
3/20/17

1

Query Processing

Introduction to Databases
CompSci 316 Fall 2017

Announcements (Mon., Mar. 20)

• Homework #3 
• 3.1 and 3.2 are due on Wednesday March 22

• Project
• Milestone 2 due next Monday March 27
• Feedback posted on private piazza threads

2

Where are we?

• We are covering DB internals and query processing
• So far: 
• Index: mostly B+ tree

• Today: 
• finish query processing and join algorithms

3

Query Processing

4

Overview

• Many different ways of processing the same query
• Scan? Sort? Hash? Use an index?
• All have different performance characteristics and/or 

make different assumptions about data

• Best choice depends on the situation
• Implement all alternatives
• Let the query optimizer choose at run-time
• Often not the “best choice”
• Optimizer tries NOT to select a “bad choice”

5

Notation
• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric

• Number of I/O’s
• Memory requirement

• We do not count the cost of final write to disk

• Do not try to memorize the formulas for cost 
estimation!
• understand the logic
• recall the diagram of disk and memory on whiteboard

6



3/20/17

2

Scanning-based algorithms
7

Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2
• Not counting the cost of writing the result out
• Same for any algorithm!
• Maybe not needed—results may be pipelined into 

another operator

8

Nested-loop join

𝑅 ⋈) 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

For each block of 𝑆, and for each 𝑠 in the block:
Output 𝑟𝑠 if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: 3

Improvement: block-based nested-loop join
• For each block of 𝑅, for each block of 𝑆:

For each 𝑟 in the 𝑅 block, for each 𝑠 in the 𝑆 block: …
• I/O’s: 𝐵 𝑅 + 𝐵 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: same as before

9

More improvements

• Stop early if the key of the inner table is being 
matched
• Make use of available memory
• Stuff memory with as much of 𝑅 as possible, stream 𝑆

by, and join every 𝑆 tuple with all 𝑅 tuples in memory

• I/O’s: 𝐵 𝑅 + . /
012 ⋅ 𝐵 𝑆

• Or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀
• Memory requirement: 𝑀 (as much as possible)

• Which table would you pick as the outer?

10

Sorting-based algorithms
11

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg

External merge sort
Remember (internal-memory) merge sort?
Problem: sort 𝑅, but 𝑅 does not fit in memory
• Pass 0: read 𝑀 blocks 

of 𝑅 at a time, sort them, 
and write out a level-0 run

• Pass 1: merge 𝑀 − 1
level-0 runs at a time, 
and write out a level-1 run

• Pass 2: merge 𝑀 − 1 level-1 runs at a time, and write 
out a level-2 run

…
• Final pass produces one sorted run

12

Memory
𝑅

Level-0

…

…

… Level-1

Disk



3/20/17

3

Toy example

• 3 memory blocks available; each holds one number
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0
• 1, 7, 4 → 1, 4, 7
• 5, 2, 8 → 2, 5, 8
• 9, 6, 3 → 3, 6, 9

• Pass 1
• 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
• 3, 6, 9

• Pass 2 (final)
• 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

13

Analysis

• Pass 0: read 𝑀 blocks of 𝑅 at a time, sort them, and 
write out a level-0 run
• There are . /

0 level-0 sorted runs

• Pass 𝑖: merge 𝑀 − 1 level- 𝑖 − 1 runs at a time, 
and write out a level-𝑖 run
• 𝑀− 1 memory blocks for input, 1 to buffer output

• # of level-𝑖 runs = #	<=	>?@?>1 A1B 	CDEF
01B

• Final pass produces one sorted run

14

Performance of external merge sort

• Number of passes: log01B
. /
0

+ 1

• I/O’s
• Multiply by 2 ⋅ 𝐵 𝑅 : each pass reads the entire relation 

once and writes it once
• Subtract 𝐵 𝑅 for the final pass
• Roughly, this is 𝑂 𝐵 𝑅 ×log0𝐵 𝑅

• Memory requirement: 𝑀 (as much as possible)

