CompSci 516
Data Intensive Computing Systems

Lecture /
Indexing and
Query Evaluation

Instructor: Sudeepa Roy

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Announcement

* Homework 1
— Due on Feb 9 (Tuesday), 11:59 pm
— Check out clarifications and Q/A on Piazza
— You are doing a great job!
— Keep asking and answering questions!

What will we learn?

* Last lecture:
— Storage and tree-based indexing
* Next:

— Hash-based indexing
e Static and dynamic (extendible hashing, linear hashing)

Reading Material

* [RG]
— Hash-based index: Chapter 11
— Query evaluation: Chapter 12

e [GUW]
— Hash-based index: Chapter 14.3
— Query evaluation: Chapter 15

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Hash-based Index

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Recall from the previous lecture....

* Foran index,
— Search key =k
— Dataentry (storedin the indexfile) = k*
— Dataentry pointsto the data record with search key k
* Three alternatives for data entries k*:
1. Theentiredatarecord with key value k
2. <k, rid>
3. <k, list-of-rids>
 The above choice is orthogonal to the indexingtechnique
used to locate data entries k* given k
— Tree-based (Lecture 6)
— Hash-based (this lecture)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Introduction

* Hash-based indexes are best for equality
selections

— Cannot support range searches

— But useful in implementing relational operators like
join (later)

e Static and dynamic hashing techniques exist
— trade-offs similar to ISAM vs. B+ trees

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 7

Static Hashing

* Pages containingdata = a collection of buckets

— each bucket has one primary page, also possibly
overflow pages

— buckets contain data entries k*

O —— -+ - -
h(key) mod N
2 T —+ 5. ..
B I

N‘l 4+ © o o

Primary bucket pages Overflow pages

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Static Hashing

* # primary pages fixed

— allocated sequentially, never de-allocated, overflow pages if
needed.

* h(k) mod N = bucket to which data entry with key k
belongs
— N = # of buckets

O _% < < <
h(key) mod N
2 E ——> o o -
s o © o
N‘l 4+ O o o
Primary bucket pages Overflow pages

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Static Hashing

Hash function works on search key field of record r
— Must distribute values over rangeO ... N-1.
— h(key) = (a * key + b) usually works well.
— aandb areconstants—chosento tune h
Advantage:
— #buckets known — pages can be allocated sequentially
— searchneeds 1 1/0 (if no overflow page)
— insert/delete needs 2 1/0O (if no overflow page)
Disadvantage:
— Long overflow chains can develop and degrade performance
Solutions:
— keep some pages say 80% full initially
— Rehashif overflow pages (can be expensive)
— oruse Dynamic Hashing

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

10

Dynamic Hashing Techniques

* Extendible Hashing
* Linear Hashing

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

11

Extendible Hashing

Consider static hashing
Bucket (primary page) becomes full

Why not re-organize file by doubling # of buckets?

Reading and writing (double #pages) all pages is expensive

ldea: Use directory of pointers to buckets

double # of buckets by doublingthe directory, splitting just the
bucket that overflowed

Directory much smaller than file, so doublingit is much cheaper
Only one page of data entries is split

No overflow page (new bucket, no new overflow page)

Trick lies in how hash function is adjusted

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 12

LOCAL DEPTH~ — |

Example —

* Directory is array of size 4 2 2
— each element pointsto a bucket 00 - 17 5" 21"
— #bitstorepresent=log4=2= 01 — —
global depth 10 \\E%E;Q;
11 N 10*
* To find bucket for search key r \
_ take last global depth # bits of DIRECTORY |2
h(r) 15* 7* 19*
— assumeh(r) =r DATA PAGES
— Ifh(r)=5=binary 101
— itisin bucket pointedto byO1.
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Bucket A

Bucket B

Bucket C

Bucket D

13

Example

Insert:

Suppose inserting 13*

If bucket is full, split it
allocate new page
re-distribute

binary = 1101
bucket 01
Has space, insert

Duke CS, Spring 2016

—1 RRRROR

LOCAL DEPTH ﬁZﬁ
GLOBAL DEPTH 4* 12* 32* 16*
2 2
00 //////a 1* 5* 21*
01 -
o | [
1 N 10*
DIRECTORY\‘ 2
15* 7* 19*
DATA PAGES

CompSci 516: Data Intensive Computing Systems

Bucket A

Bucket B

Bucket C

Bucket D

14

Example

Insert:

If bucket is full, split it
allocate new page
re-distribute

Suppose inserting 20*

binary = 10100
bucket 00
Already full

LOCAL DEPTH

— 1>t

GLOBAL DEPTH

” - 1 5% 21* 13
01 -]
10 \\2
11 N 10*
DIRECTORY\‘ 2
15* 7* 19*
DATA PAGES

To split, consider last three bits of 10100

Last two bits the same 00 — the data entry
will belong to one of these buckets

Third bit to distinguish them

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

Bucket A

Bucket B

Bucket C

Bucket D

15

Example

GLOBAL DEPTH

00
01
10
11

Global depth: Max # of bits needed to tell which bucket an entry

bucket

belongs to
Local depth: # of bits used to determine if an entry belongs to this

* denotes whether a directory doubling is needed while splitting
* no directory doubling needed when 9* = 1001 is inserted

LOCAL DEPTH-Z—| 2
32*16
2 2
..... L il
1* 5* 21113
—
] EE%E
. ~[10"
2
DIRECTORY _ |-
15*7* 19*
2
4+ 12*20*

Duke

CS, Spring 2016

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
("splitimage'
of Bucket A)

LOCAL DEPTH-Z—7}3
CLOBAL DEPTH 32*161 BucketA
000 | 7~ | |1* 5" 21*13] BucketB
001 | — | 7<
010 |~ 2
011 |~ 10* Bucket C
100 |
101 %><2
110 / 15*7* 19* Bucket D
m | —
><3
DIRECTORY N'4. 12v20* | BucketA2
("splitimage'
of Bucket A)

CompSci 516: Data Intensive Computing Systems

16

When does bucket split cause
directory doubling?

- Before insert, local depth of bucket = global depth

- Insert causes local depth to become > global
depth

- directory is doubled by copying it over and fixing’
pointer to split image page

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 17

Directory Doubling

Why use least significant bits in directory?
Allows for doubling via copying!

6=110 i 6=110 i
000 000
........... 001 100
e Eg%g oo__ |\ Eg%é 010
A 00 011 1 00 110
0 6* 01 100 0 10 001

; 0] 6% | o , 6* 01
6* 101
" 110 6* 1 011 6*

m 111
Least Significant Vs. Most Significant

CompSci 516: Data Intensive Computing

Duke CS, Spring 2016
Systems

Comments on Extendible Hashing

* |f directory fits in memory, equality search answered with
one disk access (to access the bucket); else two.

— 100MB file, 100 bytes/rec, 4KB page size, contains 1,000,000
records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

— Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

— Multiple entries with same hash value cause problems
* Delete:
— If removal of data entry makes bucket empty, can be merged
with ‘splitimage’
— |f each directory element points to same bucket as its split
image, can halve directory.

Linear Hashing

* This is another dynamic hashing scheme
— an alternative to Extendible Hashing
* LH handles the problem of long overflow chains

— without using a directory
— handles duplicates and collisions
— very flexible w.r.t. timing of bucket splits

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 20

Linear Hashing: Basic ldea

Use a family of hash functions h,, hy, h,, ...
— h.(key) = h(key) mod(2'N)

— N =initial # buckets

— h is some hash function (range is not O to N-1)

— If N = 2%, for some d,, h, consists of applying h and
ooking at the last d; bits, whered, =d; +1i
- Note: hi(key) = h(key) mod(2%*)
— h;,; doubles the range of h,
- if h, maps to M buckets, h.,; maps to 2M buckets

- similar to directory doubling

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 21

Linear Hashing: Rounds

* Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin

* During round Level, only h ., and h ... arein
use

 The buckets from start to last are split sequentially
— this doubles the no. of buckets

* Therefore, at any pointin a round, we have

— buckets that have been split
— buckets that are yet to be split
— buckets created by splits in this round

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 22

Overview of LH File

* Inthe middle of a round Level

0

Next - 1
Bucket to be split Next

Buckets that existed at the
beginning of this round:
this is the range of

h Level

N

Buckets O to Next-1 have been
split
Nextto Ny yet to be split

Round ends when all Nyinitial
(for round R) buckets are split

Duke CS, Spring 2016

J

Buckets split in this round:

If h Level (r)

is in this range, must use
h Level+1(r)

to decide if entry is in
“split image’ bucket.

“split image’' buckets:
created (through splitting

J of other buckets) in this round

CompSci 516: Data Intensive Computing Systems

23

Linear Hashing: Search

* Inthe middle of a round Level

0

Next - 1
Bucket to be split Next

Buckets that existed at the

beginning of this round:
this is the range of

h Level

N

Buckets O to Next-1 have been
split
Nextto Ny yet to be split

Round ends when all Nyinitial
(for round R) buckets are split

Duke CS, Spring 2016

J Buckets split in this round:

If h Level (r)

is in this range, must use
h Level+1(r)

to decide if entry is in
“split image’ bucket.

