
D u k e  S y s t e m s 

CPS	
  310	
  
Unix	
  I/O	
  and	
  

Inter-­‐Process	
  Communica:on	
  (IPC)	
  

Jeff	
  Chase	
  
Duke	
  University	
  

	
  
hDp://www.cs.duke.edu/~chase/cps310	
  



The kernel 

syscall trap/return fault/return 

interrupt/return 

system call layer: files, processes, IPC, thread syscalls 
fault entry: VM page faults, signals, etc. 

I/O completions timer ticks 

thread/CPU/core management: sleep and ready queues 
memory management: block/page cache 

sleep queue(s) ready queue 



running 

ready blocked 

sleep 

STOP wait 

wakeup 

dispatch 

yield 
preempt 

thread 
states 



kernel code 
kernel 
data 

kernel 
space 

user 
space 

Safe 
control 
transfer 



Process, kernel, and syscalls 

trap 

read() {…} 

write() {…} 

copyout copyin 

user buffers 

kernel 

process user space 

read() {…} 

syscall 
dispatch 
table 

I/O 
descriptor 
table 

syscall stub 

Return 
to user 
mode 

I/O objects 



Unix syscalls we care about now 

•  fork, exec*, exit, wait* 
–  Use execvp and waitpid 

•  open, read, write (+ lseek) 
•  pipe 
•  dup* 
–  Use dup2 

•  close 
•  chdir 
•  (getpid, getpgid, setpgid, tcsetpgrp, kill, killpg) 



Platform abstractions 

•  Platforms provide “building blocks”… 
•  …and APIs to use them. 
–  Instantiate/create/allocate  
–  Manipulate/configure 
–  Attach/detach 
–  Combine in uniform ways 
–  Release/destroy 

The choice of abstractions reflects a philosophy 
of how to build and organize software systems. 



Small is beautiful? 

The UNIX Time-Sharing System*  
D. M. Ritchie and K. Thompson 

1974 
 



Unix programming environment 

stdout stdin 

Standard unix programs 
read a byte stream from 
standard input (fd==0). 

They write their output to 
standard output (fd==1). 

That style makes it 
easy to combine 
simple programs 
using pipes or files. 

If the parent sets it up, 
the program doesn’t 
even have to know. 

Stdin or stdout 
might be bound to a 
file, pipe, device, or 
network socket. 

The processes 
may run 
concurrently and 
are synchronized 
automatically. 



Unix process view: data 

Process 

Thread 

Program Files 

I/O channels 
(“file descriptors”) 

stdin 
stdout 
stderr 

pipe 

tty 

socket 

A process has multiple channels 
for data movement in and out of 
the process (I/O). 

The parent process and 
parent program set up and 
control the channels for a 
child (until exec). 

The channels are typed. 

Each channel is named 
by a file descriptor. 



Standard I/O descriptors 
I/O channels 

(“file descriptors”) 
stdin 
stdout 
stderr tty 

 
count = read(0, buf, count); 
if (count == -1)  { 

 perror(“read failed”);  /* writes to stderr */  
 exit(1); 

} 
count = write(1, buf, count); 
if (count == -1) { 

 perror(“write failed”);  /* writes to stderr */ 
 exit(1); 

} 

Open files or other I/O channels 
are named within the process by 
an integer file descriptor value. 

Standard descriptors for 
primary input (stdin=0), 
primary output (stdout=1), 
error/status (stderr=2). 
Their bindings are 
inherited from the parent 
process and/or set by the 
parent program. 
 
By default they are bound 
to the controlling tty. 



Files: open syscall 
fd = open(pathname, <options>); 
write(fd, “abcdefg”, 7); 
read(fd, buf, 7); 
lseek(fd, offset, SEEK_SET); 
close(fd); 
 

Files 

 O_RDONLY       open for reading only 
 O_WRONLY      open for writing only 
 O_RDWR          open for reading and writing 
 O_APPEND       append data to end of file on each write 
 O_CREAT          create file if it does not already exist 
 O_TRUNC          truncate size to 0 if it exists 
 O_EXCL          give an error if O_CREAT and the file exists 
 
Example: 
#include <fcntl.h> 
fd = open(“somefile”, O_CREAT | O_TRUNC | O_WRONLY); 

Possible <option> 
flags for open: 



Files: open and chdir 

Syscalls like open (or exec*) interpret a file pathname relative to the 
current directory of the calling process. 
 
