
Introduction
Introduction to Databases
CompSci 316 Spring 2017

Welcome to

CompSci 316: Introduction to Database Systems!!
Spring 2017

2

Acknowledgement: Thanks to Prof. Jun Yang for the course material of CompSci 316!

First things first!

• Please occupy the first few rows, i.e. pack from the
front

• Please raise your hand and let me know whenever
you cannot hear me clearly

• Ask me to slow down or repeat any time

• Interruptions and questions are always welcome!

3

About us: instructor

• Instructor: Sudeepa Roy
• Assistant Professor in Duke Computer

Science since Fall 2015
• A proud member of “Duke Database

Devils” group J
https://sites.duke.edu/duke_dbgroup/
• PhD. UPenn, Postdoc: U. of Washington
• Research interests: data management,

database theory, data analysis, causality
and explanations, uncertain data, data
provenance, crowdsourcing, ….

4

About us: Graduate TAs

• Graduate TA: Junyang Gao
• PhD student in Computer Science
• Working on fact checking, time series

data, and query optimization

• Graduate TA: Yuhao Wen
• PhD student in Computer Science
• Working on data-intensive interactive

systems

5

About us: UTAs
6

Anh Bill Wilson

CompSci 316 veteran! Both CompSci 516 veterans!

What comes to your mind…

…when you think about “databases”?

7

http://www.quackit.com/pix/database/tutorial/dbms_sql_server.gif
http://webstoresltd.com/wp-content/uploads/2013/06/database-design.jpg

But these use databases too…
8

Facebook uses MySQL to store posts,
for example

WordPress uses MySQL to manage components
of a website (pages, links, menus, etc.)

Data → Gold (ok, Bronze)
9

http://fivethirtyeight.com/features/will-data-help-u-s-sailing-get-back-on-the-olympic-podium/

… The three years of gathering and analyzing
data culminated in what U.S. Sailing calls
their “Rio Weather Playbook,” a body of
critical information about each of the seven
courses only available to the U.S. team…

— FiveThirtyEight, “Will Data Help U.S.
Sailing Get Back On The Olympic Podium?”

Aug 15, 2016

Data → Profit and Fun
10

… Silph’s newest initiative is to have travelers
log the location of “nests,” spots where a
certain species of monster is guaranteed to
appear, and sometimes several instances of
that species (e.g. Charmanders gather at New
York’s Museum of Natural History.)

— GIZMODO

http://www.wsj.com/articles/pokemon-go-creator-closes-privacy-hole-but-still-collects-user-data-1468363704
http://gizmodo.com/the-silph-road-pokemon-go-1784414758

Data → Power
11

http://www.npr.org/sections/alltechconsidered/2016/06/24/480949383/britains-google-searches-for-what-is-the-eu-spike-after-brexit-vote
http://www.reuters.com/article/us-usa-voters-breach-idUSKBN0UB1E020151228
https://www.databreaches.net/191-million-voters-personal-info-exposed-by-misconfigured-database/

… A database with information on all
American voters… might go for about
$270,000, according to one marketing firm
consulted by researcher Chris Vickery…

— databreaches.net

Challenges
• Moore’s Law:

Processing power doubles every 18 months
• But amount of data doubles every 9 months
• Disk sales (# of bits) doubles every 9 months
• Parkinson’s Law:

Data expands to fill the space available for storage

12

http://www.micronautomata.com/big_data

“An estimate for 2020 is
approximately 40 zettabytes
of data on the web, which
equals a whopping
43 trillion gigabytes.”

Moore’s Law reversed

Time to process all data
doubles every 18 months!

• Does your attention span double every 18 months?
• No, so we need smarter data management techniques

13

Democratizing data (and anlaysis)

• Democratization of data: more data—relevant to
you and the society—are being collected
• “Smart planet”: sensors for phones and cars, roads and

bridges, buildings and forests, …
• “Government in the sunshine”: spending reports, school

performance, crime reports, corporate filings, campaign
contributions, …

• But few people know how to analyze them
• You will learn how to help bridge this divide

14

Misc. course info
• Website: http://sites.duke.edu/compsci316_01_s2017/
• Course info; tentative schedule and reference sections in

the book; lecture slides, assignments, help docs, …
• Book: Database Systems: The Complete Book, by

H. Garcia-Molina, J. D. Ullman, and J. Widom. 2nd Ed.
• Programming: VM required; $50 worth of credits

for VMs in the cloud, courtesy of Google
• Q&A on Piazza – use and check frequently – feel

free to post anonymously
• Grades, sample solutions on Sakai
• Watch your email for announcements
• Office hours posted on the webpage

15

Grading
>= 30% of the class A- / A / A+
the next >= 40% of the class B- / B / B+
the next <= 30% of the class Cs, Ds, Fs

• Adjustable “curves”
• Note >=, <= !
• i.e. Scale may be adjusted downwards (i.e., grades

upwards) if, for example, the class performance is
relatively uniform for a group
• Scale will not go upwards
• Potentially the average of the class can be higher!

