

Announcements (Wed., Mar. 8)

• Homework #3

- follow piazza posts for updates after each lecture
- Project
 Comments on milestone-1 tomorrow
 - Keep working on it

Today:

- Finish B+ tree and index
- Start query processing

Index

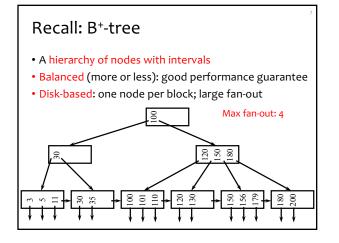
Recall: What are indexes for?

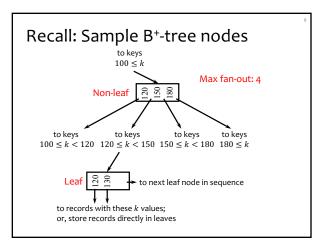
• Given a value (search key), locate the record(s) with this value, or range search

- SELECT * FROM *R* WHERE *A* = *value*;
- SELECT * FROM R, S WHERE R.A = S.B;
- SELECT * FROM *R* WHERE *A* > *value*;
- Search key ≠ key in a relation (unique attributes)
 "Key" is highly overloaded in databases
- · Recap: index structure on whiteboard

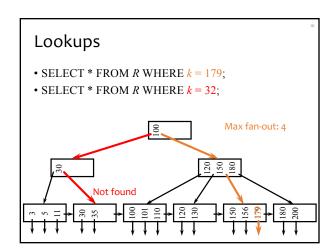
Recall: Index classification

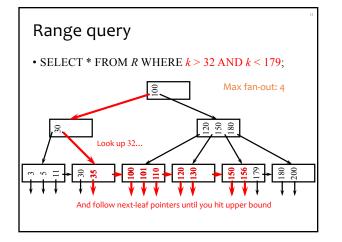
- Dense vs. Sparse
- Clustered vs. unclustered
- Primary vs. Secondary
- Tree-based vs. Hash-based • we will only do tree indexes in 316

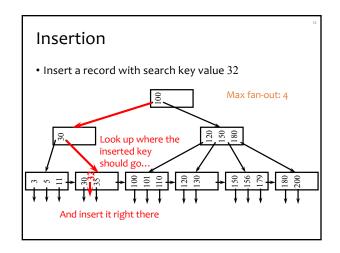


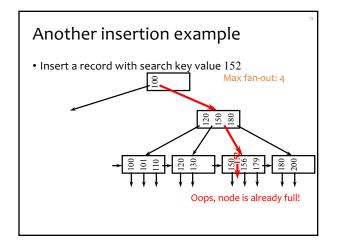


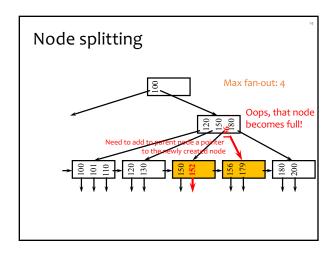
Recall: B ⁺ -tree balancing properties				
 Height constraint: all leaves at the same lowest level Fan-out constraint: all nodes at least half full (except root) 				
	Max # pointers	Max # keys	Min # active pointers	Min # keys
Non-leaf	f	f-1	[<i>f</i> /2]	[f/2] - 1
Root	f	f-1	2	1
Leaf	f	f - 1	[<i>f</i> /2]	[<i>f</i> /2]
				End of lecture 14