If the pathname starts with “/” then it is relative to the root directory. 
 
A process inherits its current directory from parent process across fork. 
 
A process can change its current directory with the chdir syscall. 
 

fd = open(pathname, <options>); 
write(fd, “abcdefg”, 7); 
read(fd, buf, 7); 
lseek(fd, offset, SEEK_SET); 
close(fd); 
 

Files 

“.” in a pathname means current directory (curdir). 
“..” in a pathname means parent directory of curdir. 



Unix process: parents rule 

Child 
Process 

Thread 

Program 

Virtual address space 
(Virtual Memory, VM) 

kernel state 

text 
data 
heap 

Created with fork 
by parent program 
running in parent 

process. 

Parent program 
running in child 

process, or exec’d 
program chosen by 

parent program. 

Inherited from parent 
process, or modified by 
parent program in child 

(e.g., using dup* to 
remap descriptors). 

Initial VAS contents inherited 
from parent on fork, or reset 
for child program on exec.  

Parent chooses environment 
(argv[] and envp[]) on exec. 



Unix shell(s) 
An early interactive programming environment 

•  Classical Unix programs are packaged software components: 
specific functions with narrow, text-oriented interfaces. 

•  Shell is a powerful (but character-based) user interface. 
–  Shell is a user program that uses kernel syscalls to execute utility 

programs as child processes. 
–  A typical shell command is just the name of a program to run. 

•  Shell is also a programming environment for composing and 
coordinating programs interactively. 

•  So: it’s both an interactive programming environment and a 
programmable user interface. 
–  Both ideas were “new” at the time (late 1960s). 

•  Its powerful scripting capabilities are widely used in large-scale 
system administration and services, for 40+ years! 

 



A simple program: cat 
•  /bin/cat is a standard Unix utility program. 
•  By default it copies stdin to stdout in a loop of read/write 

syscalls. 
•  It sleeps as needed and exits only if an error occurs or it reads 

an EOF (end-of-file) from its input. 
•  We can give cat arguments with a list of files to read from, 

instead of stdin.   It copies all of these files to stdout.  
(“concatenate”) 

while ((nr = read(rfd, buf, bsize)) > 0) { 
 for (off = 0; nr; nr -= nw, off += nw) { 
  if ((nw = write(wfd, buf + off, (size_t)nr)) < 0) 
   err(1, "stdout”) 
 } 

} From http://svnweb.freebsd.org/base/head/bin/cat/cat.c 



A shell running a command 

fork 

exec 

“cat” 
dsh 

wait 

dsh 

dsh runs in child to initialize kernel 
state and launch the program.  The 
child inherits stdin and stdout bound 
to the controlling terminal.   

dsh calls execvp to overlay itself with 
a child program in a named file          
(/bin/cat).  It passes the empty argv 
array (argv[0] == “cat”) and the env 
array inherited from the parent. 

cat executes, starting with main().  It 
issues a read syscall on stdin and 
sleeps until an input line is entered 
on the terminal…. 

Parent  calls waitpid to 
sleep until child exits. 



A shell running a command 

fork 

exec 

EXIT 

“cat <in >out” 
dsh 

wait 

dsh 

Child process running dsh: it is a 
clone of the parent, including a 
snapshot of parent’s internal data 
(from parser, etc.), and any open 
descriptors, current directory, etc. 

Parent program (dsh) runs in child to 
initialize kernel state: e.g.: open files, 
close descriptors, remap descriptors 
with dup2, modify argv/env arrays. 

dsh calls execvp to overlay itself with 
a child program in a named file (cat), 
passing arg/env arrays.  

cat executes, starting with main(argc, 
argv, envp).  It copies data with 
read(stdin) and write(stdout) syscalls 
until it is done, then exits the child. 

Parent  calls waitpid to 
sleep until child exits. 

