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Basic hints on using Unix 
•  Find a properly installed Unix system: linux.cs.duke.edu, or MacOS with 

Xcode will do nicely. 

•  Learn a little about the Unix shell command language.  On MacOS open the 
standard Terminal utility. 

•  Learn some basic commands: cd, ls, cat, grep, more/less, pwd, rm, cp, 
mv, diff, and an editor of some kind (vi, emacs, …).  Spend one hour. 

•  Learn basics of make.  Look at the makefile.  Run “make –i” to get it to tell 
you what it is doing.  Understand what it is doing. 

•  Wikipedia is a good source for basics.  Use the man command to learn 
about commands (1), syscalls (2), or C libraries (3).  E.g.: type “man man”. 

•  Know how to run your programs under a debugger: gdb.  If it crashes you 
can find out where.  It’s easy to set breakpoints, print variables, etc. 

•  If your program doesn’t compile, deal with errors from the top down.  Try 
“make >out 2>out”.  It puts all output in the file “out” to examine at leisure.  

•  Keep source in gitlab.cs.duke.edu and Do. Not. Share. It.     



The “shell”: Unix CLI 
chase:scratch> curl http:…/lab1.tgz >lab1.tgz 
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current 
                                 Dload  Upload   Total   Spent    Left  Speed 
100 212k  100  212k    0     0   148k      0  0:00:01  0:00:01 --:--:--  163k  
chase:scratch> ls 
lab1.tgz 
chase:scratch> tar zxvf lab1.tgz 
… 
chase:scratch> ls 
lab1.tgz 
chase:scratch> cd lab1 
chase:lab1> ls 
Makefile dmm.c  lab1.pdf  test_coalesce.c  test_stress2.c 
README   dmm.h  test_basic.c  test_stress1.c  test_stress3.c 
chase:lab1>  

CLI == Command Line Interface 
E.g., the Terminal application on MacOS 



A simple C program 

int  
main() 
{ 
 
} 
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(code)
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ReservedVAS example (32-bit) 

•  The program uses virtual memory through 
its process’ Virtual Address Space: 

•  An addressable array of bytes… 
•  Containing every instruction the process 

thread can execute… 
•  And every piece of data those instructions 

can read/write… 
–  i.e., read/write == load/store on memory 

•  Partitioned into logical segments 
(regions) with distinct purpose and use. 

•  Every memory reference by a thread is 
interpreted in the context of its VAS. 
–  Resolves to a location in machine memory 



Memory segments: a view from C 

•  Globals:  
–  Fixed-size segment 
–  Writable by user program 
–  May have initial values 

•  Text (instructions) 
–  Fixed-size segment 
–  Executable 
–  Not writable 

•  Heap and stack 
–  Variable-size segments 
–  Writable 
–  Zero-filled on demand 

globals 

registers 

RCX 

PC/RIP x 
SP/RBP y 

heap 

stack 

segments 

text 

CPU core 



Heap abstraction, simplified 

1.  User program calls heap manager to allocate a block of 
any desired size to store some dynamic data. 

2.  Heap manager returns a pointer to a block.  The program 
uses that block for its purpose.  The block’s memory is 
reserved exclusively for that use. 

3.  Program calls heap manager to free (deallocate) the 
block when the program is done with it. 

4.  Once the program frees the block, the heap manager 
may reuse the memory in the block for another purpose. 

5.  User program is responsible for initializing the block, and 
deciding what to store in it.  Initial contents could be old.  
Program must not try to use the block after freeing it. 



Heap manager 

Heap manager 

OS kernel 

Program (app or test) 

alloc alloc 
free 

“0xA” “0xA” “0xB” “ok” 

sbrk Dynamic data
(heap/BSS)

Stack

“break” 
 4096 

“Set break (4096)” 
system call 



Heap: dynamic memory 

Allocated heap blocks 
for structs or objects.  

Align! 
 