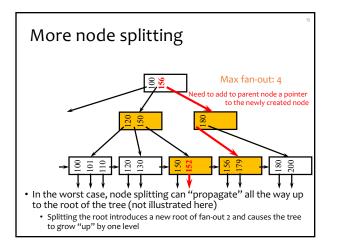


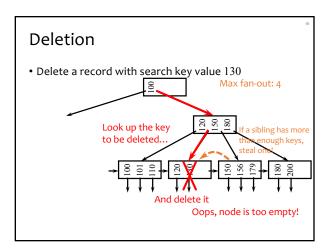


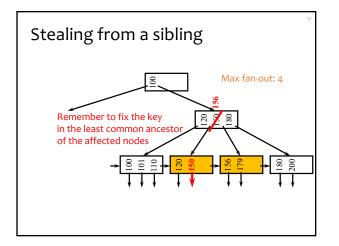


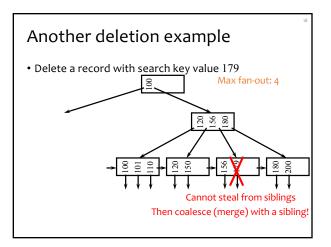


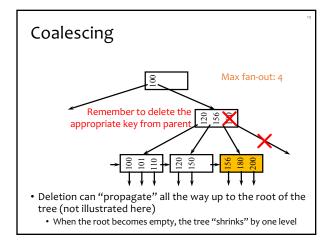












Performance analysis

- How many I/O's are required for each operation?
 - *h*, the height of the tree (more or less)
 - Plus one or two to manipulate actual records
 - Plus O(h) for reorganization (rare if f is large)
 - Minus one if we cache the root in memory
- How big is h?
 - Roughly log_{fanout} N, where N is the number of records
 B*-tree properties guarantee that fan-out is least f/2 for
 - all non-root nodes
 - Fan-out is typically large (in hundreds)—many keys and pointers can fit into one block
 - A 4-level B⁺-tree is enough for "typical" tables

B⁺-tree in practice

- Complex reorganization for deletion often is not implemented (e.g., Oracle)
 - Leave nodes less than half full and periodically reorganize
- Most commercial DBMS use B⁺-tree instead of hashing-based indexes because B⁺-tree handles range queries

The Halloween Problem

• Story from the early days of System R...

UPDATE Payroll

- SET salary = salary * 1.1 WHERE salary <= 25000;
- There is a Rt tree index on Rayro
- There is a B*-tree index on Payroll(salary)
 The update never stopped until all employees earned 25k (why?)

https://en.wikipedia.org/wiki/Halloween_Probl

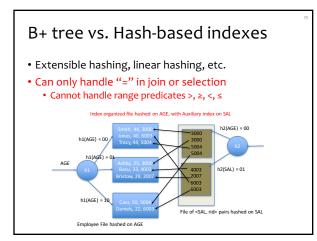
• Solutions?

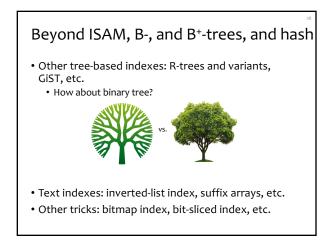
B+-tree versus ISAM

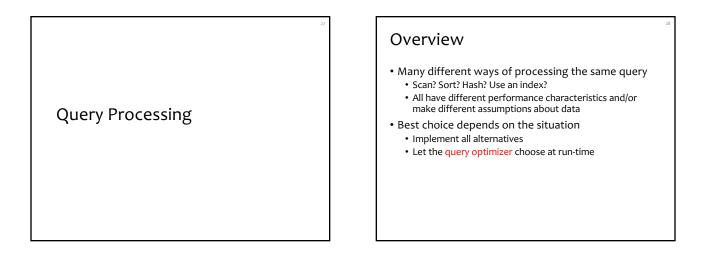
- ISAM is more static; B⁺-tree is more dynamic
- ISAM can be more compact (at least initially)
 Fewer levels and I/O's than B⁺-tree
- Overtime, ISAM may not be balanced
- Cannot provide guaranteed performance as B*-tree does

B+-tree versus B-tree

- B-tree: why not store records (or record pointers) in non-leaf nodes?
 - These records can be accessed with fewer I/O's
- Problems?
 - Storing more data in a node decreases fan-out and increases \boldsymbol{h}
 - Records in leaves require more I/O's to access
 - Vast majority of the records live in leaves!







Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: |*R*|, |*S*|
- Number of disk blocks: B(R), B(S)
- Number of memory blocks available: M
- Cost metric
 - Number of I/O's
 - Memory requirement

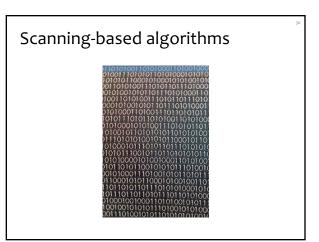


Table scan

- Scan table R and process the query • Selection over R
 - Projection of R without duplicate elimination
- I/O's: **B(R)**
 - Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2
- Not counting the cost of writing the result out • Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

Nested-loop join

$R \bowtie_p S$

- For each block of *R*, and for each *r* in the block: For each block of *S*, and for each *s* in the block: Output *rs* if *p* evaluates to true over *r* and *s*
 - *R* is called the **outer** table; *S* is called the **inner** table
 - $I/O's: B(R) + |R| \cdot B(S)$
 - Memory requirement: 3

Improvement: block-based nested-loop join

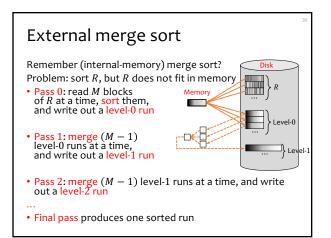
- For each block of *R*, for each block of *S*:
- For each *r* in the *R* block, for each *s* in the *S* block: ...
 - I/O's: $B(R) + B(R) \cdot B(S)$
- Memory requirement: same as before

More improvements

- Stop early if the key of the inner table is being matched
- Make use of available memory
 - Stuff memory with as much of *R* as possible, stream *S* by, and join every *S* tuple with all *R* tuples in memory
 - I/O's: $B(R) + \left[\frac{B(R)}{M-2}\right] \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S)/M$
- Memory requirement: *M* (as much as possible)
 Which table would you pick as the outer?

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail sorter#mediaviewer/File:Mail sorting,1951.jpg



Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass o
- 1, 7, 4 → 1, 4, 7
- 5, 2, 8 → 2, 5, 8
- 9, 6, 3 → 3, 6, 9
- Pass 1
- 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
- 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Analysis

- Pass 0: read *M* blocks of *R* at a time, sort them, and write out a level-0 run
 - There are $\left[\frac{B(R)}{M}\right]$ level-0 sorted runs
- Pass *i*: merge (M 1) level-(i 1) runs at a time, and write out a level-*i* run
 - (M 1) memory blocks for input, 1 to buffer output

• # of level-*i* runs =
$$\left[\frac{\text{# of level}-(i-1) \text{ runs}}{M-1}\right]$$

• Final pass produces one sorted run

Performance of external merge sort

- Number of passes: $\left[\log_{M-1} \left[\frac{B(R)}{M}\right]\right] + 1$
- I/O's
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract B(R) for the final pass
 - Roughly, this is $O(B(R) \times \log_M B(R))$
- Memory requirement: *M* (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time,
 - read/write a bunch ("cluster")
 - More sequential I/O's
 - Trade-off: larger cluster \rightarrow smaller fan-in (more passes)

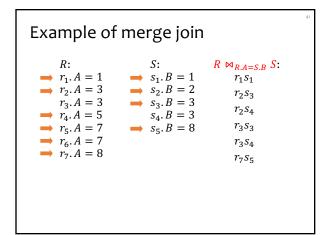
Sort-merge join

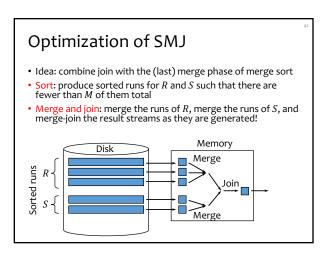
$R \bowtie_{R.A=S.B} S$

Sort R and S by their join attributes; then merge r, s = the first tuples in sorted R and S Repeat until one of R and S is exhausted: If r. A > s. B then s = next tuple in S else if r. A < s. B then r = next tuple in R else output all matching tuples, and r, s = next in R and S

• I/O's: sorting + 2B(R) + 2B(S)

- In most cases (e.g., join of key and foreign key)
- Worst case is $B(R) \cdot B(S)$: everything joins



