
Notes	
 on	
 Heap	
 Manager	
 in	
 C	

	

Jeff	
 Chase	

Duke	
 University	

Basic hints on using Unix
•  Find a properly installed Unix system: linux.cs.duke.edu, or MacOS with

Xcode will do nicely.

•  Learn a little about the Unix shell command language. On MacOS open the
standard Terminal utility.

•  Learn some basic commands: cd, ls, cat, grep, more/less, pwd, rm, cp,
mv, diff, and an editor of some kind (vi, emacs, …). Spend one hour.

•  Learn basics of make. Look at the makefile. Run “make –i” to get it to tell
you what it is doing. Understand what it is doing.

•  Wikipedia is a good source for basics. Use the man command to learn
about commands (1), syscalls (2), or C libraries (3). E.g.: type “man man”.

•  Know how to run your programs under a debugger: gdb. If it crashes you
can find out where. It’s easy to set breakpoints, print variables, etc.

•  If your program doesn’t compile, deal with errors from the top down. Try
“make >out 2>out”. It puts all output in the file “out” to examine at leisure.

•  Keep source in gitlab.cs.duke.edu and Do. Not. Share. It.

The “shell”: Unix CLI
chase:scratch> curl http:…/lab1.tgz >lab1.tgz
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 212k 100 212k 0 0 148k 0 0:00:01 0:00:01 --:--:-- 163k
chase:scratch> ls
lab1.tgz
chase:scratch> tar zxvf lab1.tgz
…
chase:scratch> ls
lab1.tgz
chase:scratch> cd lab1
chase:lab1> ls
Makefile dmm.c lab1.pdf test_coalesce.c test_stress2.c
README dmm.h test_basic.c test_stress1.c test_stress3.c
chase:lab1>

CLI == Command Line Interface
E.g., the Terminal application on MacOS

A simple C program

int
main()
{

}

0x0

0x7fffffff

Static data

Dynamic data
(heap/BSS)

Text
(code)

Stack

ReservedVAS example (32-bit)

•  The program uses virtual memory through
its process’ Virtual Address Space:

•  An addressable array of bytes…
•  Containing every instruction the process

thread can execute…
•  And every piece of data those instructions

can read/write…
–  i.e., read/write == load/store on memory

•  Partitioned into logical segments
(regions) with distinct purpose and use.

•  Every memory reference by a thread is
interpreted in the context of its VAS.
–  Resolves to a location in machine memory

Memory segments: a view from C

•  Globals:
–  Fixed-size segment
–  Writable by user program
–  May have initial values

•  Text (instructions)
–  Fixed-size segment
–  Executable
–  Not writable

•  Heap and stack
–  Variable-size segments
–  Writable
–  Zero-filled on demand

globals

registers

RCX

PC/RIP x
SP/RBP y

heap

stack

segments

text

CPU core

Heap abstraction, simplified

1.  User program calls heap manager to allocate a block of
any desired size to store some dynamic data.

2.  Heap manager returns a pointer to a block. The program
uses that block for its purpose. The block’s memory is
reserved exclusively for that use.

3.  Program calls heap manager to free (deallocate) the
block when the program is done with it.

4.  Once the program frees the block, the heap manager
may reuse the memory in the block for another purpose.

5.  User program is responsible for initializing the block, and
deciding what to store in it. Initial contents could be old.
Program must not try to use the block after freeing it.

Heap manager

Heap manager

OS kernel

Program (app or test)

alloc alloc
free

“0xA” “0xA” “0xB” “ok”

sbrk Dynamic data
(heap/BSS)

Stack

“break”
 4096

“Set break (4096)”
system call

Heap: dynamic memory

Allocated heap blocks
for structs or objects.

Align!

Heap segment. A
contiguous chunk of memory

obtained from OS kernel.
E.g., with Unix sbrk() syscall

A runtime library obtains
the block and manages it as

a “heap” for use by the
programming language
environment, to store

dynamic objects.

E.g., with Unix malloc and
free library calls.