15

Some tricks for sorting

• Double buffering
• Allocate an additional block for each run
• Overlap I/O with processing
• Trade-off: smaller fan-in (more passes)

• Blocked I/O
• Instead of reading/writing one disk block at time, 

read/write a bunch (“cluster”)
• More sequential I/O’s
• Trade-off: larger cluster → smaller fan-in (more passes)

16

Sort-merge join

𝑅 ⋈/.NOP.. 𝑆
• Sort 𝑅 and 𝑆 by their join attributes; then merge

𝑟, 𝑠 = the first tuples in sorted 𝑅 and 𝑆
Repeat until one of 𝑅 and 𝑆 is exhausted:

If 𝑟. 𝐴 > 𝑠. 𝐵 then 𝑠 = next tuple in 𝑆
else if 𝑟. 𝐴 < 𝑠. 𝐵 then 𝑟 = next tuple in 𝑅
else output all matching tuples, and
𝑟, 𝑠 = next in 𝑅 and 𝑆

• I/O’s: sorting	+	2𝐵 𝑅 + 2𝐵 𝑆
• In most cases (e.g., join of key and foreign key)
• Worst case is 𝐵 𝑅 ⋅ 𝐵 𝑆 : everything joins

17

Example of merge join

𝑅: 𝑆: 𝑅 ⋈/.NOP.. 𝑆: 
𝑟B. 𝐴 = 1 𝑠B. 𝐵 = 1
𝑟2. 𝐴 = 3 𝑠2. 𝐵 = 2
𝑟U. 𝐴 = 3 𝑠U. 𝐵 = 3
𝑟V. 𝐴 = 5 𝑠V. 𝐵 = 3
𝑟X. 𝐴 = 7 𝑠X. 𝐵 = 8
𝑟[. 𝐴 = 7
𝑟\. 𝐴 = 8

18

𝑟B𝑠B
𝑟2𝑠U
𝑟2𝑠V
𝑟U𝑠U
𝑟U𝑠V
𝑟\𝑠X



3/20/17

4

Optimization of SMJ
• Idea: combine join with the (last) merge phase of merge sort
• Sort: produce sorted runs for 𝑅 and 𝑆 such that there are 

fewer than 𝑀 of them total
• Merge and join: merge the runs of 𝑅, merge the runs of 𝑆, and 

merge-join the result streams as they are generated!

19

Merge

MergeSo
rt

ed
 ru

ns 𝑅

𝑆

Disk Memory

Join

Performance of SMJ

• If SMJ completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆
• Memory requirement

• We must have enough memory to accommodate one block 
from each run: 𝑀 > . /

0
+ . P

0
• 𝑀 > 𝐵 𝑅 + 𝐵 𝑆�

• If SMJ cannot complete in two passes:
• Repeatedly merge to reduce the number of runs as 

necessary before final merge and join

20

End of lecture 16

Other sort-based algorithms

• Union (set), difference, intersection
• More or less like SMJ

• Duplication elimination
• External merge sort

• Eliminate duplicates in sort and merge

• Grouping and aggregation
• External merge sort, by group-by columns

• Trick: produce “partial” aggregate values in each run, and 
combine them during merge
• This trick doesn’t always work though

• Examples: SUM(DISTINCT …), MEDIAN(…) 

21

Hashing-based algorithms
22

http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

𝑅 ⋈/.NOP.. 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and 

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they 

don’t join

23

Nested-loop join 
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!

Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash 
function on their join attributes

24

𝑀− 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …



3/20/17

5

Probing phase

• Read in each partition of 𝑅, stream in the 
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course! why?

25

Disk Memory

partitions

partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join

Performance of (two-pass) hash join

• If hash join completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆
• Memory requirement:

• In the probing phase, we should have enough memory to fit 
one partition of R: 𝑀− 1 > . /

01B
• 𝑀 > 𝐵 𝑅� + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆
�

+ 1

26

End of Lecture 16