Heap segment.  A 
contiguous chunk of memory 

obtained from OS kernel. 
E.g., with Unix sbrk() syscall  

 

A runtime library obtains 
the block and manages it as 

a “heap” for use by the 
programming language 
environment, to store 

dynamic objects. 
 

E.g., with Unix malloc and 
free library calls. 

 
 



Using the heap (1) 
#include <stdlib.h> 
#include <stdio.h> 
 
int  
main() 
{ 
  char* cb = (char*) malloc(14); 
  cb[0]='h'; 
  cb[1]='i'; 
  cb[2]='!'; 
  cb[3]='\0'; 
  printf("%s\n", cb); 
  free(cb); 
} 

chase$ cc -o heap heap.c 
chase$ ./heap 
hi! 
chase$  



Using the heap (2) 
#include <stdlib.h> 
#include <stdio.h> 
 
int  
main() 
{ 
  char* cb = (char*) malloc(14); 
  cb[0]='h'; 
  cb[1]='i'; 
  cb[2]='!'; 
  cb[3]='\0'; 
  printf("%s\n", cb); 
  int *ip = (int*)cb; 
  printf("0x%x\n", *ip); 
  free(cb); 
} 

chase$ cc -o heap heap.c 
chase$ ./heap 
hi! 
0x216968 
chase$  

h=0x68 
i=0x69 
!=0x21 

0 
cb
ip

Try: 
http://wikipedia.org/wiki/ASCII 
http://wikipedia.org/wiki/Endianness 
 
 

Type casts 



64 bytes: 3 ways 
p + 0x0

0x1f

0x0

0x1f

0x1f

0x0

char p[] 
char *p 

int p[] 
int* p 

p

char* p[] 
char** p 

Pointers (addresses) are 8 
bytes on a 64-bit machine. 

Memory is “fungible”. 



Alignment 
p + 0x0

0x1f

0x0

0x1f

0x1f

0x0

char p[] 
char *p 

int p[] 
int* p 

p

char* p[] 
char** p 

Machines desire/require that an n-byte 
type is aligned on an n-byte boundary. 

n = 2i 

X
X

X



Pointer arithmetic 

  char* cb = (char*) malloc(14); 
  strcpy(cb, "hi!"); 
 
  void* ptr = (void*)cb; 
  ptr = ptr + 2; 
  cb = (char*)ptr; 
  printf("%s\n", cb);  
  
  free(cb); 

h=0x68 
i=0x69 
!=0x21 

0 
cb
ptr

chase$ cc -o heap3 heap3.c 
chase$ ./heap3 
??? 
chase$  



Pointer arithmetic 

  char* cb = (char*) malloc(14); 
  strcpy(cb, "hi!"); 
 
  void* ptr = (void*)cb; 
  ptr = ptr + 2; 
  cb = (char*)ptr; 
  printf("%s\n", cb);  
  
  free(cb); 

h=0x68 
i=0x69 
!=0x21 

0 
cb
ptr

chase$ cc -o heap3 heap3.c 
chase$ ./heap3 
! 
heap3(5478) malloc: *** error for 
object 0x7f92a9c000e2: pointer being 
freed was not allocated 
Abort trap: 6 
chase$  



Using the heap (3) 

  char* cb = (char*)malloc(14); 
  strcpy(cb, "hi!"); 
  free(cb); 
  /* 
   * Dangling reference! 
   */ 
  printf("%s\n", cb); 
  int *ip = (int*)cb; 
  printf("0x%x\n", *ip); 
  /* 
   * Uninitialized heap block! 
   */ 
  char* cb2 = (char*)malloc(14); 
  printf("%s\n", cb2);   
 

chase$ cc -o heap2 heap2.c 
chase$ ./heap2 
??? 
chase$  

h=0x68 
i=0x69 
!=0x21 

0 
cb
ip



Using the heap (4) 

chase$ cc -o heap2 heap2.c 
chase$ ./heap2 
hi! 
0x216968 
hi! 
chase$  

h=0x68 
i=0x69 
!=0x21 

0 
cb
ip  char* cb = (char*)malloc(14); 

  strcpy(cb, "hi!"); 
  free(cb); 
  /* 
   * Dangling reference! 
   */ 
  printf("%s\n", cb); 
  int *ip = (int*)cb; 
  printf("0x%x\n", *ip); 
  /* 
   * Uninitialized heap block! 
   */ 
  char* cb2 = (char*)malloc(14); 
  printf("%s\n", cb2);   
 



