustered

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

13

Primary vs. Secondary Index

* |If search key contains primary key, then called
primary index, otherwise secondary
— Uniqueindex: Search key contains a candidate key

- Duplicate data entries:

— if they have the same value of search key field k
— Primary/unique index never has a duplicate
— Other secondary index can have duplicates

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

14

Clustered vs. Unclustered Index

* |f order of data recordsin a file is the same as, or
‘close to’, order of data entries in an index, then
clustered, otherwise unclustered

— Alternative 1 implies clustered — 2, 3 are typically
unclustered

— In practice, clustered also implies Alternative 1 (since sorted
files are rare)

— Afile can be clustered on at most one search key

— Cost of retrieving data records (range queries) through index
varies greatly based on whether indexis clustered or not

Clustered vs. Unclustered Index

 SupposethatAlternative (2)is used for data entries, and that the data records
are stored in a Heap file.

To build clustered index, first sort the Heap file
— with some free space on each page for future inserts
— Overflow pages may be needed for inserts
— Thus, datarecords are ‘close to’, but notidentical to, sorted

Index entries
CLUSTERED direct searchfor UNCLUSTERED

data entries

/ N / \

Data entries Data entries

/A DN (Index File) AN N~ X

//gE\ NI /ey v s vy

Duke CS, Spring 2016 Data Regord:i 516: Data Inmsive computing R RAOrds 16

Methods for indexing

* Tree-based
 Hash-based

 |n detail in the next lecture

— Only two examples today

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

17

B+ Tree Indexes

Non-leaf L
Pages ¢ cos ¢

— [\ [&\ [&\ [4\
Leaf oo «—> oo «—> o oo «—> s oo
Pages

(Sorted by search key)

- Leaf pages contain data entries, and are chained (prev & next)
- Non-leaf pages have index entries; only used to direct searches:

index entry
[1

PO K1 P1 K2 P2 o o o K
| | | |

Duke CS, Spring 2016 ‘17 ‘17 CompSci 51$: Data Intensive Computing Systems ‘17 18

Example B+ Tree

Roo&

Note how data entries
in leaflevel are sorted

4 N
117
N
Entries <= 17 Entries > 17
5 13 27 30
3 \ b y ~
2% | 3* | 5| 7* | 8* 14*116* 22% 24* 27*| 29* 33*| 34*| 38*| 39*
* Find
— 28%*7?
— 29%?

— All> 15* and < 30*

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

19

Hash-Based Indexes

* Records are grouped into buckets

— Bucket = primary page plus zero or more
overflow pages

* Hashing function h: h(r) = bucket in which
(data entry for) record r belongs

— h looks at the search key fields of r
— No need for “index entries” in this scheme

* Good for equality selections
— find all records with name = “Joe”

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

20

Example: Hash-based index

Index organized file hashed on AGE, with Auxiliary index on SAL

Smith, 44, 3000 T h2(AGE) = 00
hL(AGE) = 00 /I S
- Tracy, 44, 5004 |

h1(AG
AGE Ashby, 25, 3000
e DBasuy, 33,4003 —X

h2(SAL) = 01

Bristow, 29, 2007 -‘

h1(AGE) =1Q | o = = -
Daniels, 22, 6003

File of <SAL, rid> pairs hashed on SAL

Employee File hashed on AGE

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 21

Different File Organizations

We need to understand the importance

of appropriate file organization and index
Search key = <age, sal>

Heap files
— randomorder;insertat end-of-file
Sorted files
— sorted on <age, sal>
Clustered B+ tree file
— search key <age, sal>
Heap file with unclustered B*-tree index
— onsearchkey <age, sal>

Heap file with unclustered hash index
— onsearchkey <age, sal>

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 22

Possible Operations

. Scan

— Fetch all records from disk to buffer pool

Equality search

— Find all employees with age = 23 and sal = 50
— Fetch page from disk, then locate qualifyingrecord in page

 Range selection
— Find all employees with age > 35

o Insert a record

— identify the page, fetch that page from disk, inset record, write back
to disk (possibly other pages as well)

o Delete a record

— similartoinsert

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 23

Understanding the Workload

A workload is a mix of queries and updates

 Foreach query in the workload:
— Which relations does it access?
— Which attributes are retrieved?

— Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

* For each update in the workload:

— Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

— The type of update (INSERT/DELETE/UPDATE), and the attributes that are
affected

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 24

Choice of Indexes

e What indexes should we create?

— Which relations should have indexes? What field(s)
should be the search key? Should we build several
indexes?

