
Query Processing:
Systems Perspective

Introduction to Databases
CompSci 316 Spring 2017

Announcements (Mon., Mar. 20)

• Homework #3
• 3.1 and 3.2 due today
• Remaining parts to be posted today
• Due on Monday

• Project
• Milestone 2 due next Monday March 27

2

QP so far

• Scan-based algorithms
• Nested loop join (tuple nested, block nested)

• Sort-based algorithms
• External merge sort
• Sort-merge join

• Hash-based algorithms
• Hash join

• Can be adapted to
• Selection, projection, aggregate

3

Recall: Performance of SMJ

• If SMJ completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆
• Memory requirement

• We must have enough memory to accommodate one block
from each run: 𝑀 >) *

+
+) ,

+
• 𝑀 > 𝐵 𝑅 + 𝐵 𝑆�

• If SMJ cannot complete in two passes:
• Repeatedly merge to reduce the number of runs as

necessary before final merge and join

4

Recall: Performance of (two-pass) hash join

• If hash join completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆
• Memory requirement:

• In the probing phase, we should have enough memory to fit
one partition of R: 𝑀 − 1 >) *

+01
• 𝑀 > 𝐵 𝑅� + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆
�

+ 1

5

Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!

• See the duality in multi-pass merge sort here?

6

Hash join versus SMJ
Pros? Cons?
(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower

• min 𝐵 𝑅 , 𝐵 𝑆
�

+ 1 < 𝐵 𝑅 + 𝐵 𝑆�

• Hash join wins when two relations have very different sizes

• Other factors
• Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets
• SMJ can be adapted for inequality join predicates
• SMJ wins if 𝑅 and/or 𝑆 are already sorted
• SMJ wins if the result needs to be in sorted order

7

What about nested-loop join?

• May be best if many tuples join
• Example: non-equality joins that are not very selective

• Necessary for black-box predicates
• Example: WHERE user_defined_pred(𝑅. 𝐴, 𝑆. 𝐵)

8

Other hash-based algorithms

• Union (set), difference, intersection
• More or less like hash join

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns
• Tuples in the same group must end up in the same

partition/bucket
• Keep a running aggregate value for each group

• May not always work

9

Duality of sort and hash

• Divide-and-conquer paradigm
• Sorting: physical division, logical combination
• Hashing: logical division, physical combination

• Handling very large inputs
• Sorting: multi-level merge
• Hashing: recursive partitioning

• I/O patterns
• Sorting: sequential write, random read (merge)
• Hashing: random write, sequential read (partition)

10

Index-based algorithms
11

http://i1.trekearth.com/photos/28820/p2270994.jpg

Selection using index

• Equality predicate: 𝜎:;< 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎:=< 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

• Indexes other than those on 𝑅(𝐴) may be useful
• Example: B+-tree index on 𝑅 𝐴, 𝐵
• How about B+-tree index on 𝑅 𝐵, 𝐴 ?

12

Index versus table scan

Situations where index clearly wins:
• Index-only queries which do not require retrieving

actual tuples
• Example: 𝜋: 𝜎:=< 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety

13

Index versus table scan (cont’d)

BUT(!):
• Consider 𝜎:=< 𝑅 and a secondary, non-clustered

index on 𝑅(𝐴)
• Need to follow pointers to get the actual result tuples
• Say that 20% of 𝑅 satisfies 𝐴 > 𝑣

• Could happen even for equality predicates
• I/O’s for index-based selection: lookup + 20% 𝑅
• I/O’s for scan-based selection: 𝐵 𝑅
• Table scan wins if a block contains more than 5 tuples!

14

Index nested-loop join

𝑅 ⋈*.:;,.) 𝑆
Suppose there is an index on S(B): S is outer or inner?
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆 𝐵
• For each block of 𝑅, and for each 𝑟 in the block:

Use the index on 𝑆 𝐵 to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴
Output 𝑟𝑠

• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ index	lookup
• Typically, the cost of an index lookup is 2-4 I/O’s
• Beats other join methods if 𝑅 is not too big
• Better pick 𝑅 to be the smaller relation

• Memory requirement: 3

15

Zig-zag join using ordered indexes

𝑅 ⋈*.:;,.) 𝑆
• Idea: use the ordering provided by the indexes on 𝑅 𝐴

and 𝑆 𝐵 to eliminate the sorting step of sort-merge join
• Use the larger key to probe the other index

• Possibly skipping many keys that don’t match

16

B+-tree on 𝑅 𝐴

B+-tree on 𝑆 𝐵

1 2 3 4 7 9 18

1 7 9 11 12 17 19

Summary of techniques

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Sort
• External merge sort, sort-merge join, union (set), difference,

intersection, duplicate elimination, grouping and
aggregation

• Hash
• Hash join, union (set), difference, intersection, duplicate

elimination, grouping and aggregation

• Index
• Selection, index nested-loop join

17

Query Processing: Systems aspects

18

A query’s trip through the DBMS
19

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =

Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

Parsing and validation

• Parser: SQL → parse tree
• Detect and reject syntax errors

• Validator: parse tree → logical plan
• Detect and reject semantic errors

• Nonexistent tables/views/columns?
• Insufficient access privileges?
• Type mismatches?