WARNING 

•  These behaviors are undefined. 
•  Any program whose behavior relies on the 

meaning of a dangling reference is incorrect. 
•  For example, a change in the allocation 

policy of the heap manager could result in 
different behavior. 

•  Can a program stay safe from dangling 
references by just never calling free? 



Memory leaks in the heap 
What happens if some memory is heap allocated, but never deallocated? A program 
which forgets to deallocate a block is said to have a "memory leak" which may or 
may not be a serious problem. The result will be that the heap gradually fill up as 
there continue to be allocation requests, but no deallocation requests to return 
blocks for re-use. 
 
For a program which runs, computes something, and exits immediately, memory 
leaks are not usually a concern. Such a "one shot" program could omit all of its 
deallocation requests and still mostly work. Memory leaks are more of a problem for 
a program which runs for an indeterminate amount of time. In that case, the 
memory leaks can gradually fill the heap until allocation requests cannot be 
satisfied, and the program stops working or crashes. Many commercial programs 
have memory leaks, so that when run for long enough, or with large data-sets, they 
fill their heaps and crash. Often the error detection and avoidance code for the 
heap-full error condition is not well tested, precisely because the case is rarely 
encountered with short runs of the program — that's why filling the heap often 
results in a real crash instead of a polite error message.  

[From Essential C: Pointers and Memory: http://cslibrary.stanford.edu/101] 
 



Heap: parking lot analogy 
•  Vehicles take up varying amounts of space, but they 

don’t grow or shrink, and they don’t have “holes”. 
•  They come and go at arbitrary times. 
•  Space allocation is exclusive. 
•  Vehicles are parked in contiguous space: must find a 

block that is available (free) and big enough. 



Heap manager: “the easy way” 

static void* freespace = NULL; 
 
void* dmalloc(size_t n) { 
 
  if (freespace == NULL) 
    freespace = (void*)sbrk(4096); 
   
  void* bp = freespace; 
  freespace = freespace + ALIGN(n); 
   
  return bp; 
 
} 
 

Dynamic data
(heap/BSS)

Stack

“break” 
 

4096 

Why is this a bad way to 
implement a heap manager? 

 

“Set break” 
Choose your size. 



Silberschatz, Galvin and  Gagne ©2002 9.23Operating System Concepts 

Dynamic Storage-Allocation Problem

■  First-fit:  Allocate the first hole that is big enough.
■  Best-fit:  Allocate the smallest hole that is big enough; 

must search entire list, unless ordered by size.  
Produces the smallest leftover hole.

■  Worst-fit:  Allocate the largest hole; must also search 
entire list.  Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes.

First-fit and best-fit [generally] better than worst-fit in 
terms of speed and storage utilization.

50-percent rule:  Given N allocated blocks another 1/2N 
will be lost due to fragmentation ⇒ 1/3 of memory lost.







There is a book on this topic 



“The easy way” isn’t good enough 
•  “The easy way” approach can’t free the blocks! 

–  It doesn’t track the borders between blocks, or their sizes. 
–  It allocates only from the “top” of the heap, never from the 

middle, so it can’t reuse freed blocks anyway. 
–   It’s a stack!   It is fast and easy for local variables, but it’s not 

good enough for a heap: 

It can only free space at the front! 
 