Parent wakes up, 
checks exit status… 



A shell running a command 

fork 

exec 

EXIT 

“cat <in >out” 
dsh 

wait 

dsh 

dsh runs in child to initialize kernel 
state.  Open file “in” in the current 
directory and use dup2 to map it to 
stdin.  Open/truncate/create file “out” 
and use dup2 to map it to stdout.   
Close any unneeded descriptors. 

dsh calls execvp to overlay itself with 
a child program in a named file          
(/bin/cat).  It passes the empty argv 
array (argv[0] == “cat”) and the env 
array inherited from the parent. 

cat executes, starting with main().  It 
copies data from stdin to stdout with a 
loop of read/write syscalls until a 
syscall fails or read gets an EOF.   If 
EOF, it exits with status 0. 

Parent  calls waitpid to 
sleep until child exits. 

Parent wakes up, 
receives 0 status, 
prints next prompt… 



Shell and child (example) 

dsh tty 

stdout 
stderr 

stdin dsh 

tty 

stdout 
stderr 

stdin 

tty 

stdout 
stderr 

stdin fork 
tcsetpgrp 

exec 
wait 

 

If child is to run in the foreground: 
Child receives/takes control of the terminal (tty) input (tcsetpgrp). 
The foreground process receives all tty input until it stops or exits. 
The parent waits for a foreground child to stop or exit. 

Child process inherits 
standard I/O channels to 
the terminal (tty). 

1	
  

2	
  

3	
  



Other application programs	


  cc	


     Other application programs                 	


Hardware	


Kernel       	


sh	
 who  

 
a.out   	


date	


wc 	


   grep	

ed	
vi	


ld	


as	


    comp	


cpp	

nroff	


Unix defines uniform, modular ways to combine 
programs to build up more complex functionality.  



A key idea: Unix pipes 

[http://www.bell-labs.com/history/unix/philosophy.html] 

The shell offers an 
intuitive syntax for 
pipes.  That makes it 
possible to combine 
programs interactively 
from the shell.  They 
each operate on a 
data stream flowing 
through them. 

source | filter  | sink 



Shell pipeline example 

Job  

who grep 

dsh 

stdin stdout 

stderr 

tty 

stderr 

stdout 
stderr 

stdin 
chase$ who | grep chase 
chase    console  Jan 13 21:08  
chase    ttys000  Jan 16 11:37  
chase    ttys001  Jan 16 15:00  
chase$  

tty 
tty stdout stdin 

tty 
tty 

pipe 



Pipes 

•  The pipe() system call creates a pipe object. 
•  A pipe has one read end and one write end: unidirectional. 
•  Bytes placed in the pipe with write are returned by read in order. 
•  The read syscall blocks if the pipe is empty. 
•  The write syscall blocks if the pipe is full. 
•  Write fails (SIGPIPE) if no process has the read end open. 
•  Read returns EOF if the pipe is empty and all writers close the pipe. 

pipe 

int pfd[2] = {0, 0}; 
pipe(pfd); 
/*pfd[0] is read, pfd[1] is write */ 
 
b = write(pfd[1], "12345\n", 6); 
b = read(pfd[0], buf, b); 
b = write(1, buf, b); 
 
 
12345 

A pipe is a bounded 
kernel buffer for 
passing bytes. 



How to plumb the pipe? 

C1 C2 
stdin stdout 

tty stdout stdin tty 

1	
   2	
  P creates pipe. P 

C1 closes the read end of 
the pipe, closes its stdout, 
“dups” the write end onto 
stdout, and execs.  

P forks C1 and C2. 
Both children inherit 
both ends of the pipe, 
and stdin/stdout/stderr. 
Parent closes both ends of 
pipe after fork. 

3A	
   C2 closes the write end of 
the pipe, closes its stdin, 
“dups” the read end onto 
stdin, and execs. 