Using the heap (1)
#include <stdlib.h>
#include <stdio.h>

int
main()
{
 char* cb = (char*) malloc(14);
 cb[0]='h';
 cb[1]='i';
 cb[2]='!';
 cb[3]='\0';
 printf("%s\n", cb);
 free(cb);
}

chase$ cc -o heap heap.c
chase$./heap
hi!
chase$

Using the heap (2)
#include <stdlib.h>
#include <stdio.h>

int
main()
{
 char* cb = (char*) malloc(14);
 cb[0]='h';
 cb[1]='i';
 cb[2]='!';
 cb[3]='\0';
 printf("%s\n", cb);
 int *ip = (int*)cb;
 printf("0x%x\n", *ip);
 free(cb);
}

chase$ cc -o heap heap.c
chase$./heap
hi!
0x216968
chase$

h=0x68
i=0x69
!=0x21

0
cb
ip

Try:
http://wikipedia.org/wiki/ASCII
http://wikipedia.org/wiki/Endianness

Type casts

64 bytes: 3 ways
p + 0x0

0x1f

0x0

0x1f

0x1f

0x0

char p[]
char *p

int p[]
int* p

p

char* p[]
char** p

Pointers (addresses) are 8
bytes on a 64-bit machine.

Memory is “fungible”.

Alignment
p + 0x0

0x1f

0x0

0x1f

0x1f

0x0

char p[]
char *p

int p[]
int* p

p

char* p[]
char** p

Machines desire/require that an n-byte
type is aligned on an n-byte boundary.

n = 2i

X
X

X

Pointer arithmetic

 char* cb = (char*) malloc(14);
 strcpy(cb, "hi!");

 void* ptr = (void*)cb;
 ptr = ptr + 2;
 cb = (char*)ptr;
 printf("%s\n", cb);

 free(cb);

h=0x68
i=0x69
!=0x21

0
cb
ptr

chase$ cc -o heap3 heap3.c
chase$./heap3
???
chase$

Pointer arithmetic

 char* cb = (char*) malloc(14);
 strcpy(cb, "hi!");

 void* ptr = (void*)cb;
 ptr = ptr + 2;
 cb = (char*)ptr;
 printf("%s\n", cb);

 free(cb);

h=0x68
i=0x69
!=0x21

0
cb
ptr

chase$ cc -o heap3 heap3.c
chase$./heap3
!
heap3(5478) malloc: *** error for
object 0x7f92a9c000e2: pointer being
freed was not allocated
Abort trap: 6
chase$

Using the heap (3)

 char* cb = (char*)malloc(14);
 strcpy(cb, "hi!");
 free(cb);
 /*
 * Dangling reference!
 */
 printf("%s\n", cb);
 int *ip = (int*)cb;
 printf("0x%x\n", *ip);
 /*
 * Uninitialized heap block!
 */
 char* cb2 = (char*)malloc(14);
 printf("%s\n", cb2);

chase$ cc -o heap2 heap2.c
chase$./heap2
???
chase$

h=0x68
i=0x69
!=0x21

0
cb
ip

Using the heap (4)

chase$ cc -o heap2 heap2.c
chase$./heap2
hi!
0x216968
hi!
chase$

h=0x68
i=0x69
!=0x21

0
cb
ip char* cb = (char*)malloc(14);

 strcpy(cb, "hi!");
 free(cb);
 /*
 * Dangling reference!
 */
 printf("%s\n", cb);
 int *ip = (int*)cb;
 printf("0x%x\n", *ip);
 /*
 * Uninitialized heap block!
 */
 char* cb2 = (char*)malloc(14);
 printf("%s\n", cb2);

WARNING

•  These behaviors are undefined.
•  Any program whose behavior relies on the

meaning of a dangling reference is incorrect.
•  For example, a change in the allocation

policy of the heap manager could result in
different behavior.

•  Can a program stay safe from dangling
references by just never calling free?

Memory leaks in the heap
What happens if some memory is heap allocated, but never deallocated? A program
which forgets to deallocate a block is said to have a "memory leak" which may or
may not be a serious problem. The result will be that the heap gradually fill up as
there continue to be allocation requests, but no deallocation requests to return
blocks for re-use.