16

Duke Community Standard

• See course website for link
• Group discussion for assignments is okay (and

encouraged), but
• Acknowledge any help you receive from others
• Make sure you “own” your solution

• All suspected cases of violation will be aggressively
pursued

17

Course load

• Four homework assignments (35%)
• Gradiance: immediately and automatically graded
• Plus written and programming problems

• Course project (25%)
• Details to be given by the third week of class
• Up to 4 students in each group

• Midterm and final (20% each)
• Open book, open notes
• No communication/Internet whatsoever
• Final is comprehensive, but emphasizes the second half

of the course

18

Projects from earlier years

• RA: next-generation relational algebra interpreter,
2015
• Kevin Do, Michael Han, Jennie Ju, Jordan Ly
• You may get to try it out for Homework #1!

• wikiblocks (https://vimeo.com/147680387), 2015
• Brooks Mershon, Mark Botros, Manoj Kanagaraj,

Davis Treybig
• Automatically finds relevant interactive visualizations

when you are browsing a Wikipedia page

19

Projects from earlier years
• SMSmart (4.1 stars on Google Play): search/tweet/Yelp without data by

sms offline
• Alan Ni, Jay Wang, Ben Schwab, 2014

• FarmShots: help farmers with analysis of satellite images
• Ouwen Huang, Arun Karottu, Yu Zhou Lee, Billy Wan, 2014

• FoodPointsMaster: tracks balance & spending habit
• Howard Chung, Wenjun Mao, William Shelburne, 2014

• Pickup Coordinator : app for coordinating carpool/pickups
• Adam Cue, Kevin Esoda, Kate Yang, 2012

• Mobile Pay
• Michael Deng, Kevin Gao, Derek Zhou, 2012

• FriendsTracker app: where are my friends?
• Anthony Lin, Jimmy Mu, Austin Benesh, Nic Dinkins, 2011

20

More past examples
• ePrint iPhone app
• Ben Getson and Lucas Best, 2009

• Making iTunes social
• Nick Patrick, 2006; Peter Williams and Nikhil Arun, 2009

• Duke Schedulator: ditch ACES—plan visually!
• Alex Beutel, 2008

• SensorDB: manage/analyze sensor data from forest
• Ashley DeMass, Jonathan Jou, Jonathan Odom, 2007

21

Your turn to be creative

22

http://www.yummymummyclub.ca/sites/default/files/styles/large/public/field/image/teaching_kids_creative_skills.jpg

So, what is a database system?

From Oxford Dictionary:
• Database: an organized body of related information
• Database system, DataBase Management System

(DBMS): a software system that facilitates the
creation and maintenance and use of an electronic
database

23

What do you want from a DBMS?
• Keep data around (persistent)
• Answer questions (queries) about data
• Update data

• Example: a traditional banking application
• Data: Each account belongs to a branch, has a number, an

owner, a balance, …; each branch has a location, a manager,
…

• Persistency: Balance can’t disappear after a power outage
• Query: What’s the balance in Homer Simpson’s account?

What’s the difference in average balance between Springfield
and Capitol City accounts?

• Modification: Homer withdraws $100; charge accounts with
lower than $500 balance a $5 fee

24

Sounds simple!

• Text files
• Accounts/branches separated by newlines
• Fields separated by #’s

25

1001#Springfield#Mr. Morgan

... ...
00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00
... ...

Query by programming

• What’s the balance in Homer Simpson’s account?
• A simple script
• Scan through the accounts file
• Look for the line containing “Homer Simpson”
• Print out the balance

26

1001#Springfield#Mr. Morgan

... ...
00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00
... ...

Query processing tricks
• Tens of thousands of accounts are not Homer’s

FCluster accounts by owner’s initial: those owned by
“A...” go into file A; those owned by “B...” go into file B;
etc. → decide which file to search using the initial

FKeep accounts sorted by owner name → binary search?
FHash accounts using owner name → compute file offset

directly
FIndex accounts by owner name: index entries have the

form owner_name, file_offset → search index to get file
offset

FAnd the list goes on…

What happens when the query changes to: What’s
the balance in account 00142-00857?

27

Observations

• There are many techniques—not only in storage
and query processing, but also in concurrency
control, recovery, etc.
• These techniques get used over and over again in

different applications
• Different techniques may work better in different

usage scenarios

28

The birth of DBMS – 1
29

From Hans-J. Schek’s VLDB 2000 slides

The birth of DBMS – 2
30

From Hans-J. Schek’s VLDB 2000 slides

The birth of DBMS – 3
31

From Hans-J. Schek’s VLDB 2000 slides

Early efforts

• “Factoring out” data management functionalities
from applications and standardizing these
functionalities is an important first step
• CODASYL standard (circa 1960’s)
FBachman got a Turing award for this in 1973

• Aside: Four Turing Awards in databases so far!
• Bachman (1973), Codd (1981), Gray (1998), Stonebraker (2015)

• But getting the abstraction right (the API between
applications and the DBMS) is still tricky

32

CODASYL

• Query: Who have accounts with 0 balance managed
by a branch in Springfield?
• Pseudo-code of a CODASYL application:

Use index on account(balance) to get accounts with 0 balance;
For each account record:
Get the branch id of this account;
Use index on branch(id) to get the branch record;
If the branch record’s location field reads “Springfield”:
Output the owner field of the account record.

• Programmer controls “navigation”: accounts →
branches
• How about branches → accounts?

33

What’s wrong?

• The best navigation strategy & the best way of
organizing the data depend on data/workload
characteristics

With the CODASYL approach
• To write correct code, programmers need to know

how data is organized physically (e.g., which
indexes exist)
• To write efficient code, programmers also need to

worry about data/workload characteristics
FCan’t cope with changes in data/workload

characteristics

34

The relational revolution (1970’s)
• A simple model: data is stored in relations (tables)
• A declarative query language: SQL

SELECT Account.owner
FROM Account, Branch
WHERE Account.balance = 0
AND Branch.location = 'Springfield'
AND Account.branch_id = Branch.branch_id;

• Programmer specifies what answers a query should
return, but not how the query is executed
• DBMS picks the best execution strategy based on

availability of indexes, data/workload
characteristics, etc.

FProvides physical data independence

35

Physical data independence

• Applications should not need to worry about how
data is physically structured and stored
• Applications should work with a logical data model

and declarative query language
• Leave the implementation details and optimization

to DBMS
• The single most important reason behind the

success of DBMS today
• And a Turing Award for E. F. Codd in 1981

36

Standard DBMS features

• Persistent storage of data
• Logical data model; declarative queries and

updates → physical data independence
• Relational model is the dominating technology today

FWhat else?

37

DBMS is multi-user

• Example
get account balance from database;
if balance > amount of withdrawal then

balance = balance - amount of withdrawal;
dispense cash;
store new balance into database;

• Homer at ATM1 withdraws $100
• Marge at ATM2 withdraws $50
• Initial balance = $400, final balance = ?
• Should be $250 no matter who goes first

38

Final balance = $300
39

read balance; $400

if balance > amount then
balance = balance - amount; $300
write balance; $300

read balance; $400
if balance > amount then

balance = balance - amount; $350
write balance; $350

Homer withdraws $100: Marge withdraws $50:

Final balance = $
40

read balance;

if balance > amount then
balance = balance - amount;
write balance;

read balance;

if balance > amount then
balance = balance - amount;
write balance;

Homer withdraws $100: Marge withdraws $50:

350

$400

$300

$400

$350
$350

Concurrency control in DBMS

• Similar to concurrent programming problems?
• But data not main-memory variables

• Similar to file system concurrent access?
• Lock the whole table before access

• Approach taken by MySQL in the old days
• Still used by SQLite (as of Version 3)

• But want to control at much finer granularity
• Or else one withdrawal would lock up all accounts!

41

Recovery in DBMS

• Example: balance transfer
decrement the balance of account X by $100;
increment the balance of account Y by $100;

• Scenario 1: Power goes out after the first
instruction
• Scenario 2: DBMS buffers and updates data in

memory (for efficiency); before they are written
back to disk, power goes out
• How can DBMS deal with these failures?

42

Standard DBMS features: summary

• Persistent storage of data
• Logical data model; declarative queries and

updates → physical data independence
• Multi-user concurrent access
• Safety from system failures
• Performance, performance, performance
• Massive amounts of data (terabytes~petabytes)
• High throughput (thousands~millions transactions/hour)
• High availability (≥ 99.999% uptime)

43

Standard DBMS architecture

• Much of the OS may be bypassed for performance and
safety
• We will be filling in many details of the DBMS box

throughout the semester
• In reality, most big databases today are distributed

44

DBMS

Disk(s)

Applications

OS

Queries/modifications Answers/responses

File system interface

Storage system interface

AYBABTU?

“Us” = relational databases
• Most data are not in them!
• Personal data, web,

scientific data,
system data, …

• Text and semi-structured data management
• XML, JSON, …

• “NoSQL” and “NewSQL” movement
• MongoDB, Cassandra, BigTable, HBase, Spanner, HANA…

• This course will look beyond relational databases

45

Use of AYBABTU inspired by Garcia-Molina
Image: http://upload.wikimedia.org/wikipedia/en/0/03/Aybabtu.png

Course components

• Relational databases
• Relational algebra, database design, SQL, app

programming

• Database internals
• Storage, indexing, query processing and optimization,

concurrency control and recovery

• XML
• Data model and query languages, app programming,

interplay between XML and relational databases

• Advanced topics (TBD)
• Data warehousing and data mining, parallel data

processing/MapReduce, NOSQL etc.

46

Announcements (Wed. Jan 11)

• Check your account on sakai
• Enroll to piazza (follow the “Discussion” link from

course webpage)
• Enroll to gradiance with class token 7E9C31D0

(follow the “Gradiance” link from course webpage)
• No class on Monday 01/16 – MLK Day holiday!
• Next Wednesday 01/18
• Our first language of the semester—relational algebra!
• Homework #1 to be assigned

47