3B	
  



Simpler example 
Feeding a child through a pipe 

parent 

stdin 

stderr 
stdout stdin 

stderr 
stdout 

child cid 

Parent 
int ifd[2] = {0, 0}; 
pipe(ifd); 
cid = fork(); 

Parent 
close(ifd[0]); 
count = read(0, buf, 5); 
count = write(ifd[1], buf, 5); 
waitpid(cid, &status, 0); 
printf("child %d exited…”); 

Child 
close(0); 
close(ifd[1]); 
dup2(ifd[0],0); 
close(ifd[0]); 
execve(…); 
   

chase$ man dup2 
chase$ cc -o childin childin.c 
chase$ ./childin cat5 
12345 
12345 
5 bytes moved 
child 23185 exited with status 0 
chase$  

pipe 



Pipe reader and writer run concurrently 

reality 

concept 

context 
switch 

Context switch occurs when one process is forced to sleep 
because the pipe is full or empty, and maybe at other times. 



Notes on pipes 
•  All the processes in a pipeline run concurrently.  The order in which 

they run is not defined.  They may execute at the same time on 
multiple cores.  They do NOT execute in sequence (necessarily). 

•  Their execution is “synchronized by producer/consumer bounded 
buffer”.  (More about this next month.)  It means that a writer blocks if 
there is no space to write, and a reader blocks if there are no bytes to 
read.  Otherwise they may both run: they might not, but they could. 

•  They do NOT read all the input before passing it downstream. 
•  The pipe itself must be created by a common parent.  The children 

inherit the pipe’s file descriptors from the parent on fork.  Unix has no 
other way to pass a file descriptor to another process. 

•  How does a reader “know” that it has read all the data coming to it 
through a pipe?   Answer: there are no bytes in the pipe, and no 
process has the write side open.  Then the read syscall returns EOF.   



C1/C2 user pseudocode 
while(until EOF) { 
      read(0, buf, count); 
      compute/transform data in buf; 
      write(1, buf, count); 
} 

C1 C2 
stdin stdout 

stdout stdin 

Kernel pseudocode for pipes: 
Producer/consumer bounded buffer 
 
Pipe write: copy in bytes from user buffer 
to in-kernel pipe buffer, blocking if k-buffer 
is full. 
 
Pipe read: copy bytes from pipe’s k-buffer 
out to u-buffer.  Block while k-buffer is 
empty, or return EOF if empty and pipe 
has no writer. 

cat | cat 
(Note: try this scenario 
to debug pipes!) 



Pipes 

C1 C2 
stdin stdout 

stdout stdin 

Kernel-space pseudocode 
System call internals to read/write N bytes for buffer size B. 
 
read(buf, N) 
{ 
      for (i = 0; i++; i<N) { 
       move one byte into buf[i]; 
      } 
} 
 



Pipes 

C1 C2 
stdin stdout 

stdout stdin 

read(buf, N) 
{ 
      pipeMx.lock(); 
      for (i = 0; i++; i<N) { 

 while (no bytes in pipe) 
         dataCv.wait(); 

       move one byte from pipe into buf[i]; 
             spaceCV.signal(); 
      } 
      pipeMx.unlock(); 
} 

Read N bytes from the 
pipe into the user buffer 
named by buf.   Think of 
this code as deep inside 
the implementation of 
the read system call on 
a pipe.  The write 
implementation is similar. 



Pipes 

C1 C2 
stdin stdout 

stdout stdin 

read(buf, N) 
{ 
      readerMx.lock(); 
      pipeMx.lock(); 
       for (i = 0; i++; i<N) { 

 while (no bytes in pipe) 
         dataCv.wait(); 

       move one byte from pipe into buf[i]; 
              spaceCV.signal(); 
       } 
       pipeMx.unlock(); 
      readerMx.unlock(); 
} 

In Unix, the read/write 
system calls are “atomic” 
in the following sense:  
no read sees interleaved 
data from multiple 
writes.   The extra lock 
here ensures that all 
read operations occur in 
a serial order, even if any 
given operation blocks/
waits while in progress.  



Why exactly does Pipe (bounded buffer) require a nested lock? 
 
First: remember that this is the exception that proves the rule.  Nested locks are generally not necessary, although they may 
be useful for performance.  Correctness first: always start with a single lock. 
  