For a program which runs, computes something, and exits immediately, memory
leaks are not usually a concern. Such a "one shot" program could omit all of its
deallocation requests and still mostly work. Memory leaks are more of a problem for
a program which runs for an indeterminate amount of time. In that case, the
memory leaks can gradually fill the heap until allocation requests cannot be
satisfied, and the program stops working or crashes. Many commercial programs
have memory leaks, so that when run for long enough, or with large data-sets, they
fill their heaps and crash. Often the error detection and avoidance code for the
heap-full error condition is not well tested, precisely because the case is rarely
encountered with short runs of the program — that's why filling the heap often
results in a real crash instead of a polite error message.

[From Essential C: Pointers and Memory: http://cslibrary.stanford.edu/101]

Heap: parking lot analogy
•  Vehicles take up varying amounts of space, but they

don’t grow or shrink, and they don’t have “holes”.
•  They come and go at arbitrary times.
•  Space allocation is exclusive.
•  Vehicles are parked in contiguous space: must find a

block that is available (free) and big enough.

Heap manager: “the easy way”

static void* freespace = NULL;

void* dmalloc(size_t n) {

 if (freespace == NULL)
 freespace = (void*)sbrk(4096);

 void* bp = freespace;
 freespace = freespace + ALIGN(n);

 return bp;

}

Dynamic data
(heap/BSS)

Stack

“break”

4096

Why is this a bad way to
implement a heap manager?

“Set break”
Choose your size.

Silberschatz, Galvin and Gagne ©2002 9.23Operating System Concepts

Dynamic Storage-Allocation Problem

■  First-fit: Allocate the first hole that is big enough.
■  Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size.
Produces the smallest leftover hole.

■  Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes.

First-fit and best-fit [generally] better than worst-fit in
terms of speed and storage utilization.

50-percent rule: Given N allocated blocks another 1/2N
will be lost due to fragmentation ⇒ 1/3 of memory lost.

There is a book on this topic

“The easy way” isn’t good enough
•  “The easy way” approach can’t free the blocks!

–  It doesn’t track the borders between blocks, or their sizes.
–  It allocates only from the “top” of the heap, never from the

middle, so it can’t reuse freed blocks anyway.
–  It’s a stack! It is fast and easy for local variables, but it’s not

good enough for a heap:

It can only free space at the front!

Admittedly this ferry picture illustrates FIFO
(first-in-first-out: queue) rather than LIFO
(last-in-first-out: stack), but you get the idea.
It’s restricted, and I want to come and go as I
please, i.e., allocate space when I want and
free it when I want.

#include <stdio.h>
#include <stdlib.h>

struct stuff {
 int i;
 long j;
 char c[2];
};

struct stuff gstuff;

int main() {
 struct stuff sstuff;
 struct stuff *hstuffp =

 (struct stuff *) malloc(sizeof(struct stuff));

 gstuff.i = 13;
 gstuff.j = 14;
 gstuff.c[0] = 'z';
 gstuff.c[1] = '\0';

 printf("%s\n", gstuff.c);

 sstuff.i = 13;
 sstuff.j = 14;…

 hstuffp->i = 13;
 hstuffp->j = 14;…
}

C structs, global, stack, heap

Data structure
type definition

A global structure

Local data of a
procedure (on

the stack)

Accessing a heap-
allocated struct

through a pointer.

Accessing a
global structure

Local variables

Heap allocation

Spelling it out
•  That C program is in a C source file called structs.c in the C

samples directory on the course web.
•  On any properly installed Unix/Linux or MacOSX system, you can

compile it into an executable program by typing:
–  cc –o structs structs.c
–  That says: “run the C compiler (cc or gcc) on the input structs.c, and put

the output in a new file called structs”.
–  This is a shell command line. Much more on that later (Lab #2). You

will need to learn some shell command language.

•  This command secretly runs other system utilities to finish the job.
–  The compiler outputs a file with compiled assembly language code.
–  Assembler reads that and generates a partial executable (object file).

–  A linker combines the object file with code from system libraries, and
outputs the executable file structs.

