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Physical Data Organization
and

Indexing
Introduction to Databases

CompSci 316 Fall 2017

Announcements (Wed., Mar. 8)

• Homework #3 
• follow piazza posts for updates after each lecture

• Project
• Comments on milestone-1 tomorrow
• Keep working on it
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Today:

• Finish B+ tree and index
• Start query processing
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Index
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Recall: What are indexes for?

• Given a value (search key), locate the record(s) 
with this value, or range search
• SELECT * FROM RWHERE A = value;
• SELECT * FROM R, SWHERE R.A = S.B;
• SELECT * FROM RWHERE A > value;

• Search key ≠ key in a relation (unique attributes)
• “Key” is highly overloaded in databases

• Recap: index structure on whiteboard
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Recall: Index classification

• Dense vs. Sparse
• Clustered vs. unclustered
• Primary vs. Secondary
• Tree-based vs. Hash-based
• we will only do tree indexes in 316
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Recall: B+-tree

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out
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Recall: Sample B+-tree nodes
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Max fan-out: 4
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to keys
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Recall: B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full 

(except root)

Max #   Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋
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End of lecture 14

Lookups

• SELECT * FROM RWHERE k = 179;
• SELECT * FROM RWHERE k = 32;
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9

Not found

Range query

• SELECT * FROM RWHERE k > 32 AND k < 179;
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Look up 32…

And follow next-leaf pointers until you hit upper bound
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Insertion

• Insert a record with search key value 32
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32

And insert it right there
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Another insertion example

• Insert a record with search key value 152
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Oops, node is already full!

Node splitting
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More node splitting
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• In the worst case, node splitting can “propagate” all the way up 
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree 

to grow “up” by one level

Deletion

• Delete a record with search key value 130
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Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!

Stealing from a sibling
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in the least common ancestor 
of the affected nodes

Another deletion example

• Delete a record with search key value 179
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Cannot steal from siblings
Then coalesce (merge) with a sibling!
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Coalescing

• Deletion can “propagate” all the way up to the root of the 
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level
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Performance analysis

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log56789: 𝑁, where 𝑁	is the number of records
• B+-tree properties guarantee that fan-out is least 𝑓/2 for 

all non-root nodes 
• Fan-out is typically large (in hundreds)—many keys and 

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables
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B+-tree in practice

• Complex reorganization for deletion often is not 
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically 

reorganize

• Most commercial DBMS use B+-tree instead of 
hashing-based indexes because B+-tree handles 
range queries
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The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary <= 25000;
• There is a B+-tree index on Payroll(salary)
• The update never stopped until all employees earned 25k 

(why?)

• Solutions?
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https://en.wikipedia.org/wiki/Halloween_Problem

B+-tree versus ISAM

• ISAM is more static; B+-tree is more dynamic
• ISAM can be more compact (at least initially)
• Fewer levels and I/O’s than B+-tree

• Overtime, ISAM may not be balanced
• Cannot provide guaranteed performance as B+-tree does
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B+-tree versus B-tree

• B-tree: why not store records (or record pointers) 
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and 

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!

24
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B+ tree vs. Hash-based indexes

• Extensible hashing, linear hashing, etc.
• Can only handle “=” in join or selection
• Cannot handle range predicates >, ≥, <, ≤
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h1
AGE

Smith,	44,	3000
Jones,	40,	6003
Tracy,	44,	5004

Ashby,	25,	3000
Basu,	33,	4003

Bristow,	29,	2007

Cass,	50,	5004
Daniels,	22,	6003

h1(AGE)	=	00

h1(AGE)	=	01

h1(AGE)	=	10

h2

3000
3000
5004
5004

4003
2007
6003
6003

h2(SAL)	=	01

h2(AGE)	=	00

File	of	<SAL,	rid>	pairs	hashed	on	SAL

Employee	File	hashed	on	AGE

Index	organized	file	hashed	on	AGE,	with	Auxiliary	index	on	SAL		

Beyond ISAM, B-, and B+-trees, and hash

• Other tree-based indexes: R-trees and variants, 
GiST, etc. 
• How about binary tree?

• Text indexes: inverted-list index, suffix arrays, etc.
• Other tricks: bitmap index, bit-sliced index, etc.
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vs.

Query Processing

27

Overview

• Many different ways of processing the same query
• Scan? Sort? Hash? Use an index?
• All have different performance characteristics and/or 

make different assumptions about data

• Best choice depends on the situation
• Implement all alternatives
• Let the query optimizer choose at run-time
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Notation

• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s
• Memory requirement

29

Scanning-based algorithms
30
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Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2
• Not counting the cost of writing the result out
• Same for any algorithm!
• Maybe not needed—results may be pipelined into 

another operator

31

Nested-loop join

𝑅 ⋈D 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

For each block of 𝑆, and for each 𝑠 in the block:
Output 𝑟𝑠 if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: 3

Improvement: block-based nested-loop join
• For each block of 𝑅, for each block of 𝑆:

For each 𝑟 in the 𝑅 block, for each 𝑠 in the 𝑆 block: …
• I/O’s: 𝐵 𝑅 + 𝐵 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: same as before

32

More improvements

• Stop early if the key of the inner table is being 
matched
• Make use of available memory
• Stuff memory with as much of 𝑅 as possible, stream 𝑆

by, and join every 𝑆 tuple with all 𝑅 tuples in memory

• I/O’s: 𝐵 𝑅 + I J
KLM ⋅ 𝐵 𝑆

• Or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀
• Memory requirement: 𝑀 (as much as possible)

• Which table would you pick as the outer?

33

Sorting-based algorithms
34

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg

External merge sort
Remember (internal-memory) merge sort?
Problem: sort 𝑅, but 𝑅 does not fit in memory
• Pass 0: read 𝑀 blocks 

of 𝑅 at a time, sort them, 
and write out a level-0 run

• Pass 1: merge 𝑀 − 1
level-0 runs at a time, 
and write out a level-1 run

• Pass 2: merge 𝑀 − 1 level-1 runs at a time, and write 
out a level-2 run

…
• Final pass produces one sorted run

35

Memory
𝑅

Level-0

…

…

… Level-1

Disk

Toy example

• 3 memory blocks available; each holds one number
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0
• 1, 7, 4 → 1, 4, 7
• 5, 2, 8 → 2, 5, 8
• 9, 6, 3 → 3, 6, 9

• Pass 1
• 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
• 3, 6, 9

• Pass 2 (final)
• 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

36
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Analysis

• Pass 0: read 𝑀 blocks of 𝑅 at a time, sort them, and 
write out a level-0 run
• There are I J

K level-0 sorted runs

• Pass 𝑖: merge 𝑀 − 1 level- 𝑖 − 1 runs at a time, 
and write out a level-𝑖 run
• 𝑀− 1 memory blocks for input, 1 to buffer output

• # of level-𝑖 runs = #	85	RSTSRL ULV 	W97X
KLV

• Final pass produces one sorted run

37

Performance of external merge sort

• Number of passes: logKLV
I J
K

+ 1

• I/O’s
• Multiply by 2 ⋅ 𝐵 𝑅 : each pass reads the entire relation 

once and writes it once
• Subtract 𝐵 𝑅 for the final pass
• Roughly, this is 𝑂 𝐵 𝑅 ×logK𝐵 𝑅

• Memory requirement: 𝑀 (as much as possible)
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Some tricks for sorting

• Double buffering
• Allocate an additional block for each run
• Overlap I/O with processing
• Trade-off: smaller fan-in (more passes)

• Blocked I/O
• Instead of reading/writing one disk block at time, 

read/write a bunch (“cluster”)
• More sequential I/O’s
• Trade-off: larger cluster → smaller fan-in (more passes)
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Sort-merge join

𝑅 ⋈J.\]^.I 𝑆
• Sort 𝑅 and 𝑆 by their join attributes; then merge

𝑟, 𝑠 = the first tuples in sorted 𝑅 and 𝑆
Repeat until one of 𝑅 and 𝑆 is exhausted:

If 𝑟. 𝐴 > 𝑠. 𝐵 then 𝑠 = next tuple in 𝑆
else if 𝑟. 𝐴 < 𝑠. 𝐵 then 𝑟 = next tuple in 𝑅
else output all matching tuples, and
𝑟, 𝑠 = next in 𝑅 and 𝑆

• I/O’s: sorting	+	2𝐵 𝑅 + 2𝐵 𝑆
• In most cases (e.g., join of key and foreign key)
• Worst case is 𝐵 𝑅 ⋅ 𝐵 𝑆 : everything joins
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Example of merge join

𝑅: 𝑆: 𝑅 ⋈J.\]^.I 𝑆: 
𝑟V. 𝐴 = 1 𝑠V. 𝐵 = 1
𝑟M. 𝐴 = 3 𝑠M. 𝐵 = 2
𝑟b. 𝐴 = 3 𝑠b. 𝐵 = 3
𝑟c. 𝐴 = 5 𝑠c. 𝐵 = 3
𝑟d. 𝐴 = 7 𝑠d. 𝐵 = 8
𝑟f. 𝐴 = 7
𝑟g. 𝐴 = 8

41

𝑟V𝑠V
𝑟M𝑠b
𝑟M𝑠c
𝑟b𝑠b
𝑟b𝑠c
𝑟g𝑠d

Optimization of SMJ
• Idea: combine join with the (last) merge phase of merge sort
• Sort: produce sorted runs for 𝑅 and 𝑆 such that there are 

fewer than 𝑀 of them total
• Merge and join: merge the runs of 𝑅, merge the runs of 𝑆, and 

merge-join the result streams as they are generated!
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Performance of SMJ

• If SMJ completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆
• Memory requirement

• We must have enough memory to accommodate one block 
from each run: 𝑀 > I J

K
+ I ^

K
• 𝑀 > 𝐵 𝑅 + 𝐵 𝑆�

• If SMJ cannot complete in two passes:
• Repeatedly merge to reduce the number of runs as 

necessary before final merge and join

43

Other sort-based algorithms

• Union (set), difference, intersection
• More or less like SMJ

• Duplication elimination
• External merge sort

• Eliminate duplicates in sort and merge

• Grouping and aggregation
• External merge sort, by group-by columns

• Trick: produce “partial” aggregate values in each run, and 
combine them during merge
• This trick doesn’t always work though

• Examples: SUM(DISTINCT …), MEDIAN(…) 

44

Hashing-based algorithms
45

http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

𝑅 ⋈J.\]^.I 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and 

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they 

don’t join

46

Nested-loop join 
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!

Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash 
function on their join attributes

47

𝑀− 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …

Probing phase

• Read in each partition of 𝑅, stream in the 
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

48

Disk Memory

partitions

partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join
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Performance of (two-pass) hash join

• If hash join completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆
• Memory requirement:

• In the probing phase, we should have enough memory to fit 
one partition of R: 𝑀− 1 > I J

KLV
• 𝑀 > 𝐵 𝑅� + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆
�

+ 1

49

Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!

• See the duality in multi-pass merge sort here?

50

Hash join versus SMJ

(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower

• min 𝐵 𝑅 ,𝐵 𝑆
�

+ 1 < 𝐵 𝑅 + 𝐵 𝑆�

• Hash join wins when two relations have very different sizes

• Other factors
• Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets
• SMJ can be adapted for inequality join predicates
• SMJ wins if 𝑅 and/or 𝑆 are already sorted
• SMJ wins if the result needs to be in sorted order
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What about nested-loop join?

• May be best if many tuples join
• Example: non-equality joins that are not very selective

• Necessary for black-box predicates
• Example: WHERE user_defined_pred(𝑅. 𝐴, 𝑆. 𝐵)

52

Other hash-based algorithms

• Union (set), difference, intersection
• More or less like hash join

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns
• Tuples in the same group must end up in the same 

partition/bucket
• Keep a running aggregate value for each group

• May not always work
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Duality of sort and hash

• Divide-and-conquer paradigm
• Sorting: physical division, logical combination
• Hashing: logical division, physical combination

• Handling very large inputs
• Sorting: multi-level merge
• Hashing: recursive partitioning

• I/O patterns
• Sorting: sequential write, random read (merge)
• Hashing: random write, sequential read (partition)

54
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Index-based algorithms
55

http://i1.trekearth.com/photos/28820/p2270994.jpg

Selection using index

• Equality predicate: 𝜎\]n 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎\on 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

• Indexes other than those on 𝑅(𝐴) may be useful
• Example: B+-tree index on 𝑅 𝐴,𝐵
• How about B+-tree index on 𝑅 𝐵, 𝐴 ?

56

Index versus table scan

Situations where index clearly wins:
• Index-only queries which do not require retrieving 

actual tuples
• Example: 𝜋\ 𝜎\on 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety
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Index versus table scan (cont’d)

BUT(!):
• Consider 𝜎\on 𝑅 and a secondary, non-clustered 

index on 𝑅(𝐴)
• Need to follow pointers to get the actual result tuples
• Say that 20% of 𝑅 satisfies 𝐴 > 𝑣

• Could happen even for equality predicates
• I/O’s for index-based selection: lookup + 20% 𝑅
• I/O’s for scan-based selection: 𝐵 𝑅
• Table scan wins if a block contains more than 5 tuples!
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Index nested-loop join

𝑅 ⋈J.\]^.I 𝑆
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆 𝐵
• For each block of 𝑅, and for each 𝑟 in the block:

Use the index on 𝑆 𝐵 to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴
Output 𝑟𝑠

• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ index	lookup
• Typically, the cost of an index lookup is 2-4 I/O’s
• Beats other join methods if 𝑅 is not too big
• Better pick 𝑅 to be the smaller relation

• Memory requirement: 3

59

Zig-zag join using ordered indexes

𝑅 ⋈J.\]^.I 𝑆
• Idea: use the ordering provided by the indexes on 𝑅 𝐴

and 𝑆 𝐵 to eliminate the sorting step of sort-merge join
• Use the larger key to probe the other index

• Possibly skipping many keys that don’t match

60

B+-tree on 𝑅 𝐴

B+-tree on 𝑆 𝐵

1 2 3 4 7 9 18

1 7 9 11 12 17 19
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Summary of techniques

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Sort
• External merge sort, sort-merge join, union (set), difference, 

intersection, duplicate elimination, grouping and 
aggregation

• Hash
• Hash join, union (set), difference, intersection, duplicate 

elimination, grouping and aggregation

• Index
• Selection, index nested-loop join, zig-zag join

61