Second: the nested lock is not necessary even for Pipe if there is at most one reader and at most one writer, as would be the 
case for your typical garden-variety Unix pipe. 
 
The issue is what happens if there are multiple readers and/or multiple writers.  The nested lock is needed to meet a 
requirement that read/write calls are atomic.  Understanding this requirement is half the battle.   
 
Consider an example.  Suppose three different writers {A, B, C} write 10 bytes each, each with a single write operation, and a 
reader reads 30 bytes with a single read operation.  The read returns the 30 bytes, so the read will “see” data from multiple 
writes.  That’s OK.  The atomicity requirement is that the reader does not observe bytes from different writes that are 
interleaved (mixed together). 
 
A necessary condition for atomicity is that the writes are serialized: the system chooses some order for the writes by A, B, 
and C, even if they request their writes "at the same time".   The data returned by the read reflects this ordering.  Under no 
circumstances does a read see an interleaving, e.g.: 5 bytes from A, then 5 bytes from B, then 5 more bytes from A,…  (Note: 
if you think about it, you can see that a correct implementation must also serialize the reads.) 
 
This atomicity requirement exists because applications may depend on it: e.g., if the writers are writing records to the pipe, 
then a violation of atomicity would cause a record to be “split”. 
  
This is particularly important when the size of a read or write (N) exceeds the size of the bounded buffer (B), i.e., N>B.  A 
read or write with N>B is legal.  But such an operation can’t be satisfied with a single buffer’s worth of data, so it can’t be 
satisfied without alternating execution of a reader and a writer (“ping-pong style”).  On a single core, the reader or writer is 
always forced to block at least once to wait for its counterparty to place more bytes in the buffer (if the operation is a read) or 
to drain more bytes out of the buffer (if the operation is a write).  In this case, it is crucial to block any other readers or writers 
from starting a competing operation.  Otherwise, atomicity is violated and at least one of the readers will observe an 
interleaving of data. 
 
The nested lock ensures that at most one reader and at most one writer are moving data in the “inner loop” at any given time. 



Processes reference objects 

Files 

text 

data 

anon VM 

The kernel objects 
referenced by a process 
have reference counts.  
They may be destroyed 
after the last ref is 
released, but not before. What operations release ref counts? 



Fork clones all references 

Files 

text 

data 

anon VM 

Cloned references to VM 
segments are likely to be 
copy-on-write to create a 
lazy, virtual copy of the 
shared object. 

Cloned descriptors share 
a read/write offset. 

Child inherits open 
descriptors from parent. 

Fork increments reference 
counts on shared objects. 

What operations release ref counts? 



Unix dup* syscall 

pipe out per-process 
descriptor 

table 

 
 

dup2(oldfd1, newfd2).  What does it mean? 
 
Yes, fd1 and fd2 are integer variables.  But let’s use “fd” as shorthand for “the file 
descriptor whose number is the value of the variable fd”. 
 
Then fd1 and fd2 denote entries in the file descriptor table of the calling process.  
The dup2 syscall is asking the kernel to operate on those entries in a kernel data 
structure.  It doesn’t affect the values in the variables fd1 and fd2 at all!  And it 
doesn’t affect the I/O objects themselves (e.g., the pipe) at all. 

int fd2 = 0 

int fd1 = 5 

pipe in 

tty in 

Hypothetical initial state before dup2(fd1, fd2) syscall. 

tty out 

System “open file table” 



Unix dup* syscall 

pipe out per-process 
descriptor 

table 

 
 

int fd2 = 0 

int fd1 = 5 

pipe in 

tty in 

Final state after dup2(fd1, fd2) syscall. 

tty out 

Then dup2(oldfd1, newfd2) means: “close(fd2) (if it was open) then set 
fd2 to refer to the same underlying I/O object as fd1.” 
It results in two file descriptors referencing the same underlying I/O 
object.  You can use either of them to read/write: they are equivalent. 
 
But you should probably just close(fd1).   

