Relational Database
Design Theory

Introduction to Databases
CompSci 316 Spring 2017

E. DUKE
COMPUTER SCIENCE

1/30/17

Announcements (Thu. Sep. 15)

* Homework #1 due Monday 02/06 (11:59 pm)

. .
Motivation
uid | uname | gid |
142 Bart dps
123 Milhouse gov
857 Lisa abe
857 Lisa gov
456 Ralph abe
456 Ralph gov

* Why is UserGroup (uid, uname, gid) a bad design?

* Wouldn'’t it be nice to have a systematic approach
to detecting and removing redundancy in designs?

Functional dependencies

* A functional dependency (FD) has the form X — Y,
where X and Y are sets of attributes in a relation R

* X - Y means that whenever two tuples in R agree
on all the attributes in X, they must also agree on
all attributes in Y

A

a b ¢

alb| ?
Must be b—/ __ Could be anything

FD examples

Address (street_address, city, state, zip)
* street_address, city, state — zip
* zip — city, state
* Zip, state - zip?
* This is a trivial FD
e Trivial FD: LHS 2 RHS
* Zip — state, zip?
* This is non-trivial, but not completely non-trivial
* Completely non-trivial FD: LHS N RHS = @

Recall “Keys” from Lecture 3

* A set of attributes K is a key for a relation R if
* In no instance of R will two different tuples agree on all
attributes of K
* Thatis, K can serve as a “tuple identifier”
* No proper subset of K satisfies the above condition
« Thatis, K is minimal
* Example: User (uid, name, age, pop)
« uid is a key of User
* age is not a key (not an identifier)
* {uid, name} is not a key (not minimal)

Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if

* K — all (other) attributes of R
* Thatis, K is a “super key”

* No proper subset of K satisfies the above condition
* Thatis, K is minimal

1/30/17

Reasoning with FD’s

Given arelation R and a set of FD’s F

* Does another FD follow from F?
* Are some of the FD’s in F redundant (i.e., they follow
from the others)?
* Is K akey of R?
* What are all the keys of R?

Attribute closure

* Given R, a set of FD’s F that hold in R, and a set of
attributes Z in R:
The closure of Z (denoted Z ™) with respect to F is
the set of all attributes {44, 4,, ... } functionally
determined by Z (thatis, Z - 4,4, ...)

* Algorithm for computing the closure

« Start with closure = Z

* If X - Yisin F and X is already in the closure, then also
add Y to the closure

* Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between
our users and Twitter accounts

 uid - uname, twitterid
* twitterid — uid
* uid, gid — fromDate

Not a good design, and we will see why shortly

Example of computing closure

Fincludes:
uid — uname, twitterid
twitterid — uid
uid, gid - fromDate

* {gid, twitterid}* =?

Using attribute closure

Given arelation R and set of FD’s F

* Does another FD X — Y follow from F?
» Compute Xt with respect to F
* IfY € X*, then X — Y follows from F
* Is K akey of R?
» Compute Kt with respect to F
* If K* contains all the attributes of R, K is a super key
« Still need to verify that K is minimal (how?)

1/30/17

Rules of FD’s

* Armstrong’s axioms
* Reflexivity: f Y € X, thenX - Y
* Augmentation: If X — Y, then XZ — YZ forany Z
* Transitivity: If X > YandY — Z,thenX - Z
* Rules derived from axioms
* Splitting: If X > YZ,thenX - Yand X —» Z
* Combining: If X - Yand X - Z,thenX - YZ
@ Using these rules, you can prove or disprove an FD
given a set of FDs

Non-key FD’s

* Consider a non-trivial FD X —» Y where X is not a
super key

* Since X is not a super key, there are some attributes (say
Z) that are not functionally determined by X

a b ¢
a b c

That b is associated with a is recorded multiple times:

redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
* uid = uname, twitterid
(... plus other FD’s)

T e T P
142 Bart (@BartJSimpson dps. 1987-04-19
123 Milhouse @MilhouseVan_ gov 1989-12-17
857 Lisa @lisasimpson abe 1987-04-19
857 Lisa @lisasimpson gov 19880901
456 Ralph @ralphwiggum abc 1991-04-25

456 Ralph @ralphwiggum gov 1992-09-01

How can we eliminate the redundancy?

Decomposition

Unnecessary decomposition

Bad decomposition

Lossless join decomposition

* Decompose relation R into relations S and T
* attrs(R) = attrs(S) v attrs(T)
*S= Tattrs(s) (R)
T= T[att‘rs(T)(R)
* The decomposition is a lossless join decomposition
if, given known constraints such as FD’s, we can
guaranteethat R =S x T

* Any decomposition gives R € S x T (why?)
* Alossy decompositionis one withR € S x T

1/30/17

Loss? But | got more rows!

* “Loss” refers not to the loss of tuples, but to the
loss of information

* Or, the ability to distinguish different original relations

s e | fromome |
142 dps 1987-04-19 No way to tell

123 gov 1989-12-17
857 abe | 1988-09-01
857 gov | IOR7A04519 m
456 abc 19910425

o it 456 gov 1992-09-01 m

142 dps 142 1987-04-19

123 gov . . 123 1989-12-17

which is the original relation

857 abc 857 1987-04-19
857 gov 857 1988-09-01
456 abc 456 1991-04-25
456 gov 456 19920901

Questions about decomposition

* When to decompose

* How to come up with a correct decomposition (i.e.,
lossless join decomposition)

An answer: BCNF

* Arelation R is in Boyce-Codd Normal Form if
* For every non-trivial FD X — Y in R, X is a super key
* That s, all FDs follow from “key — other attributes”

* When to decompose
* As long as some relation is not in BCNF

* How to come up with a correct decomposition
* Always decompose on a BCNF violation (details next)

@ Then it is guaranteed to be a lossless join
decomposition!