 Foreach index, what kind of an index should it be?
— Clustered? Hash/tree?

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 25

More on Choice of Indexes

 One approach:

Consider the mostimportant queries

Considerthe best plan usingthe currentindexes

See if a better planis possible with an additional index.
If so, create it.

Obviously, thisimplies that we must understand how a DBMS evaluates
qgueries and creates query evaluation plans

We will learn query execution and optimizationlater- For now, we discuss
simple 1-table queries.

e Before creating an index, must also consider the impact on
updatesin the workload!

- Trade-off: Indexes can make queries go faster, updates slower.
Require disk space, too.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 26

Index Selection Guidelines — 1/3

e Attributesin WHERE clause are candidates for
index keys.
— Exact match condition suggests hash index.
— Range query suggests tree index.

— Clustering is especially useful for range queries; can
also help on equality queries if there are many
duplicates.

Index Selection Guidelines — 2/3

* Multi-attribute search keys should be
considered when a WHERE clause contains
several conditions.

— Order of attributes is important for range queries.

— Such indexes can sometimes enable index-only
strategies for important queries

— For index-only strategies, clustering is not
Important

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

28

Index Selection Guidelines — 3/3

* Try to choose indexes that benefit as many
gueries as possible

— Since only one index can be clustered per relation,
choose it based on important queries that would
benefit the most from clustering

* Note: clusteredindex should be used judiciously

— expensive updates, although cheaper than sorted
files

Examples of Clustered Indexes

* B+tree index on E.age can be used What is 2 good indexing
ifvi trategy
to get qualifying tuples strategy

o " SELECT E.dno
. ?
How selective is the condition? FROM Emp E

— everyone > 40, index not of much WHERE E.age>40
help, scan is as good

— Suppose 10% > 40. Then?

- Depends on if the index is clustered

— otherwise can be more expensive
than a linear scan

— if clustered, 10% I/O (+ index pages)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 30

Examples of Clustered Indexes

Group-Byquery What is a good indexing
strategy?

 Use E.age as search key?
— Bad If many tuples have E.age > 10 or if not

clustered.... SELECT E.dno, COUNT (*)
~ ..using E.age index and sorting the retrieved | FROM Emp E
tuples by E.dno may be costly WHERE E.age>10
GROUP BY E.dno

Clustered E.dno index may be better

— First group by, then count tuples with age >
10

— good when age > 10 is not too selective

Note: the first optionis good when the
WHERE condition is highly selective (few
tuples have age > 10), the second is good
when not highly selective

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 31

Examples of Clustered Indexes

What is a good indexing
strategy?

Equality queries and duplicates SELECT E.dno

FROM Emp E
WHERE E.hobby="Stamps’

« Clustering on E.hobby helps

— hobbynot a candidate key, several
tuples possible

SELECT E.dno
FROM Emp E

. i ?
Does clustering help now? WHERE E cid=50

— Not much

— at mostone tuple satisfies the
condition

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 32

Indexes with Composite Search Keys

Composite Search Keys: Search on
a combination of fields.

Equality query: Every field valueis
equal to a constantvalue. E.g. wrt
<sal,age>index:

— age=20andsal=75

Range query: Some field value s
not a constant. E.g.:

— sal>10
— <age, sal>doesnot help
— hastobe a prefix

Examples of composite key
indexes using lexicographic order.

11.80 /1
12,10 12
12.20 \| name age sal 12
13.75 \ bob 12 10 13
<age, sal> cal 11 80 <age>
joe 12 20
1012 sue 13 75 10
A N
20,12 — Data records N 20
75.13 sorted by name \ 75
80.11 80
<sal, age> <sal>
Data entries in index Data entries

sorted by <sal,age> sorted by <sal>

Composite Search Keys

To retrieve Emp records with age=30 anDp sa/=4000, an index

on <age,sal> would be better than an index on age or an

index on sal
— first find age = 30, among them search sal = 4000

If condition is: 20<age<30 anp 3000<sa/<5000:
— Clustered tree index on <age,sal> or <sal,age> is best.

If condition is: age=30 anp 3000<sa/<5000:

— Clustered <age,sal> index much better than <sal,age> index

— more index entries are retrieved for the latter

Composite indexes are larger, updated more often

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

34

Index-Only Plans

A number of queries can be answered without retrieving any
tuples from one or more of the relationsinvolvedif a suitable

indexis available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

<E.dno>

<E. age, E.sal>

Tree index!

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

<E.dno,E.sal>

Tree index!

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
E.sal BETWEEN 3000 AND 5000

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 35