“split image’ buckets:
created (through splitting
J of other buckets) in this round

Search: To find bucket for data entry r, find h .. (r):
* If hiewel(r) in range "Next to Ni’, r belongs here.
* Else, r could belong to bucket h . (r) or hiewel(r)+Ng
must apply hjewe+1(r) to find out.

CompSci 516: Data Intensive Computing Systems 24

Linear Hashing: Insert

* Insert: Find bucket by applying h ..o / hievels1:

— If bucket to insert into is full:
* Add overflow page and insert data entry.
* Split Next bucket and increment Next

* Note: We are going to assume that a split is triggered’
whenever an insert causes the creation of an overflow

page, but in general, we could impose additional
conditions for better space utilization ([RG], p.380)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 25

000

001

010

011
(This info

is for illustration

only!)

00

01

10

11

Example of Linear Hashing

Level=0, N=4

PRIMARY

Next=0 PAGES

N\

Duke CS, Spring 2016

32%44* 35*|

Data entry r
9*| 25*(5* with h(r)ZS

X
S~—

14*1 18’110"130’1\ Primary

- bucket page

31*| 35*] 7* 11:1_

(The actual contents
of the linear hashed

file)

Insert 43* = 101011

ho(43) =11

Full

Insert in an overflow page
Need a split at Next (=0)
Entries in 00 is distributed to
000 and 100

CompSci 516: Data Intensive Computing Systems 26

Example of Linear Hashing

Level=0, N=4 Level=0
h h PRIMARY h h PRIMARY OVERFLOW
: 0 | Next=0 PAGES g 0 PAGES PAGES
32%44* 32
000 00 36*' 000 00 1
_ Dat t I\{)‘d:l]
ata entry r
001 | o1 9%|25%57| | with h(r)=5 001 | o1 9% 25%5™
N~ -
X *
010 10 141 1811°ﬂ3°1\ Primary 010 10 14718 10*1”1
- bucket page L
31%35%7*11 31%35% 7% 11% *
011 11 ’1 *I :1_ 011 11 1 1 5 43
(This info (The actual contents
is for illustration of the linear hashed 100 00 44ﬂ 36*
only!) file) -

 Nextis incremented after split
* Note the difference between overflow page

(11) and split image (000 and 100)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 27

Example of Linear Hashing

Search for 18* = 10010
* between Next(=1) and 4
» this bucket has not been split

Search for 32* = 100000

or 44* =101100
Between 0 and Next-1
Need h;

Not all insertion triggers split
* Insert 37* =100101
* Has space

Splitting at Next?
 No overflow bucket needed
* Just copy atthe image/original

Next = Noe-1 and a split?
e Start a new round
* |Increment Level

* NextresettoO
Duke CS, Spring 2016

000

001

010

011

100

00

01

10

11

00

Level=0
PRIMARY OVERFLOW
PAGES PAGES
3z*|
I\{)‘(t=1 -
9*| 25%|5*
144 18% 10*1301
S
311 35*1 7*[11% 43*
44*1 36*
28

CompSci 516: Data Intensive Computing Systems

Example: End of a Round

Level=1
PRIMARY OVERFLOW
h1 hO PAGES PAGES
Next=0
Level=0 000 00 N 30%
PRIMARY OVERFLOW -
PAGES
hq ho PAGES 001 01 T
000 | 00 32* -+
— 010 | 10 66* 18* 10*34* | [50*
001 | o1 9* 25%
- 011 | 11 43* 35*% 11*
010 | 10 66*18*10* 34* 1
Nex\t=3 - 100 00 44* 36*
011 | 11 31%35% 7* 11* [43%* ol
101 * ¥
100 | 00 44*36* 11 5* 37* 29
101 | o1 5* 37%2Q%* 110 | 10 14* 30* 22*
110 | 10 14*30%22* 111 | 11 31F 7%

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 29

LH Described as a Variant of EH

The two schemes are actually quite similar:

Begin with an EH index where directory has N elements.
— Use overflow pages, split buckets round-robin.

— First splitis at bucket 0
- Imagine directory beingdoubled at this point

— But elements <1,N+1>, <2,N+2>, ... are the same. So, need only
create directory element N, which differs from O, now.

* When bucket 1 splits, create directory element N+1, etc.
So, directory can double gradually
Also, primary bucket pages are created in order

If they are allocated in sequence too (so that finding i’th is
easy), we actually don’t need a directory

Voila, LH.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 30

LH vs. EH

e Uniform distribution: LH has lower average cost
— No directory level
* Skewed distribution

— Many empty/nearly empty bucketsin LH
— EH may be better

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

31

Summary

 Hash-based indexes: best for equality searches,
cannot support range searches.

e Static Hashing can lead to long overflow chains.