Admittedly this ferry picture illustrates FIFO 
(first-in-first-out: queue) rather than LIFO 
(last-in-first-out: stack), but you get the idea.  
It’s restricted, and I want to come and go as I 
please, i.e., allocate space when I want and 
free it when I want. 
 



#include <stdio.h> 
#include <stdlib.h> 
 
struct stuff { 
  int i; 
  long j; 
  char c[2]; 
}; 
 
struct stuff gstuff; 
 

int main() { 
  struct stuff sstuff; 
  struct stuff *hstuffp = 

 (struct stuff *) malloc(sizeof(struct stuff)); 
 
  gstuff.i = 13; 
  gstuff.j = 14; 
  gstuff.c[0] = 'z'; 
  gstuff.c[1] = '\0'; 
 
  printf("%s\n", gstuff.c); 
 
  sstuff.i = 13; 
  sstuff.j = 14;… 
   
  hstuffp->i = 13; 
  hstuffp->j = 14;… 
} 

C structs, global, stack, heap 

Data structure 
type definition 

A global structure 

Local data of a 
procedure (on 

the stack) 

Accessing a heap-
allocated struct 

through a pointer. 

Accessing a 
global structure 

Local variables 

Heap allocation 



Spelling it out 
•  That C program is in a C source file called structs.c in the C 

samples directory on the course web. 
•  On any properly installed Unix/Linux or MacOSX system, you can 

compile it into an executable program by typing: 
–  cc –o structs structs.c 
–  That says: “run the C compiler (cc or gcc) on the input structs.c, and put 

the output in a new file called structs”. 
–  This is a shell command line.  Much more on that later (Lab #2).  You 

will need to learn some shell command language. 

•  This command secretly runs other system utilities to finish the job. 
–  The compiler outputs a file with compiled assembly language code. 
–  Assembler reads that and generates a partial executable (object file). 

–  A linker combines the object file with code from system libraries, and 
outputs the executable file structs. 



Building and running a program 

chase:lab1> make 
gcc -I. -Wall -lm -DNDEBUG -c dmm.c  
… 
gcc -I. -Wall -lm -DNDEBUG -o test_basic test_basic.c dmm.o 
gcc -I. -Wall -lm -DNDEBUG -o test_coalesce test_coalesce.c dmm.o 
gcc -I. -Wall -lm -DNDEBUG -o test_stress1 test_stress1.c dmm.o 
gcc -I. -Wall -lm -DNDEBUG -o test_stress2 test_stress2.c dmm.o 
chase:lab1> chase:lab1> ./test_basic 
calling malloc(10) 
call to dmalloc() failed 
chase:lab1> 



The Birth of a Program (C/Ux) 

int j; 
char* s = “hello\n”; 
 
int p() { 
        j = write(1, s, 6); 
       return(j); 
}  

myprogram.c 

compiler 

    ….. 
p: 
   store this 
   store that 
   push 
   jsr _write 
   ret 
   etc. 

myprogram.s 

assembler data 

myprogram.o 

linker 

object 
file 

data program 

(executable file) 
myprogram 

data data data 

libraries 
and other 

object 
files or 

archives 

     
     

     header files 



Linking (from cs:app) 

Linker (ld)

Translators
(cpp, cc1, as)

main.c 

main.o 

Translators
(cpp, cc1, as)

swap.c 

swap.o 

p

Source files

Relocatable
object files

Fully linked
executable object file



Static linking with libraries 

Translators
(cpp, cc1, as)

main2.c 

main2.o 

libc.a 

Linker (ld)

p2 

printf.o and any other 
modules called by printf.o  

libvector.a 

addvec.o 

Static libraries

Fully linked 
executable object file

vector.h 



What’s in an Object File or Executable? 

int j = 327; 
char* s = “hello\n”; 
char sbuf[512]; 
 
int p() { 
        int k = 0; 
        j = write(1, s, 6); 
       return(j); 
}  

text 

data idata 

wdata 

header 

symbol 
table 

relocation 
records 

program instructions 
p 

immutable data (constants) 
“hello\n” 

writable global/static data 
j, s 

j, s ,p,sbuf 

Header “magic number” 
indicates type of file/image. 

Section table an array 
of (offset, len, startVA) 

sections 

Used by linker; may be 
removed after final link 
step and strip.  Also 
includes info for debugger. 



0000000100000ea0 pushq  %rbp 
0000000100000ea1 movq  %rsp, %rbp 
0000000100000ea4 subq  $48, %rsp 
0000000100000ea8 movabsq  $24, %rdi 
0000000100000eb2 callq 0x100000f42 
0000000100000eb7 leaq 182(%rip), %rdi 
0000000100000ebe leaq 347(%rip), %rcx 
0000000100000ec5 movq  %rcx, %rdx 
0000000100000ec8 addq $16, %rdx 
0000000100000ecf  movq  %rax, -32(%rbp) 
0000000100000ed3 movl $13, (%rcx) 
0000000100000ed9 movq  $14, 8(%rcx) 
0000000100000ee1 movb  $122, 16(%rcx) 
0000000100000ee5 movb  $0, 17(%rcx) 
0000000100000ee9 movq  %rdx, %rsi 
0000000100000eec movb  $0, %al 
0000000100000eee callq 0x100000f48 
0000000100000ef3 movl $0, %r8d 

0000000100000ef9 movl $13, -24(%rbp) 
0000000100000f00 movq  $14, -16(%rbp) 
0000000100000f08 movb  $122, -8(%rbp) 
0000000100000f0c  movb  $0, -7(%rbp) 
0000000100000f10 movq  -32(%rbp), %rcx 
0000000100000f14 movl $13, (%rcx) 
0000000100000f1a movq  -32(%rbp), %rcx 
0000000100000f1e movq  $14, 8(%rcx) 
0000000100000f26 movq  -32(%rbp), %rcx 
0000000100000f2a movb  $122, 16(%rcx) 
0000000100000f2e movq  -32(%rbp), %rcx 
0000000100000f32 movb  $0, 17(%rcx) 
0000000100000f36 movl %eax, -36(%rbp) 
0000000100000f39 movl %r8d, %eax 
0000000100000f3c  addq $48, %rsp 
0000000100000f40 popq %rbp 
0000000100000f41 ret 

cc –o structs structs.c 
otool –vt structs 

The otool –vt command shows contents of the 
text section of an executable file. 
Here are the instructions for the structs program.  
When the program runs, the OS loads them into a 
contiguous block of virtual memory (the text 
segment) at the listed virtual addresses.   



Code: instructions 
•  The text section contains executable code for the program: a 

sequence of machine instructions. 
•  Most instructions just move data in and out of named registers, or do 

arithmetic in registers. 

–  These x86 instructions move the contents of the %rsp register (stack 
pointer) into the %rbp register (base pointer), then subtract 48 from %rsp. 

•  Some instructions load from or store to memory at a virtual address in 
a register, plus some offset (displacement). 

 
–  This x86 instruction loads a quadword (8-byte) value at the address in the 

%rbp register, minus 32, and puts that value in the %rcx register. 

  movq  %rsp, %rbp 
  subq  $48, %rsp 

movq  -32(%rbp), %rcx 



Registers 

•  The next few slides give some pictures of the register 
sets for various processors. 
–  x86 (IA32 and x86-64): Intel and AMD chips, MIPS 
–  The details aren’t important, but there’s always an SP (stack 

pointer) and PC (program counter or instruction pointer: the 
address of the current/next instruction to execute). 

•  The system’s Application Binary Interface (ABI) defines 
conventions for use of the registers by executable code. 