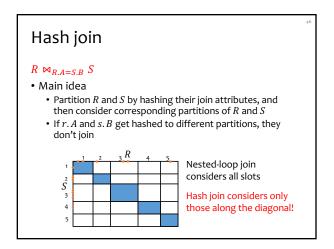


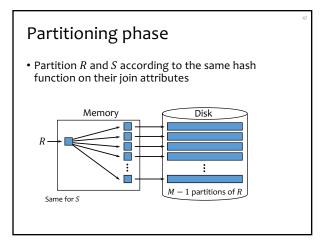
Performance of SMJ

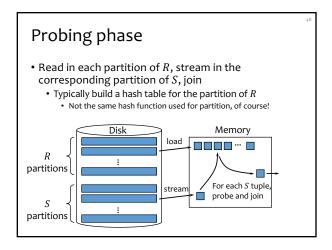
- If SMJ completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - Memory requirement • We must have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 - $M > \sqrt{B(R) + B(S)}$
- If SMJ cannot complete in two passes:
 - Repeatedly merge to reduce the number of runs as necessary before final merge and join

Other sort-based algorithms

- Union (set), difference, intersection • More or less like SMJ
- Duplication elimination
 External merge sort
 - External merge sort
 Eliminate duplicates in sort and merge
- Grouping and aggregation
 - External merge sort, by group-by columns
 Trick: produce "partial" aggregate values in each run, and combine them during merge
 - This trick doesn't always work though
 - Examples: SUM(DISTINCT ...), MEDIAN(...)

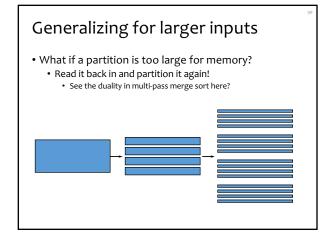






Performance of (two-pass) hash join

- If hash join completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M 1 > \frac{B(R)}{M-1}$
 - $M > \sqrt{B(R)} + 1$
 - We can always pick *R* to be the smaller relation, so: $M > \sqrt{\min(B(R), B(S))} + 1$



Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower
 - $\lim (B(R), B(S)) + 1 < \sqrt{B(R) + B(S)}$
 - Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if *R* and/or *S* are already sorted
 - · SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- May be best if many tuples join
 Example: non-equality joins that are not very selective
- Necessary for black-box predicates • Example: WHERE user_defined_pred(R.A, S.B)

Other hash-based algorithms

- Union (set), difference, intersection
 More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- Grouping and aggregation
 - Apply the hash functions to the group-by columns Tuples in the same group must end up in the same
 - partition/bucket
 - Keep a running aggregate value for each group
 May not always work

Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combinationHashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level mergeHashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Index-based algorithms

Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
- Use an ISAM, B⁺-tree, or hash index on *R*(*A*)
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B^+ -tree) on R(A)
 - Hash index is not applicable
- Indexes other than those on R(A) may be useful
 Example: B*-tree index on R(A, B)
 - How about B⁺-tree index on *R*(*B*, *A*)?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>\nu}(R))$

1.trekearth.com/photos/28820/p2270994.jp

Primary index clustered according to search key
One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

- Consider $\sigma_{A > \nu}(R)$ and a secondary, non-clustered index on R(A)
 - Need to follow pointers to get the actual result tuples
 Say that 20% of *R* satisfies *A* > *v*
 - Could happen even for equality predicates
 - I/O's for index-based selection: lookup + 20% |R|
 - I/O's for scan-based selection: B(R)
 - Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

$R\bowtie_{R.A=S.B}S$

- Idea: use a value of *R*. *A* to probe the index on *S*(*B*)
- For each block of R, and for each r in the block:
 Use the index on S(B) to retrieve s with s.B = r.A
 Output rs
- $I/O's: B(R) + |R| \cdot (index lookup)$
 - Typically, the cost of an index lookup is 2-4 I/O's
 - Beats other join methods if |R| is not too big
 - Better pick *R* to be the smaller relation
- Memory requirement: 3

Zig-zag join using ordered indexes $R \bowtie_{R,A=S,B} S$ • Idea: use the ordering provided by the indexes on R(A)and S(B) to eliminate the sorting step of sort-merge join • Use the larger key to probe the other index • Possibly skipping many keys that don't match $hot = \frac{B \cdot \text{tree on } R(A)}{3 + 4 + 7 + 9} = 18$ $hot = \frac{B \cdot \text{tree on } R(A)}{3 + 4 + 7 + 9} = 18$

Summary of techniques

• Scan

- Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash

• Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

- Index
 - Selection, index nested-loop join, zig-zag join