X 
> 



Unix dup* syscall 

pipe out per-process 
descriptor 

table 

 
 

int fd2 = 0 

int fd1 = 5 

pipe in 

tty in 
tty out 

Why should you close(fd1) after dup2(fd1, fd2)?  Because the kernel 
uses reference counting to track open file descriptors.  Resources 
associated with an I/O object are not released until all of the open 
descriptors on the object are closed.  They are closed automatically on 
exit, but you should always close any descriptors that you don’t need. 

X 
> 

System open file table refcount == 2 

Final state after dup2(fd1, fd2) syscall. 



Unix dup* syscall 

pipe out per-process 
descriptor 

table 

 
 

int fd2 = 0 

int fd1 = 5 

pipe in 

tty in 

Final state after dup2(fd1, fd2) syscall. 

tty out 

Then dup2(fd1,fd2); close(fd1) means: “remap the object referenced by 
file descriptor fd1 to fd2 instead”.  
It is convenient for remapping descriptors onto stdin, stdout, stderr, so 
that some program will use them “by default” after exec*. 
 
Note that we still have not changed the values in fd1 or fd2.  Also, changing the 
values in fd1 and fd2 can never affect the state of the entries in the file descriptor 
table.  Only the kernel can do that. 
 

X 



MapReduce/
Hadoop 

MapReduce is a filter-and-pipe model for data-intensive cluster 
computing.  Its programming model is “like” Unix pipes.  It adds “parallel 
pipes” (my term) that split streams among multiple downstream children.  

Dataflow programming 

Hadoop 



Unix: simple abstractions? 

•  users 
•  files 
•  processes 
•  pipes 

–  which “look like” files 

These persist across reboots.  
They have symbolic names (you 
choose it) and internal IDs (the 
system chooses). 

These exist within a running 
system, and they are transient: 
they disappear on a crash or 
reboot.  They have internal IDs. 

Unix supports dynamic create/destroy of these objects. 
It manages the various name spaces. 
It has system calls to access these objects. 
It checks permissions.  



1 

10 

100 

1000 

10000 

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)
   

   
   

   
   

25%/year 

52%/year 

??%/year 

Let’s pause a moment to reflect... 

From Hennessy and Patterson, 
Computer Architecture: A 
Quantitative Approach, 4th edition, 
2006 

Core Rate 
(SPECint) 

Note 
log scale 

Today Unix runs embedded in 
devices costing < $100. 



Sockets 

•  The socket() system call creates a socket object. 
•  Other socket syscalls establish a connection (e.g., connect).  
•  A file descriptor for a connected socket is bidirectional. 
•  Bytes placed in the socket with write are returned by read in order. 
•  The read syscall blocks if the socket is empty. 
•  The write syscall blocks if the socket is full. 
•  Both read and write fail if there is no valid connection. 

A socket is a buffered 
channel for passing 
data over a network. 

socket 

client 
int sd = socket(<internet stream>); 
gethostbyname(“www.cs.duke.edu”); 
<make a sockaddr_in struct> 
<install host IP address and port> 
connect(sd, <sockaddr_in>); 
write(sd, “abcdefg”, 7); 
read(sd, ….); 



A simple, familiar example 

“GET /images/fish.gif HTTP/1.1” 

sd = socket(…); 
connect(sd, name); 
write(sd, request…); 
read(sd, reply…); 
close(sd); 

s = socket(…); 
bind(s, name); 
sd = accept(s); 
read(sd, request…); 
write(sd, reply…); 
close(sd); 

request 

reply 

client (initiator) server 



catserver 
 ... 
 struct sockaddr_in socket_addr; 
 sock = socket(PF_INET, SOCK_STREAM, 0); 

 
 memset(&socket_addr, 0, sizeof socket_addr); 
 socket_addr.sin_family = PF_INET; 
 socket_addr.sin_port = htons(port); 
 socket_addr.sin_addr.s_addr = htonl(INADDR_ANY); 

 
 if (bind(sock, (struct sockaddr *) &socket_addr, sizeof socket_addr) < 0) { 
  perror("bind failed"); 
  exit(1); 
 } 
 listen(sock, 10); 

 
 while (1) { 
  int acceptsock = accept(sock, NULL, NULL); 
  forkme(acceptsock, prog, argv); 
  close(acceptsock); 
 } 

} 