Building and running a program

chase:lab1> make
gcc -I. -Wall -lm -DNDEBUG -c dmm.c
…
gcc -I. -Wall -lm -DNDEBUG -o test_basic test_basic.c dmm.o
gcc -I. -Wall -lm -DNDEBUG -o test_coalesce test_coalesce.c dmm.o
gcc -I. -Wall -lm -DNDEBUG -o test_stress1 test_stress1.c dmm.o
gcc -I. -Wall -lm -DNDEBUG -o test_stress2 test_stress2.c dmm.o
chase:lab1> chase:lab1> ./test_basic
calling malloc(10)
call to dmalloc() failed
chase:lab1>

The Birth of a Program (C/Ux)

int j;
char* s = “hello\n”;

int p() {
 j = write(1, s, 6);
 return(j);
}

myprogram.c

compiler

 …..
p:
 store this
 store that
 push
 jsr _write
 ret
 etc.

myprogram.s

assembler data

myprogram.o

linker

object
file

data program

(executable file)
myprogram

data data data

libraries
and other

object
files or

archives

 header files

Linking (from cs:app)

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

swap.c

swap.o

p

Source files

Relocatable
object files

Fully linked
executable object file

Static linking with libraries

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

p2

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Fully linked
executable object file

vector.h

What’s in an Object File or Executable?

int j = 327;
char* s = “hello\n”;
char sbuf[512];

int p() {
 int k = 0;
 j = write(1, s, 6);
 return(j);
}

text

data idata

wdata

header

symbol
table

relocation
records

program instructions
p

immutable data (constants)
“hello\n”

writable global/static data
j, s

j, s ,p,sbuf

Header “magic number”
indicates type of file/image.

Section table an array
of (offset, len, startVA)

sections

Used by linker; may be
removed after final link
step and strip. Also
includes info for debugger.

0000000100000ea0 pushq %rbp
0000000100000ea1 movq %rsp, %rbp
0000000100000ea4 subq $48, %rsp
0000000100000ea8 movabsq $24, %rdi
0000000100000eb2 callq 0x100000f42
0000000100000eb7 leaq 182(%rip), %rdi
0000000100000ebe leaq 347(%rip), %rcx
0000000100000ec5 movq %rcx, %rdx
0000000100000ec8 addq $16, %rdx
0000000100000ecf movq %rax, -32(%rbp)
0000000100000ed3 movl $13, (%rcx)
0000000100000ed9 movq $14, 8(%rcx)
0000000100000ee1 movb $122, 16(%rcx)
0000000100000ee5 movb $0, 17(%rcx)
0000000100000ee9 movq %rdx, %rsi
0000000100000eec movb $0, %al
0000000100000eee callq 0x100000f48
0000000100000ef3 movl $0, %r8d

0000000100000ef9 movl $13, -24(%rbp)
0000000100000f00 movq $14, -16(%rbp)
0000000100000f08 movb $122, -8(%rbp)
0000000100000f0c movb $0, -7(%rbp)
0000000100000f10 movq -32(%rbp), %rcx
0000000100000f14 movl $13, (%rcx)
0000000100000f1a movq -32(%rbp), %rcx
0000000100000f1e movq $14, 8(%rcx)
0000000100000f26 movq -32(%rbp), %rcx
0000000100000f2a movb $122, 16(%rcx)
0000000100000f2e movq -32(%rbp), %rcx
0000000100000f32 movb $0, 17(%rcx)
0000000100000f36 movl %eax, -36(%rbp)
0000000100000f39 movl %r8d, %eax
0000000100000f3c addq $48, %rsp
0000000100000f40 popq %rbp
0000000100000f41 ret

cc –o structs structs.c
otool –vt structs

The otool –vt command shows contents of the
text section of an executable file.
Here are the instructions for the structs program.
When the program runs, the OS loads them into a
contiguous block of virtual memory (the text
segment) at the listed virtual addresses.

Code: instructions
•  The text section contains executable code for the program: a

sequence of machine instructions.
•  Most instructions just move data in and out of named registers, or do

arithmetic in registers.

–  These x86 instructions move the contents of the %rsp register (stack
pointer) into the %rbp register (base pointer), then subtract 48 from %rsp.

•  Some instructions load from or store to memory at a virtual address in
a register, plus some offset (displacement).