BCNF decomposition algorithm

* Find a BCNF violation
* That is, a non-trivial FD X — Y in R where X is not a super
key of R
* Decompose R into Ry and R,, where
* Ry has attributes X U Y
* R, has attributes X U Z, where Z contains all attributes
of R that are in neither X nor Y’

* Repeat until all relations are in BCNF

BCNF decomposition example

uid = uname, twitterid
twitterid — uid
uid, gid - fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

1/30/17

uid — uname, twitterid
twitterid — uid
uid, gid - fromDate

Another example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Why is BCNF decomposition lossless

Given non-trivial X — Y in R where X is not a super
key of R, need to prove:
* Anything we project always comes back in the join:
R € myy(R) ™ mxz(R)
* Sure; and it doesn’t depend on the FD
* Anything that comes back in the join must be in the
original relation:
R 2 myy(R) 1 mxz(R)
* Proof will make use of the fact that X — Y

Recap

* Functional dependencies: a generalization of the
key concept
* Non-key functional dependencies: a source of
redundancy
* BCNF decomposition: a method for removing
redundancies
* BNCF decomposition is a lossless join decomposition

* BCNF: schema in this normal form has no
redundancy due to FD’s

BCNF = no redundancy?

* User (uid, gid, place)
* A user can belong to multiple groups
* Auser can register places she’s visited
* Groups and places have nothing to do with other

uid_|gid] place____|
142 dps Springfield
142 dps Australia
456 abc Springfield
456 abc Morocco
456 gov Springfield
456 gov Morocco

Multivalued dependencies

* A multivalued dependency (MVD) has the form
X - Y, where X and Y are sets of attributes in a
relation R

¢ X - Y means that whenever
two rows in R agree on all the a b ¢

attributes of X, then we can a b, c
swap their Y components and
. a bz Cq
get two rows that are also in R
a b1 Cy

MVD examples

User (uid, gid, place)
* uid -» gid
* uid -» place
* Intuition: given uid, gid and place are “independent”
* uid, gid > place
* Trivial: LHS U RHS = all attributes of R
* uid, gid - uid
* Trivial: LHS 2 RHS

1/30/17

Complete MVD + FD rules

* FD reflexivity, augmentation, and transitivity
* MVD complementation:
IfX » Y, thenX » attrs(R) — X —-Y
* MVD augmentation:
IfX »YandV € W,thenXW —-» YV
* MVD transitivity:
IfX »YandY » Z,thenX » Z -V
* Replication (FD is MVD):
IfX > Y, thenX »Y
* Coalescence:

If X » Y and Z € Y and there is some W disjoint
fromY suchthat W = Z,thenX - Z

Try proving things using these!?

An elegant solution: chase

* Given a set of FD’s and MVD’s D, does another
dependency d (FD or MVD) follow from D?

* Procedure
« Start with the premise of d, and treat them as “seed”
tuples in a relation
* Apply the given dependencies in D repeatedly
« If we apply an FD, we infer equality of two symbols
« If we apply an MVD, we infer more tuples
« If we infer the conclusion of d, we have a proof
* Otherwise, if nothing more can be inferred, we have a
counterexample

Proof by chase

*InR(A4,B,C,D),does A » B and B » C imply that

A»C?
7Y e EEAR - DEGRR
a by ¢ dy a by c; dy
a by c; dy a by c; d,

Another proof by chase

*InR(A4,B,C,D),does A - B and B — C imply that

?
A= Have: nﬂm Need:
€1

=c
a by c; dy 2

a by c; dy

In general, with both MVD’s and FD’s,
chase can generate both new tuples and new equalities

Counterexample by chase

*InR(A,B,C,D),does A » BC and CD — B imply
that A - B?

Have: nﬂm Need:

a by ¢ dy by =b,

a by c; dy

4NF

* Arelation R is in Fourth Normal Form (4NF) if
* For every non-trivial MVD X - Y in R, X is a superkey

* That s, all FD’s and MVD’s follow from “key — other
attributes” (i.e., no MVD’s and no FD’s besides key
functional dependencies)

* 4NF is stronger than BCNF
* Because every FD is also a MVD (why?)

4NF decomposition algorithm

* Find a 4NF violation
* Anon-trivial MVD X - Y in R where X is not a superkey

* Decompose R into Ry and R,, where
* Ry has attributes X U Y

* R, has attributes X U Z (where Z contains R attributes
notin X orY)

* Repeat until all relations are in 4NF

* Almost identical to BCNF decomposition algorithm
* Any decomposition on a 4NF violation is lossless

1/30/17

4NF decomposition example

142
142

User (uid, gid, place)
4NF violation: uid - gid

2 5
& &

456

dps
dps

abe

Springfield
Australia
Springfield
Morocco
Springfield

Morocco

Summary

* Philosophy behind BCNF, 4NF:
Data should depend on the key,
the whole key,
and nothing but the key!

* You could have multiple keys though

* Other normal forms

* 3NF: More relaxed than BCNF; will not remove
redundancy if doing so makes FDs harder to enforce

* 2NF: Slightly more relaxed than 3NF
* 1INF: All column values must be atomic

