Query Processing

Introduction to Databases
CompSci 316 Fall 2017

COMPUTER SCIENCE

3/20/17

Announcements (Mon., Mar. 20)

* Homework #3
* 3.1and 3.2 are due on Wednesday March 22

* Project
* Milestone 2 due next Monday March 27
* Feedback posted on private piazza threads

Where are we?

* We are covering DB internals and query processing
* So far:

* Index: mostly B+ tree
* Today:

» finish query processing and join algorithms

Query Processing

Overview

* Many different ways of processing the same query
* Scan? Sort? Hash? Use an index?

* All have different performance characteristics and/or
make different assumptions about data

* Best choice depends on the situation
* Implement all alternatives
* Let the query optimizer choose at run-time
* Often not the “best choice”
» Optimizer tries NOT to select a “bad choice”

Notation

* Relations: R, S

* Tuples:7, s

* Number of tuples: |R], |S]

* Number of disk blocks: B(R), B(S)

* Number of memory blocks available: M

* Cost metric
* Number of I/0’s
* Memory requirement

* We do not count the cost of final write to disk

* Do not try to memorize the formulas for cost
estimation!

* understand the logic
* recall the diagram of disk and memory on whiteboard

3/20/17

Scanning-based algorithms

HOIGKOY101010{‘01'{010010
0100111010101 1 010100018(1)010

Table scan

* Scan table R and process the query
* Selection over R
* Projection of R without duplicate elimination
*1/0’s: B(R)
* Trick for selection: stop early if it is a lookup by key
* Memory requirement: 2
* Not counting the cost of writing the result out
* Same for any algorithm!

* Maybe not needed—results may be pipelined into
another operator

Nested-loop join

R ™, S
* For each block of R, and for each r in the block:
For each block of S, and for each s in the block:
Output rs if p evaluates to true over r and s
* Ris called the outer table; S is called the inner table
« 1/0’s: B(R) + |R| - B(S)
* Memory requirement: 3
Improvement: block-based nested-loop join
* For each block of R, for each block of S:
For each r in the R block, for each s in the S block: ...
« 1/0’s: B(R) + B(R) - B(S)
* Memory requirement: same as before

More improvements

* Stop early if the key of the inner table is being
matched
* Make use of available memory
« Stuff memory with as much of R as possible, stream §
by, and join every S tuple with all R tuples in memory
« 0's: B(R) + [- B(S)
* Or,roughly: B(R) - B(S)/M
* Memory requirement: M (as much as possible)
* Which table would you pick as the outer?

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sorter#fmediaviewer/File:Mail_sorting. 1951 jpg

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

* Pass 0: read M blocks Memory
of R at a time, sort them,
and write out a level-0 run

E} Level-0

* Pass 1: merge (M — 1)
*-:} lle

level-0 runs at a time,
and write out a level-1 run

~

* Pass 2: merfe (M — 1) level-1 runs at a time, and write
outalevel-Zrun

* Final pass produces one sorted run

el-1

Toy example

* 3 memory blocks available; each holds one number

*Input:1,7,4,5,2,8,3,6,9
* Passo
*1,7,42>1,4,7
*528->25,8
*9,6,3>3,6,9
* Pass1
°*1,4,7+2,58->1,2,4,5,7,8
.3!6)9
* Pass 2 (final)
*1,24,578+3,6,9->12,3,4,5,6,7,8,9

3/20/17

Analysis

 Pass 0: read M blocks of R at a time, sort them, and
write out a level-0 run

* There are [%] level-0 sorted runs
* Pass i: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run
* (M — 1) memory blocks for input, 1 to buffer output

. # of level—(i—1) runs
 #of level-i runs = [#]

* Final pass produces one sorted run

Performance of external merge sort

* Number of passes: [logM,l [%R)
*1/O’s
* Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once
* Subtract B(R) for the final pass
* Roughly, thisis 0(B(R)xlogyB(R))

* Memory requirement: M (as much as possible)

]-‘rl

Some tricks for sorting

* Double buffering
* Allocate an additional block for each run
* Overlap 1/O with processing
* Trade-off: smaller fan-in (more passes)

* Blocked I/O

* Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)

* More sequential 1/0’s
* Trade-off: larger cluster — smaller fan-in (more passes)

Sort-merge join

R ™Mpa=s5 S

* Sort R and S by their join attributes; then merge
1, s = the first tuples in sorted R and §
Repeat until one of R and § is exhausted:

Ifr.A > s.B then s =nnext tuplein §
elseif r.A < s.B thenr = next tuplein R
else output all matching tuples, and
r,s=nextinRand S
* I/O’s: sorting + 2B(R) + 2B(S)
* In most cases (e.g., join of key and foreign key)
* Worst case is B(R) - B(S): everything joins

Example of merge join

R: S: R Mp—sp S:
rn.A=1 s;.B=1 1151
. A =3 S,.B =2 253
3.A=3 s3.B=3 rs
73.A=5 s4.B=3 204
5. A=7 ss.B=8 353
rg. A =7 7354
7. A=8 7S5

Optimization of SMJ

* Idea: combine join with the (last) merge phase of merge sort

* Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of S, and
merge-join the result streams as they are generated!

Disk Memory
S— erge
R{ Eee

= E \J&ig.
5 { | ——

Sorted runs

3/20/17

Performance of SMJ

* If SMJ completes in two passes:
+1j0’s:3 - (B(R) + B(S))
* Memory requirement
* We must have enough memory to accommodate one block

Y > B B
from each run: M > TR

* M>.B(R)+B(S)
* If SMJ cannot complete in two passes:

* Repeatedly merge to reduce the number of runs as
necessary before final merge and join

End of lecture 16

Other sort-based algorithms

* Union (set), difference, intersection
* More or less like SMJ

* Duplication elimination
* External merge sort
* Eliminate duplicates in sort and merge
* Grouping and aggregation
* External merge sort, by group-by columns

« Trick: produce “partial” aggregate values in each run, and
combine them during merge
« This trick doesn’t always work though
« Examples: SUM(DISTINCT ...), MEDIAN(...)

Hashing-based algorithms

My Ki

D BE

Hash join

R ™Xp4-s5S

* Main idea
* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and §
* Ifr.A and s. B get hashed to different partitions, they

don’tjoin
1 2 3 R 4 5 .

1 [Nested-loop join

> considers all slots
S

3 Hash join considers only
4 those along the diagonal!
5

hitp://global.rakuten.com/en/store/citygas/item/041233/

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory

M — 1 partitions of R
Same for §

3/20/17

Probing phase

* Read in each partition of R, stream in the
corresponding partition of S, join
* Typically build a hash table for the partition of R

* Not the same hash function used for partition, of course! why?

__Disk > Memory

load
oad | ..-. .
R
artitions
p al
stream For each S tuple,
S [l probe and join

partitions

Performance of (two-pass) hash joiﬁ

* If hash join completes in two passes:
+1j0’s:3 - (B(R) + B(S))

* Memory requirement:
* In the probing phase, we should have enough memory to fit
one partition of R: M — 1 > %
*M>\BR)+1
* We can always pick R to be the smaller relation, so:

M > |min(B(R),B(S)) +1

End of Lecture 16