–  This x86 instruction loads a quadword (8-byte) value at the address in the

%rbp register, minus 32, and puts that value in the %rcx register.

 movq %rsp, %rbp
 subq $48, %rsp

movq -32(%rbp), %rcx

Registers

•  The next few slides give some pictures of the register
sets for various processors.
–  x86 (IA32 and x86-64): Intel and AMD chips, MIPS
–  The details aren’t important, but there’s always an SP (stack

pointer) and PC (program counter or instruction pointer: the
address of the current/next instruction to execute).

•  The system’s Application Binary Interface (ABI) defines
conventions for use of the registers by executable code.

•  Each processor core has at least one register set for use
by a code stream running on that core.
–  Multi-threaded cores (“SMT”) have multiple register sets and can

run multiple streams of instructions simultaneously.

 pushq %rbp
 movq %rsp, %rbp
 subq $48, %rsp

 movabsq $24, %rdi
 callq 0x100000f42
 movq %rax, -32(%rbp)

 leaq 347(%rip), %rcx

...address global data relative to (%rcx)

...address stack data relative to (%rbp)

; move pointer to heap block into %rcx

 movq -32(%rbp), %rcx
...address heap block relative to (%rcx)

 addq $48, %rsp
 popq %rbp
 ret

Push a frame on the stack:
this one is 48 bytes.
Who decided that?

Call malloc(24): move
return value into a local
variable (at an offset from
the stack base pointer).

Address global data
relative to the code
address (%rip=PC).
position-independent

Pop procedure frame
from the stack before
returning from main().

Simplified…
int main() {
 struct stuff sstuff;

 struct stuff *hstuffp =

 (struct stuff *)
 malloc(24);

 gstuff.i = 13;
 gstuff.j = 14;
 gstuff.c[0] = 'z';
 gstuff.c[1] = '\0';

 sstuff.i = 13;
 sstuff.j = 14;…

 hstuffp->i = 13;
 hstuffp->j = 14;…
}

Addressing stuff
struct stuff {
 int i;
 long j;
 char c[2];
};

0x0

movl $13, (%rcx)
movq $14, 8(%rcx)
movb $122, 16(%rcx)
movb $0, 17(%rcx)

 sstuff.i = 13;
 sstuff.j = 14;
 sstuff.c[0] = 'z';
 sstuff.c[1] = '\0’;

movl $13, -24(%rbp)

 hstuffp->i = 13;
 hstuffp->j = 14;
 hstuffp->c[0] = 'z';
 hstuffp->c[1] = '\0';

0x18

movq $14, -16(%rbp)
movb $122, -8(%rbp)
movb $0, -7(%rbp)

%rbp

24 bytes
(=0x18)

%rcx

Basic C data types (64-bit)

struct stuff {
 int i;
 long j;
 char c[2];
};

0x0

0x18
%rbp

24 bytes
(=0x18)

Addressing stuff

0x18
(24)

0x0
global data segment

heap data segment (BSS)

stack data segment

registers

&gstuff

RCX

RIP x
RBP y

struct stuff {
 int i;
 long j;
 char c[2];
};

hstuffp

&sstuffp

347(%rip)

-xx(%rbp)

Memory model: the view from C

•  Globals:
–  fixed size segment
–  Writable by user program
–  May have initial values

•  Text (instructions)
–  fixed size segment
–  executable
–  not writable

•  Heap and stack
–  variable size segments
–  writable
–  zero-filled on demand

globals

registers

RCX

PC/RIP x
SP/RBP y

heap

stack

segments

text

CPU core

Assembler directives: quick peek
From x86 Assembly Language Reference Manual

The .align directive causes the next data generated to be aligned modulo
integer bytes.

The .ascii directive places the characters in string into the object module at the
current location but does not terminate the string with a null byte (\0).

The .comm directive allocates storage in the data section. The storage is
referenced by the identifier name. Size is measured in bytes and must be a
positive integer.

The .globl directive declares each symbol in the list to be global. Each symbol
is either defined externally or defined in the input file and accessible in other
files.

The .long directive generates a long integer (32-bit, two's complement value)
for each expression into the current section. Each expression must be a 32–bit
value and must evaluate to an integer value.