• Examples: AVG(name), name + pop, User UNION Member

• Also
• Expand *
• Expand view definitions

• Information required for semantic checking is found in
system catalog (which contains all schema information)

20

Logical plan

• Nodes are logical operators (often relational
algebra operators)
• There are many equivalent logical plans

21

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧Member.gid = Group.gid
×

Member
Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”

Physical (execution) plan

• A complex query may involve multiple tables and
various query processing algorithms
• E.g., table scan, index nested-loop join, sort-merge join,

hash-based duplicate elimination…

• A physical plan for a query tells the DBMS query
processor how to execute the query
• A tree of physical plan operators
• Each operator implements a query processing algorithm
• Each operator accepts a number of input tables/streams

and produces a single output table/stream

22

Examples of physical plans

• Many physical plans for a single query
• Equivalent results, but different costs and assumptions!
FDBMS query optimizer picks the “best” possible physical plan

23

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

PROJECT (Group.name)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)
MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

Physical plan execution

• How are intermediate results passed from child
operators to parent operators?
• Temporary files

• Compute the tree bottom-up
• Children write intermediate results to temporary files
• Parents read temporary files

• Iterators
• Do not materialize intermediate results
• Children pipeline their results to parents

24

25

http://www.dreamstime.com/royalty-free-stock-image-basement-pipelines-grey-image25917236

Iterator interface

• Every physical operator maintains its own
execution state and implements the following
methods:
• open(): Initialize state and get ready for processing
• getNext(): Return the next tuple in the result (or a null

pointer if there are no more tuples); adjust state to allow
subsequent tuples to be obtained
• close(): Clean up

26

An iterator for table scan

• State: a block of memory for buffering input 𝑅;
a pointer to a tuple within the block
• open(): allocate a block of memory
• getNext()
• If no block of 𝑅 has been read yet, read the first block

from the disk and return the first tuple in the block
• Or null if 𝑅 is empty

• If there is no more tuple left in the current block, read
the next block of 𝑅 from the disk and return the first
tuple in the block
• Or null if there are no more blocks in 𝑅

• Otherwise, return the next tuple in the memory block

• close(): deallocate the block of memory

27

An iterator for nested-loop join
R: An iterator for the left subtree
S: An iterator for the right subtree
• open()

R.open()
S.open()
r = R.getNext()

• getNext()
• To output just the next (r, s) tuple from R Join S
while True:

s = S.getNext()
if s is null: # no more tuple from S to join with the current R-tuple

S.close()
r = R.getNext() # move on to next r
if r is null: # no more tuple from R

return null
otherwise we are at current r
S.open() # reopen S
s = S.getNext()
if s is null: # S is empty!

return null
if joins(r, s):
return concat(r, s)

• close()
R.close()
S.close()

28

NESTED-LOOP-JOIN

R S

An iterator for 2-pass merge sort
• open()

• Allocate a number of memory blocks for sorting
• Call open() on child iterator

• getNext()
• If called for the first time

• Call getNext() on child to fill all blocks, sort the tuples, and output a
run

• Repeat until getNext() on child returns null
• Read one block from each run into memory, and initialize pointers

to point to the beginning tuple of each block
• Return the smallest tuple and advance the corresponding

pointer; if a block is exhausted bring in the next block in the
same run

• close()
• Call close() on child
• Deallocate sorting memory and delete temporary runs

29

Blocking vs. non-blocking iterators

• A blocking iterator must call getNext() exhaustively
(or nearly exhaustively) on its children before
returning its first output tuple
• Examples: sort, aggregation

• A non-blocking iterator expects to make only a few
getNext() calls on its children before returning its
first (or next) output tuple
• Examples: dup-preserving projection, filter, merge join

with sorted inputs

30

Execution of an iterator tree

• Call root.open()
• Call root.getNext() repeatedly until

it returns null
• Call root.close()

FRequests go down the tree
FIntermediate result tuples go up the tree
FNo intermediate files are needed
• But maybe useful if an iterator is opened many times

• Example: complex inner iterator tree in a nested-loop join;
“cache” its result in an intermediate file

31