* Extendible Hashing avoids overflow pages by splitting
a full bucket when a new data entry is to be added to
It
— Duplicates may still require overflow pages
— Directory to keep track of buckets, doubles periodically

— Can get large with skewed data; additional I/0 if this does
not fit in main memory

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 32

Summary

e Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages
— Overflow pages not likely to be long
— Duplicates handled easily

— Space utilization could be lower than Extendible Hashing,
since splits not concentrated on ‘dense’ data areas

— Can tune criterion for triggering splits to trade-off slightly
longer chains for better space utilization.

 For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not

uniformly distributed

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 33

Overview of Query Evaluation

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

34

Overview of Query Evaluation

 How queries are evaluated in a DBMS
— How DBMS describes data (tables and indexes)

e Recall Relational Algebra = Logical Query Plan

* Now Algorithms will be attached to each operator =
Physical Query Plan

* Plan: Tree of R.A. ops, with choice of alg for each op.

— Each operator typicallyimplemented using a pull’
interface

— when an operator is pulled’ for the next output tuples, it
‘pulls’ on its inputs and computes them

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 35

Overview of Query Evaluation

* Two main issuesin query optimization:

1. For agiven query, what plans are considered?

— Algorithm to search plan space for cheapest
(estimated) plan.

2. How is the cost of a plan estimated?

* |deally: Want to find best plan
* Practically: Avoid worst plans!

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Some Common Techniques

* Algorithms for evaluating relational operators use some
simple ideas extensively:
* |Indexing:

— Can use WHERE conditions to retrieve small set of tuples
(selections, joins)

* |teration:
— Examineall tuplesin aninput tuple
— Sometimes, faster to scan all tuples even if there is an index

— And sometimes, we can scan the data entries in an index
instead of the table itself

— Does notuse the index structure (hash or tree structure — can
iterate over leavesin a tree)

* Partitioning:

— By usingsorting or hashing, we can partition the input tuples
and replace an expensive operation by similar operations on
smallerinputs

Watch for these techniques as we discuss query evaluation!
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

37

System Catalog

Stores informationaboutthe relations and indexes involved
Also called Data Dictionary

Catalogs typically contain at least:
— Size of the buffer pooland pagesize
— #Htuples(NTuples)and # pages (NPages) for each relation
— #distinct key values (NKeys) and NPages for each index.
— Index height, low/high key values (Low/High) for each tree index

More detailed information (e.g., histograms of the valuesin some field)
are sometimes stored

Catalogs updated periodically.

— Updatingwhenever data changesis too expensive;lots of approximation
anyway, so slight inconsistency ok.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 38

Access Paths

* A way of retrieving tuples from a table
e Consists of

— a file scan

— or, an index + a matching condition

* The access method contributes significantly to the
cost of the operator

— Any relational operator accepts one or more table as
input

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 39

Index “matching” a search condition

A tree index matches (a conjunction of) terms thatinvolve only
attributes in a prefix of the search key.

E.g., Tree index on <g, b, c> matches the selection

a=5 AND b=3,

and a=5 AND b>6,

but not b=3

A hash index matches (a conjunction of) terms that has a term attribute
= value for every attribute in the search key of the index.

E.g., Hash index on <g, b, c> matches
a=5 AND b=3 AND c=5;

but it does not match b=3,

or a=5 AND b=3,

or a>5 AND b=3 AND c=5

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 40

A Note on Complex Selections

* |f index (hash or tree) on
— search key <bid, sid>
* Selection condition
— rname = ‘Joe’ AND bid =5 AND sid=3

e <bid, sid> can be used to retrieve all tuples with
bid =5 and sid =3
— then apply rname = ‘Joe’ to each such tuple to
eliminate more

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 41

A Note on Complex Selections

* Suppose two indexes
— B+ tree index on day
— index on search key <bid, sid>

e Selection condition
— day<8/9/94 AND bid =5 AND sid = 3
— Two choices

— Part of the index not matched — check for each
retrieved tuple

 We only discuss case with no ORs

Access Paths: Selectivity

e Selectivity:
— the number of pages retrieved for an access path
— includes data pages + index pages

* |f thereis an index, many options:
1. Scan the data file
2. Use the index to retrieve tuples

3. (possible sometimes) Just scan the index, rather than
scanning the data file or using the index to probe

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 43

Most Selective Access Paths

e An index or file scan that we estimate will
require the fewest page |/Os.

— Terms that match this index reduce the number of
tuples retrieved

— other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages
fetched.

To be continued in the next lecture

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

44

