
Indexing
and

Query Processing
Introduction to Databases

CompSci 316 Fall 2017

Announcements (Wed., Mar. 8)

• Homework #3
• follow piazza posts for updates after each lecture

• Project
• Comments on milestone-1 tomorrow
• Keep working on it

• No class next week
• spring break

2

Today:

• Finish B+ tree and index
• Start query processing

3

Index

4

Recall: What are indexes for?

• Given a value (search key), locate the record(s)
with this value, or range search
• SELECT * FROM RWHERE A = value;
• SELECT * FROM R, SWHERE R.A = S.B;
• SELECT * FROM RWHERE A > value;

• Search key ≠ key in a relation (unique attributes)
• “Key” is highly overloaded in databases

• Recap: index structure on whiteboard

5

Recall: Index classification

• Dense vs. Sparse
• Clustered vs. unclustered
• Primary vs. Secondary
• Tree-based vs. Hash-based
• we will only do tree indexes in 316

6

Recall: B+-tree

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out

7
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Recall: Sample B+-tree nodes
8

Max fan-out: 4

12
0

15
0

18
0

to keys
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12

0
13

0

to records with these 𝑘 values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘

Recall: B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full

(except root)

Max # Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋

9

End of lecture 14

Lookups

• SELECT * FROM RWHERE k = 179;
• SELECT * FROM RWHERE k = 32;

10
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

Not found

Range query

• SELECT * FROM RWHERE k > 32 AND k < 179;

11
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

10
0

10
1

11
0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers until you hit upper bound

35

Insertion

• Insert a record with search key value 32

12
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up where the
inserted key
should go…

32

And insert it right there

Another insertion example

• Insert a record with search key value 152

13

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

Oops, node is already full!

Node splitting
14

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

15
6

Need to add to parent node a pointer
to the newly created node

Oops, that node
becomes full!

More node splitting
15

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

12
0

15
0

15
6

Need to add to parent node a pointer
to the newly created node

• In the worst case, node splitting can “propagate” all the way up
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree

to grow “up” by one level

Deletion

• Delete a record with search key value 130

16

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!

Stealing from a sibling
17

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
6

Remember to fix the key
in the least common ancestor
of the affected nodes

Another deletion example

• Delete a record with search key value 179

18

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

• Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level

19

10
0

10
1

11
0

12
0

15
0

15
6

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Remember to delete the
appropriate key from parent

Performance analysis

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log56789: 𝑁, where 𝑁	is the number of records
• B+-tree properties guarantee that fan-out is least 𝑓/2 for

all non-root nodes
• Fan-out is typically large (in hundreds)—many keys and

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables (next

slide)

20

Typicall B+ Trees in Practice

• Typical max entries: 200.
• Typical fill-factor: 67%
• average fanout F = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records
• Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
• Level 1 = 1 page = 8 Kbytes
• Level 2 = 133 pages = 1 Mbyte
• Level 3 = 17,689 pages = 133 MBytes

21

B+-tree in practice

• Complex reorganization for deletion often is not
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically

reorganize

• Most commercial DBMS use B+-tree instead of
hashing-based indexes because B+-tree handles
range queries

22

The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary <= 25000;
• There is a B+-tree index on Payroll(salary)
• The update never stopped until all employees earned 25k

(why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id

23

https://en.wikipedia.org/wiki/Halloween_Problem

B+-tree versus ISAM

• ISAM is more static; B+-tree is more dynamic
• ISAM can be more compact (at least initially)
• Fewer levels and I/O’s than B+-tree

• Overtime, ISAM may not be balanced
• Cannot provide guaranteed performance as B+-tree does
• Due to “skew”

24

B+-tree versus B-tree

• B-tree: why not store records (or record pointers)
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!

25

B+ tree vs. Hash-based indexes

• Extensible hashing, linear hashing, etc.
• Can only handle “=” in join or selection
• Cannot handle range predicates >, ≥, <, ≤

26

h1
AGE

Smith,	44,	3000
Jones,	40,	6003
Tracy,	44,	5004

Ashby,	25,	3000
Basu,	33,	4003

Bristow,	29,	2007

Cass,	50,	5004
Daniels,	22,	6003

h1(AGE)	=	00

h1(AGE)	=	01

h1(AGE)	=	10

h2

3000
3000
5004
5004

4003
2007
6003
6003

h2(SAL)	=	01

h2(AGE)	=	00

File	of	<SAL,	rid>	pairs	hashed	on	SAL

Employee	File	hashed	on	AGE

Index	organized	file	hashed	on	AGE,	with	Auxiliary	index	on	SAL		

Beyond ISAM, B-, and B+-trees, and hash

• Other tree-based indexes: R-trees and variants,
GiST, etc.
• How about binary tree?

• Text indexes: inverted-list index, suffix arrays, etc.
• Other tricks: bitmap index, bit-sliced index, etc.

27

vs.

Query Processing

28

Overview

• Many different ways of processing the same query
• Scan? Sort? Hash? Use an index?
• All have different performance characteristics and/or

make different assumptions about data

• Best choice depends on the situation
• Implement all alternatives
• Let the query optimizer choose at run-time

29

Notation
• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric

• Number of I/O’s
• Memory requirement

• We do not count the cost of final write to disk

• Do not try to memorize the formulas for cost
estimation!
• understand the logic
• recall the diagram of disk and memory on whiteboard

30

Scanning-based algorithms
31

Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2
• Not counting the cost of writing the result out
• Same for any algorithm!
• Maybe not needed—results may be pipelined into

another operator

32

Nested-loop join

𝑅 ⋈D 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

For each block of 𝑆, and for each 𝑠 in the block:
Output 𝑟𝑠 if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: 3

Improvement: block-based nested-loop join
• For each block of 𝑅, for each block of 𝑆:

For each 𝑟 in the 𝑅 block, for each 𝑠 in the 𝑆 block: …
• I/O’s: 𝐵 𝑅 + 𝐵 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: same as before

33

End of lecture 15