•  Each processor core has at least one register set for use 
by a code stream running on that core. 
–  Multi-threaded cores (“SMT”) have multiple register sets and can 

run multiple streams of instructions simultaneously. 



  pushq  %rbp 
  movq  %rsp, %rbp 
  subq  $48, %rsp 

 
 

  movabsq $24, %rdi 
  callq  0x100000f42  
  movq  %rax, -32(%rbp) 

 
  leaq  347(%rip), %rcx 

...address global data relative to (%rcx) 
 
 
...address stack data relative to (%rbp) 
 
; move pointer to heap block into %rcx 

  movq  -32(%rbp), %rcx 
...address heap block relative to (%rcx) 
 

  addq  $48, %rsp 
  popq  %rbp 
  ret 

Push a frame on the stack: 
this one is 48 bytes. 
Who decided that? 

Call malloc(24): move 
return value into a local 
variable (at an offset from 
the stack base pointer). 

Address global data 
relative to the code 
address (%rip=PC). 
position-independent 

Pop procedure frame 
from the stack before 
returning from main(). 

Simplified… 
int main() { 
  struct stuff sstuff; 
 
  struct stuff *hstuffp = 

 (struct stuff *) 
       malloc(24); 
 
  gstuff.i = 13; 
  gstuff.j = 14; 
  gstuff.c[0] = 'z'; 
  gstuff.c[1] = '\0'; 
 
  sstuff.i = 13; 
  sstuff.j = 14;… 
   
  hstuffp->i = 13; 
  hstuffp->j = 14;… 
} 



Addressing stuff 
struct stuff { 
  int i; 
  long j; 
  char c[2]; 
}; 

0x0

movl  $13, (%rcx) 
movq  $14, 8(%rcx) 
movb  $122, 16(%rcx) 
movb  $0, 17(%rcx) 

  sstuff.i = 13; 
  sstuff.j = 14; 
  sstuff.c[0] = 'z'; 
  sstuff.c[1] = '\0’; 

movl  $13, -24(%rbp) 

  hstuffp->i = 13; 
   hstuffp->j = 14; 
   hstuffp->c[0] = 'z'; 
   hstuffp->c[1] = '\0'; 

0x18

movq  $14, -16(%rbp) 
movb  $122, -8(%rbp) 
movb  $0, -7(%rbp) 

%rbp

24 bytes
(=0x18) 

%rcx



Basic C data types (64-bit) 

struct stuff { 
  int i; 
  long j; 
  char c[2]; 
}; 

0x0

0x18
%rbp

24 bytes
(=0x18) 



Addressing stuff 

0x18
(24)

0x0
global data segment 

heap data segment (BSS) 

stack data segment 

registers 

&gstuff 

RCX 

RIP x 
RBP y 

struct stuff { 
  int i; 
  long j; 
  char c[2]; 
}; 

hstuffp 

&sstuffp 

347(%rip) 

-xx(%rbp) 



Memory model: the view from C 

•  Globals:  
–  fixed size segment 
–  Writable by user program 
–  May have initial values 

•  Text (instructions) 
–  fixed size segment 
–  executable 
–  not writable 

•  Heap and stack 
–  variable size segments 
–  writable 
–  zero-filled on demand 

globals 

registers 

RCX 

PC/RIP x 
SP/RBP y 

heap 

stack 

segments 

text 

CPU core 



Assembler directives: quick peek 
From x86 Assembly Language Reference Manual 
 
The .align directive causes the next data generated to be aligned modulo 
integer bytes.  
 
The .ascii directive places the characters in string into the object module at the 
current location but does not terminate the string with a null byte (\0). 
 
The .comm directive allocates storage in the data section. The storage is 
referenced by the identifier name. Size is measured in bytes and must be a 
positive integer. 
 
The .globl directive declares each symbol in the list to be global. Each symbol 
is either defined externally or defined in the input file and accessible in other 
files. 
 
The .long directive generates a long integer (32-bit, two's complement value) 
for each expression into the current section. Each expression must be a 32–bit 
value and must evaluate to an integer value.  




