Relational Database Design Theory

Introduction to Databases CompSci 316 Spring 2017

DUKE COMPUTER SCIENCE

• Homework #1 due Monday 02/06 (11:59 pm)

 Wouldn't it be nice to have a systematic approach to detecting and removing redundancy in designs?

Redefining "keys" using FD's

- A set of attributes K is a key for a relation R if
- K → all (other) attributes of R
 That is, K is a "super key"
- No proper subset of K satisfies the above condition
 That is, K is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- Does another FD follow from $\mathcal{F}?$
 - Are some of the FD's in ${\mathcal F}$ redundant (i.e., they follow from the others)?
- Is K a key of R?
 What are all the keys of R?

Attribute closure

- Given R, a set of FD's \mathcal{F} that hold in R, and a set of attributes Z in R: The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, ...\}$ functionally determined by Z (that is, $Z \to A_1A_2$...)
- Algorithm for computing the closure
 - Start with closure = Z
 - If $X \to Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate) Assume that there is a 1-1 correspondence between our users and Twitter accounts

- uid \rightarrow uname, twitterid
- twitterid \rightarrow uid
- uid, gid \rightarrow fromDate

Not a good design, and we will see why shortly

Rules of FD's

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- ${}^{\mathscr{F}}$ Using these rules, you can prove or disprove an FD given a set of FDs

[®] Example of redundancy							15
UserJoinsGroup (uid, uname, twitterid, gid, fromDate) • uid → uname, twitterid (plus other FD's)							
	uid	uname	twitterid	gid	fromDate		
	142	Bart	@BartJSimpson	dps	1987-04-19		
	123	Milhouse	@MilhouseVan_	gov	1989-12-17		
	857	Lisa	@lisasimpson	abc	1987-04-19		
	857	Lisa	@lisasimpson	gov	1988-09-01		
	456	Ralph	@ralphwiggum	abc	1991-04-25		
	456	Ralph	@ralphwiggum	gov	1992-09-01		
How can we eliminate the redundancy?							y?

Unnecessary decomposition	1;

Lossless join decomposition

- Decompose relation R into relations S and T
 - $attrs(R) = attrs(S) \cup attrs(T)$
 - $S = \pi_{attrs(S)}(R)$
 - $T = \pi_{attrs(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R = S \bowtie T$

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation *R* is in Boyce-Codd Normal Form if
 For every non-trivial FD *X* → *Y* in *R*, *X* is a super key
 - That is, all FDs follow from "key \rightarrow other attributes"

When to decompose
As long as some relation is not in BCNF

- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

• Find a BCNF violation

- That is, a non-trivial FD $X \to Y$ in R where X is not a super key of R
- Decompose *R* into *R*₁ and *R*₂, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

<sup>Any decomposition gives R ⊆ S ⋈ T (why?)
A lossy decomposition is one with R ⊂ S ⋈ T</sup>

Another example

uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join: $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Sure; and it doesn't depend on the FD
- Anything that comes back in the join must be in the original relation:
 - $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Proof will make use of the fact that $X \to Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's

BCNF = no redundancy?

- User (uid, gid, place)
 - A user can belong to multiple groups
 - A user can register places she's visited
 - Groups and places have nothing to do with other

uid	gid	place
142	dps	Springfield
142	dps	Australia
456	abc	Springfield
456	abc	Morocco
456	gov	Springfield
456	gov	Morocco

Multivalued dependencies

- A multivalued dependency (MVD) has the form *X* → *Y*, where *X* and *Y* are sets of attributes in a relation *R*
- X → Y means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R

MVD examples

User (uid, gid, place)

- uid → gid
- uid → place
- Intuition: given uid, gid and place are "independent"
- uid, gid \rightarrow place
 - Trivial: LHS U RHS = all attributes of R
- uid, gid → uid
 Trivial: LHS ⊇ RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
- If $X \rightarrow Y$, then $X \rightarrow attrs(R) X Y$
- MVD augmentation: If $X \twoheadrightarrow Y$ and $V \subseteq W$, then $XW \twoheadrightarrow YV$
- MVD transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$
- Replication (FD is MVD): If $X \to Y$, then $X \to Y$ Try proving things using these!?
- Coalescence: If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$

An elegant solution: chase

- Given a set of FD's and MVD's \mathcal{D} , does another dependency d (FD or MVD) follow from \mathcal{D} ?
- Procedure
 - Start with the premise of *d*, and treat them as "seed" tuples in a relation
 - Apply the given dependencies in $\mathcal D$ repeatedly If we apply an FD, we infer equality of two symbols • If we apply an MVD, we infer more tuples
 - If we infer the conclusion of *d*, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose *R* into *R*₁ and *R*₂, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

uid

Summary

- Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 - You could have multiple keys though
- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic